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Lane formation in colloidal mixtures driven by an external field
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The influence of an external field on a binary colloidal mixture performing Brownian dynamics in a solvent
is investigated by nonequilibrium computer simulations and simple theory. In our model, one half of the
particles are pushed into the field direction while the other half of them are pulled into the opposite direction.
For increasing field strength, we show that the system undergoes a nonequilibrium phase transition from a
disordered state to a state characterized by lane formation parallel to the field direction. The lanes are formed
by the same kind of particles moving collectively with the field. Lane formation accelerates particle transport
parallel to the field direction but suppresses massively transport perpendicular to the field. We further show that
lane formation also occurs in a time-dependent oscillatory field. If the frequency of the external field exceeds
a critical value, however, the system exhibits a transition back to the disordered state. Our results can be
experimentally verified in binary colloidal suspensions exposed to external fields under nonequilibrium con-
ditions.
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I. INTRODUCTION phase diagram as a function of the field strength and the
range of the interparticle interaction. In order to characterize
While equilibrium bulk phase transitions are by now well the lane phase we use suitable order parameters. We also find
understood both by computer simulatidds?] and by statis- an increase of the particle transport in the field direction
tical theorieg 2—4], nonequilibrium situations may induce a induced by lane formation and a drastic reduction of particle
much richer scenario of phase transformations. In the lastansport perpendicular to the field direction, which may
years an emphasis was placed onto such transitions in driveserve as dynamical criteria for detecting the lane formation.
diffusive systemg5-7], which were extensively studied by We further show that lane formation is very general and is
theory and simulation within lattice and off-lattice models thus a generic feature of any two-component driven diffusive
and constant and oscillatory field8—10]. In particular, system. In fact, using computer simulations we demonstrate
models of identical particles were studied, which couple withthat lane formation also occurs in unconfined systems, in
a different sign to an external uniform fie{do-called “plus-  three spatial dimensions, and for time-dependent oscillatory
and minus-charge” particleg[11]. In the symmetric case fields. In the latter case the system exhibits a transition back
where half of the particles are “plus-charge” and half of to the disordered state upon reaching a critical field fre-
them are “minus-charge” particles, a blocking transition wasquency.
obtained if the field strength exceeded a critical value. The As the occurrence of lane formation appears to be very
particles then form stripes perpendicular to the field directiorgeneral, this nonequilibrium transition could be experimen-
[12—14. This transition has been put forward recently as atally verified in quite different systems. One evident ex-
concept of panic theory applied to pedestrian zofES. amples are ionic conductors in an electric figfd. Another
Interestingly enough in a two-dimensional off-lattice systemless common example concerns pedestfisrany other traf-
confined onto a strip, the blocking transition was found to befic) dynamics where lane formation is an intuitive phenom-
generated by increasing the temperature, which is opposite ®non[16]. A further application, which we put forward in
what one would expect from the equilibrium freezing transi-this paper, is mesoscopically sizemlloidal suspensions
tion that occurs by lowering the temperature. which perform diffusive Brownian dynamics in a molecular
In this paper, we focus on another kind of nonequilibriumsolvent. Colloidal samples have served as excellent model
phase transition in such a driven diffusive off-lattice modelsystems to detect equilibrium phase transitions such as freez-
with two particle species, which is associatedaoe forma-  ing [17] or fluid-fluid phase separatidd8]. They have also
tion parallel to the external field. Lanes are formed byplayed a key role for experimental verification of kinetic
bundles of particles of the same kind due to a nonequilibriunmode-coupling-type theories describing thenequilibrium
“slipstream” effect. While such a transition towards lane for- kinetic glass transitioi19]. Indeed well-characterized col-
mation is absent in a square-lattice model with nearestloidal suspensions may also be subjected to external fields
neighbor hopping and in pure one-component systems, it wagsulting in nonequilibrium structure formation. The striking
recently found in off-lattice simulations of a confined two- advantage of colloidal samples is that the external field can
dimensional system as an intermediate state between the disystematically be controlled and tailor¢?0]. As possible
ordered and the blocked stdtE5]. In this work, we investi- examples, which realize the Brownian model used in the
gate this lane formation in more detail and map a wholepresent study, we mention binary colloids under sedimenta-
tion, linear or oscillating shear, and charge-bidisperse colloi-
dal mixtures in electric fields. Another possibility to control
*Email address: joachim@thphy.uni-duesseldorf.de colloidal suspensions is by an external laser-optical or mag-
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netic field, which couples to the different dielectric or mag- The stochastic Langevin equations for the colloidal trajec-
netic permeabilities, respectively, of the solvent and the coltoriesr (t) (i=1, ... ,N) read as
loid material. We further mention that two-dimensional
systems for which most of the theoretical studies were done
can also be realized by squeezing colloids between glass
plates[21] or confining them across a water-air interface
l]_

22,23 and these can be subjected to external fields as wel . . . .
[ 3 ) e here are different forces acting onto the colloidal particles:

The paper is organized as follows. In Sec. Il, we define,. : . . S :
hap 9 f||rst there is the force attributed to interparticle interactions,

the model used. Our simulation technique and dynamic n there is the external shaking field and finally the random
properties in the disordered phase where lanes are formed a 4 FRe S e_e € a_s aking field a allythera _0
orcesF(®) describe the kicks of the solvent molecules acting

described in Sec. Ill. A simple theory is presented in Sec. IVf ) ! : : -
Section V is devoted to a discussion of the simulation resultsonto theith colloidal particle. These kicks are Gaussian ran-

==V 2 V(ri-rh+Fm+FPmn. @

J#Ii

in particular, we present nonequilibrium phase diagrams. Welom numbers with zero meaﬁi(R)zo, and variance

conclude in Sec. VI.

Il. THE MODEL

In our model, we consider a binary mixture comprising
2N Brownian colloidal particles iml=2 or d=3 spatial di-
mensions. The particles are either in an &@a in a volume
Q) with a fixed total number density gb=2N/S and p
=2N/Q, respectively. Half of them are particles of type
the other half is of type such that the partial number den-
sities arepp=pg=p/2. The system is held at fixed tempera-

ture T being embedded in a bath of microscopic solvent par-

ticles of the same temperature. The colloidal particlesd]
are interacting via an effective pair potential. For simplicity
we study the symmetric cas®/aa(r)=Vag(r)=Vgg(r)

=V(r), wherer is the interparticle distance. We assume an

effective screened Coulomb interactitr Yukawa form
(1)

whereV, is an energy scale angis the particle diameter as
a length scale. This is a valid model for charge-stabilize
suspensions both in tw@4] and three dimensiorj47]. The

inverse screening lengtk governs the range of the interac-

V(r)=Vooexd —«(r—oa)]lr,

tion and can be tuned, e.g., by the concentration of added sd

in the colloidal solution.

The dynamics of the colloids is assumed to be completelxﬁ

overdamped Brownian motion with hydrodynamic interac-
tions neglected, which is a safe approximation if the colloi-
dal volume fraction is small. The friction constant
=3mno (with 7 denoting the shear viscosity of the solvent
is assumed to be the same for b@ttand B particles. The
external constant or oscillatory force acting on e par-
ticle is pointing in thez direction and modeled as

Fi(1) =€, P of 0t), 2

wherew is the external frequendyvith w=0 leading to the

constant-field cas)eéZ is the unit vector along the direc-
tion, andf; is the coupling parameter of thth particle to the
external field. WithP,..( wt) we apply a rectangular oscilla-
tion switching from 1 to—1 defined via

1,
-1,

n=x=(2n+1)/2

(2n+1)l2<x<n+1 @

Prec{ X) =

with n=0 ...,

(F{) (O (F) (1) =2kaTy348, 8(t—t').  (5)
The subscriptsy and 8 stand respectively, for the two and
three Cartesian components &yl is the thermal energy.

In our model we assume the symmetric chsef®=f
>0 for A particles and;=f(®)= — f<0 for B particles. This
is not any restriction. In fact, the asymmetric cak®
+£(® %0 can directly be mapped onto the symmetric case
by subtracting the overall dynamical mode

L fAN4+£®)

N t
ro(t)=e, 2y foprect(wt,)dt,- (6)

The Langevin equationg}) can be rewritten in terms of

new reduced trajectories (t)=r(t)—ro(t) such that the
transformed equations have the same form as in the symmet-
ric case withf = (f® —())/2.

This implies that a binary charged suspension with

qcharges of equal sign is also a good realization of our model:

it only matters that the external field acts differently for both
species. After a Galilei transformation the symmetric case is
ﬁalized.

In equilibrium (i.e., in the absence of any external field
uch thatf=0) the model reduces to a Brownian Yukawa
uid which has been extensively investigated as far as struc-
tural and dynamical equilibrium correlations and freezing
transitions are concerned, both in thrggs—27 and two
[24,28,29 spatial dimensions. Our model is specified by dif-
ferent input parameters such as the total particle depsity
the thermal energikgT, the inverse screening length the
dimensionless ratiobl ,=Vy/kgT, f*=fo/kgT, and w g,
where rg= yo?/V, is a suitable Brownian time scale.

IIl. BROWNIAN DYNAMICS COMPUTER SIMULATIONS
IN NONEQUILIBRIUM

A. Simulation procedure

Our Brownian dynamics code is similar to earlier non-
equilibrium simulations of charge-polydisperse colldigé—
32]. Ford=2, we putN=250A andN=250B particles into
a square cell of length” with periodic boundary conditions.
The total colloidal number density js=2N//2. Likewise,
in three dimensiond\ =500 A andB patrticles are in a cubic
box of length/ such thatpo=2N//3. For the snapshots of
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the d=3 system(Fig. 3) we increased the number ta\2
=8000 particles for a better resolution of the structure. We
checked that the results are not dependent of the number of
simulated particles; except for small numbers, we found the
usual finite-size effects. The direction of the external force is
always along an edge of the simulation cell.

We tried different starting configurations. The system was ;
observed to run into a non-equilibrium steady-state indepen- 04 | Pl |o-—-0Kk6=2.0

dent of the initial configuration. / / o ! ‘/ & - -0 k0=3.0

The Langevin equations of motion including the shaking 02 f . / A 43 &_*}‘“’f‘w
external field were numerically solved using a finite time }j’ / P ﬁ/ :::igi’g
stepAt and the technique of ErmdR,33]. The typical size 0 ééﬂ' ‘ .
of the time step wad\t=0.003r5. We simulated typically 0 50 100, 150 200
2% 10* time steps, which corresponds to a simulation time of f
6075 . After an initial relaxation period of 2£;, statistics ;
were gathered.

B. Order parameter

In order to detect the transition towards lane formation a 06 | ;’f,;’
sensitive order parameter is needed. A suitable order param- () wﬁ‘ |
eter could probe particle density inhomogeneities along the i
S o ; S : 04 | o o - -0 K6=2.0
field in the z direction, which vanish in an ideal lane con- g‘l G o Ko=30
figuration. Therefore, we assign to every particlen order / & ——6 Ko=4.0
parameterg; , which is chosen to be 1, when the lateral 0.2 r ;//;l/ A——A KG=5.0
distancer;=|x;—x;| (rj=(xi—x;)*+(y;—Y;) in three di- /4 4 --<K6=6.0
mensiong to all particlesj of the other type is larger than a 0 =g : : :
suitable length scale, say>p~Y4/2. Otherwise g; is set to 0 30 loo, 150 200
zero. A global dimensionless order paramefecan now be f
defined as FIG. 1. Dimensionless order parameteras a function of field

1 N strengthf* for d=2 and different inverse screening lengths. In
b= _< 2 ¢i> , 7) (a) the field is increased starting from a randomly mixed configu-
N\i=1 ration, while in(b) the initial configuration is completely demixed

(two lane$ and the field is decreased. The densitpi€=1.0 and

where the brackets denote a time average. In a completeljo=2-5, ®=0.
mixed state,¢ vanishes while for ideaAB separation,¢

=1. the final steady state, which is a fully phase-separated situa-
A typical result for¢ as a function of field strengthis  tion.
shown ford=2 and a constant field(=0) in Fig. 1. While We have, furthermore, considered situations with nonva-

¢ is small for a small constant field, it grows when a critical nishing field frequencies. If an oscillatory field with am-
field strengthf is approached. Further increasing of the ex-plitude f>f is present and the frequenayis increased, the
ternal field yields values close to unity. The transition to-order paramete$ decreases with increasing For low fre-
wards lane formation is reversible but exhibits a significantjuencies the system remains in the lane state 1, while
hysteresis. This can be deduced from Figh)lwhere the above a critical frequency, the system gets back to disorder
external field strength was slowly decreased. Hence we corand ¢ fades to zero.
clude that lane formation is a nonequilibrium first-order tran-  All these considerations are the same for a three-
sition. As can be deduced from Fig. 1, the critical field dimensional system. Corresponding snapshots with lane con-
strengthf . increases with increasing. More results for the figurations are shown in Figs(& and 3b). Of course, due
location of the nonequilibrium phase transition will be pre-to the presence of an additional dimension, the lane structure
sented in Sec. V A. is more complicated in three dimensiof@D) than in 2D. A
Simulation snapshots associated with a situation without aut through a plane perpendicular to the field is shown in
field as well as with a field below and above the critical field Fig. 3(b) demonstrating that the in-plane structure is reminis-
strength are shown in Figs(&-2(c). One clearly sees lane cent of a two-dimensional phase separation or a percolating
formation parallel to the external field. A further characteris-network.
tic length scale corresponding to lane formation is the aver-
aged thickness of the lanes. In the snapshots, this thickness
of the lanes is about several interparticle spacings. It may be
conjectured, however, in analogy with lattice modé&kthat For a constant field ¢=0), we have also computed a
the finite width of the lanes is due to a lack of relaxation intodynamical correlation in the nonequilibrium steady state fo-

C. Dynamical diagnostics
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o
\,.
:Ek v FIG. 3. Typical snapshots of the three-dimensional system with
f {Z‘E‘L external field f>f, and lanes parallel to the fielda) three-
2| fese dimensional view(b) look on the ,y) plane perpendicular to the
‘“‘-gt“ field directionz. The particles are rendered as spheres with diameter
t{ttg o. For these snapshots we simulatdd=28000 particles. The pa-
L,ﬁt‘ rameters areco=2.0, Ug=2.5, pa®=1.0, andw=0.
LL
HEC
%

FIG. 2. Typical simulation snapshots of the two-dimensionall@nes are formedy, increases as the obstacles made up by
system:(a) disordered state without fieldg(=0), (b) disordered different particle species are not any longer present signaling
state with fieldf,~f. (¢~0.45), (c) lane formation with fieldf, ~ an efficient particle transport along the lanes in directions
>f, (¢~0.99). The particles are depicted as spheres with diametgparallel to the field. An example ofy versus increasing field
o. Alight sphere is am\ particle while a gray sphere isBaparticle.  strengthf for d=2 is shown in Fig. 4a). These results are
The parameters ares=4.0, pa®=1.0, Uq=2.5, andw=0. compared to the drift velocity of a one-component Brownian

system in an external field, where

cusing on particle transport properties parallel and perpen- vp=vg=Tflvy, (9)
dicular to the external field. In fact, as expected, the particle
transport in field direction is enhanced once lanes have be&tyresponding to a trivial overall dynamical mode of all the
formed. In detall, for a constant field, we define the average‘ﬂ)articles. Indeed during lane formation, as probed by the
drift velocity vp along the field for each particle species by orger parameterp, the drift velocity practically equals,.
measuring the mean-square displacement irztfieection in - o mall fields, on the other hang, is significantly smaller
the nonequilibrium steady state by than . Hence lane formation manifests itself in a dynamical
- - - anomaly in the drift velocity, which can be used as a dynami-
([ri(t)—ri(0))-&,]%) ®) cal diagnostics to detect lane formation.

t? A more dramatic effect is observed for the long-time dif-
fusion coefficient perpendicular to the field direction as de-
fined via
Clearly, as the long-time dynamics is diffusive in equilib-
rium, vp=0 for f=0. In the mixed state is small as the
external field enforces a transport, which is, however, still D, :=lim
hindered by the presence of different particle species. Once t—oo

v5:=lim

t—oo

([ri(1)—r,(0))- €%

ot (10
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o IV. SIMPLE THEORY
0f  a - A. Constant field

We are aiming at a rough theoretical estimation of the
*a I, boundaries of the laning transition with constant external
i field f in two or three dimensions. We assume that the system
i goes into the stratified state when the external field is larger
2 /Q’ oo un than the typical average force between two particles of op-
2 o posite type. The latter depends both on density and on the
o e 60 external field itself. We estimate a typical average force be-
L@ tween two opposite particles by considering different “effec-
0 K& , tive” interparticle spacings. The first typical interparticle
0 50 100 150 spacing is set by the density alores p 9. Including fluc-

f tuations in the interparticle distance induced by a finite tem-

1 ‘ perature results in a further smaller effective average dis-
tancea as obtained by setting a typical interparticle energy
equal toV(a)+kgT. Hencea=V [V(a)+kgT] where
Qﬂ @ S V~1is the inverse function of the interaction poten¥ér).
. Finally the presence of an external field enforces an even
05 | /p \ L | smaller averaged distaneé between colliding opposite par-
K4 kﬂ? """"""""" ¢ ticles, which can be estimated via

»
4

/ gf \ a'=F f+F(a)], (11

0 o000 where F 1 is the inverse function of (r)=—VV(r). In
0 50 . 100 150 general, a pair of opposite particles will not collide centrally
f such that the actual average distance is betvegeand a.
FIG. 4. (a) Averaged dimensionless drift velocity,=vprg/c  HENCE the averaged foréebetween arA and aB particle is
in z direction versus the external field compared to the dimen- foughly
sionless drift velocity§ =vo7g /o of a one-component Brownian
system and to the order parametr(b) Dimensionless long-time
diffusion coefficientD} =D, 75/ in x direction versusf* also
compared tap. In (a) the ¢ curve is inflated to the maximal shown
ordinate value for beztter comparison. The parametersdar@,  The critical forcef is reached when the external force be-
xo=4.0,Uo=25, po°=1.0, andw=0. comes of the order of the mean forte

For a vanishing external field in equilibrium, the long- f—af 13
time self-diffusion coefficientD, has been the subject of c—at (13

intense recent re.search, in particular,. for Brownian-Yukawa,, is o yet not known dimensionless prefactor of the order of
systems as studied hef84—41. Turing on the external ity which should depend, in general, on the dimensional-
field strengthf, particles of different types can only follow v g 1t will be determined later by an optimal fit with our
the extemal field by eluding e_ach other, SO that the d'ffus'onéimulation results, see Sec. V A.

perpendicular to the external field has to increase Wwitthis
effect grows until the critical field strength is reached and the
system begins to form lanes. Now the particles are confined
to lanes with thickness of some interpatrticle spacings, which We now focus on a time-dependent external fi@dwith
reduces the perpendicular diffusion again. ResultsOgr nonvanishing frequency. We propose a simple theory that
versusf are shown in Fig. @) for d=2, together with the predicts the critical frequenay= w. upon which a transition
corresponding order paramel#r and confirm these qualita- back to the disordered state occurs. Let the field amplitude
tive considerations. The drastic decreaseDnf versusf  be such that>f_ holds. In the segregated mixture the par-
strongly correlates with the location of the lane formation adicles are moving collectively with the external field. Their
indicated by a strongly increasing parameferThis drastic  velocity in field direction changes sign but roughly has the
decrease can be exploited as a sensitive dynamical diagnosiodulus of the drift velocityvy, Eq. (9). At the interfaces
tics to locate lane formation. We remark that after a verybetween two lanes, there is an additional friction due to the
long time, lanes may fuse towards big nonstructured region®pposite moving particles of the other type. This additional
In this case, the final falloff oD, for f>f_ can be slightly friction should scale with the range dbf the interparticle
shifted upwards to the equilibrium diffusion coefficient at interaction in terms of a typical microscopic spacing
f=0. Hence the drift velocity, near an interface is

— 1 ~
f=—"—[V(a)-V(@)]. (12
a—a

B. Oscillatory field
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f 300 |5 --81pa=1.00,U,=100
V= W , (14 |8 pa’=1.00,U,=5.0
W1+ 1(ko)] 250 | @ /. |e—apc=10025

©--0pa’=0.50,U,=10.0

which changes, however, its sign periodically according to 200 | a ‘}““Oggijggzgzjg
the shaking external field. Now we consider the stability of . - - ©pc’=0.25,U,7100
two lanes at their interface. The field frequency has to be foiso

small enough in order to provide a sufficiently long time
period in which the two lanes can slide against each other
avoiding a mixing of different particle species. If this time is
getting very small, diffusion perpendicular to the field direc-
tion will dominate and destroy the sharp interface. Lane sta-
bility is lost when a particle has roughly reached a typical 0
interparticle spacing=p~ ' during half a period 1/@ of

. . KO
the external field. Thermal fluctuations can be neglected 100
compared to the high critical force. This yields for the criti- B“E'P"}L%’Ua:l‘:io
/ B8 po’=1.00,U,=5.

cal frequency 250 | b, " a—agc’=1.oo,uo=zs
n'/ G--Opc:=0.50,Ua=10.0
02w~ p (15 200 L~ oo pei 000 n2s
. @ ©--0p6’=0.25,U,=10.0

or Je1s0 |

fplld
100 ¢
W~ . 16

¢ 29y[1+1ko)] (16) ;

50 &

This result can be understood both in a more qualitative and

more quantitative way. Qualitatively, it can be interpreted as 0
a scaling law predicting different exponents for the transition

frequency for varying field strength, friction coefficient,

screening length, and particle density. Note that in our theory FIG. 5. Critical field strengtli* for the two-dimensional system
the transition frequencies are independent of temperatur@ersuso for different U, and po? as obtained from Brownian
Furthermore, Eq(16) is a full quantitative prediction, which dynamics simulation(a) and theory(b). By increasing the field
we shall test against our computer simulation data in Secstrengthf* the system shows a phase transition from a disordered

V B. state to a state characterized by lane formation. The transition is
indicated by the symbols, the lines are a guide to the eye.
V. RESULTS FOR THE NONEQUILIBRIUM PHASE freezing transition[25,29. The particles are highly corre-
DIAGRAM lated and the external force has to be strongly enhanced to
A. Constant field enforce stratification.

In Fig. 5(b) we plot the results of our simple theory as

The phase diagram for a constari<0) external force described in Sec. IV A for the same parameter combinations
obtained from computer simulations is shown in Figa)5 as chosen for the simulations in Figas Comparing theory
The location of the phase transition is estimated via the beand simulation the theory reproduces all trends correctly. In
havior of the order parametet: the critical field strength? particular, f¥ grows with increasing, Uy, and x as ob-
is obtained by settingg=0.5 for a set of runs with increasing tained in the simulations. By assigning &oin Eq. (13) a
field strengths*. The plots clearly show that for increasing value 2.0 the theory even brings about quantitative agree-
densityp or increasing interaction enerdy,, an enhanced ment, particular for the low density casgs<0.25, 0.5) and
critical forcef; is necessary to drive a transition towards lanecan thus be used for a simple estimate for the location of the
formation. By increasing one of these two parameters th&ansition towards lane formation. Furthermore, the assump-
correlation between the particles is getting stronger, so as %N implicit in our theory that the transition is modified by
conclusive result we can state that whenever the correlatioR@rticle correlations is justified. .
is increased the critical force is getting higher. A bit more Similar results for the nonequilibrium phase transition in

subtle is the dependence anwhich is the inverse range of thggr\s/ggt't?:ed'srgﬁlls'ggﬁ dzr?aspzﬁstevcgegir%nerfé?c;ni. Xveaiza;/hee
the interaction potential and controls the “softness” of the - A9

interaction. By watching, e.qg., the pair correlation function intheory s in semiquantitative agreement with our simulation

equilibrium, one observes an increase in correlation for in-data’ though the curvature of theversuso data is slightly

creasingx. This explains why the critical field strengffi is different. Here the optimal fit is=1.5.
increasing withk, although this increase is practically mar-

ginal for small densities. We also remark that, for densities
po?=1.0 or po>=1.0 in three dimensions and higko For an oscillating external field, data for the critical fre-
~5,6, the system is slightly below the equilibrium bulk quenciesw. upon which the system goes back into a disor-

B. Oscillating field
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100 ; ; T T 100
—— ¥06=2.0,00"=0.25 P
g L|— X0=2.0,00'=0.50
----- m=2.0.p02=1.00 7

25 | 6—8 po’=1.0,U,=5.0
B--0 psZ=1.0,0,=2.5

6—o pcg:O.S,U,=5.0
G---0p0=0.5,U,=2.5

KO 100 'f
100 . . . - —_ poZ:O.SO,Ko‘:Z.O
= |- po =0.50,xk5=4.0 L]
b) L 801 p6'=0.50,k5=6.0 L -
-
75 ,zr’,
le’
A'E”
fl ’,B’,
¢ 50 g’ 7

n----O"'e'-—e—_—_

25 ;___9,_-0-—0---6--1Epczf1.o,v,f5.o
b0 L0s 0
—o0 po =0.5,U =5 - . - .
0--0pc'05,U=25 50 100 150 200 250 300
0 : . : ‘ f
2 3 4 5 6 7
KO FIG. 7. Nonequilibrium phase diagram for the two-dimensional

system with oscillatory external field fa#,=5.0. The critical field
frequencyw, in units of 1/g is plotted versus the field amplitude
f* for different densitiega), and for different screening lengtkis).
For low frequencies the system stays in the stratified state, while for
dered state are given in Fig. 7. They are shown versus thiacreasing frequency there is a transition back to disorder. Lines are
field amplitude for different particle densitigs[Fig. 7(a)]  theoretical estimations, symbols are the corresponding simulation
and for different particle interaction ranges<1Fig. 7(b)]. results. The long dashed lines connecting_eqt_JaI sym_bols are a g_uide
The trends are as followss, increases for increasing ampli- 0 the eye. In@ the boundary moves up with increasing density, in
tude, increasing density, and increasiagin our considered () the boundary moves up with increasing decay length.
parameter range no obviollg, dependence was found in the
simulation. All these trends are in accordance with our . . .

. o L . should be observable in real systems such as binary colloidal
simple theory, which is also plotted in Fig. 7. The theory IS i . : . I

. o . . ispersions, e.g., driven by an oscillatory electric field.

even confirmed quantitatively by our simulation data. The

di b h d simulation is al I It would be very interesting to construct a hydrodynamic
Iscrepancy between theory and simulation is always smallgh oy of pattern formation predicting lane formation as an

than 20%, at least in the parameter range where Sim“|ati°']ﬁstability [42,43. Even more challenging would be a full
were performed. microscopic nonequilibrium theory, which has been much

more elaborated for second-order nonequilibrium phase tran-
VI. CONCLUSIONS sitions[6,44].

In conclusion we have studied the influence of an externa| Ve finish with a coup_le of points. First, lane fqrmauon 'S

field on a binary colloidal mixture performing Brownian dy- also gxpected to occur in .three—component colloidal systems
o o . . and, in general, for polydisperse samples. The formation of

namics ina solven_t with s_lmulatlon_ and S'mP'e theory. It WaSjanes could provide an efficient channel to transport specific
shown that oppositely driven particles avoid each other by, icles into a preferred direction by driving the system via
forming different lanes due to a nonequilibrium slip-streamy, external field. Second, one might surmise that lane forma-
effect. Using a suitable order parameter this was identified agon will also occur if lattice models other than square lat-
a first-order nonequilibrium phase transformation. A simpletices are used or if next-nearest-neighbor hopping processes
scaling theory was proposed whose predictions and trendgre allowed in the lattice model. This conjecture is based on
were confirmed by our simulation data. The process of langhe observation that shear forces between different lanes are
formation was found to be very general: it prevails for oscil-driving the lane formation, which are absent in a square-
lating fields provided the frequency is not too small and islattice model with nearest-neighbor hopping. Third, we men-
present both in two and three spatial dimensions. Hence, tton that hydrodynamic interactiofg5,46 were neglected

FIG. 6. Same as Fig. 5 for the three-dimensional syst@n:
simulation results(b) theory.
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in our study. This is a safe approximation if the colloidal Brownian dynamics is used. The only requirement should be
volume fraction is very small as typically realized for highly a parallel dynamics for all particles.

charged deionized suspensions. As inspired by a recent study

of colloidal phase sepqratldrﬂ] we gxpect that the pres- ACKNOWLEDGMENTS

ence of hydrodynamic interactions will enhance lane forma-

tion. Lane formation should also be stable with respect to a We thank R. K. P. Zia, B. Schmittmann, A. Parola, D.
change of the particle dynamics. For instance, the transitioRini, H. K. Janssen, and E. Rebhan for helpful remarks and
is expected to be stable also if Fokker-Plafi@k| rather than  H. M. Harreis and J. Chakrabarti for useful discussions.
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