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Discrete charge patterns, Coulomb correlations
and interactions in protein solutions
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Abstract. – The effective Coulomb interaction between globular proteins is calculated as
a function of monovalent salt concentration cs, by explicit Molecular Dynamics simulations
of pairs of model proteins in the presence of microscopic co and counterions. For discrete
charge patterns of monovalent sites on the surface, the resulting osmotic virial coefficient B2

is found to be a strikingly non-monotonic function of cs. The non-monotonicity follows from
a subtle Coulomb correlation effect which is completely missed by conventional non-linear
Poisson-Boltzmann theory and explains various experimental findings.

A more fundamental understanding of the interactions between nano-sized biomolecules
is critical to the long-term advance of modern biomedical research [1]. The best strategy
for a predictive calculation is to study simple coarse-grained models where effects can be
clearly separated and approximations can be systematically tested. While for micron-sized
colloidal particles such coarse-grained models have led to a quantitative understanding of the
effective interactions [2], the challenging question is how far this concept can be transferred
to nano-particles.

A particular issue is the aggregation and crystallization of globular proteins in solution,
driven by their mutual interactions, including steric repulsion, van der Waals attraction,
Coulombic interactions, hydration forces, hydrophobic attraction and depletion forces [2].
Most of these are effective interactions which depend sensitively on solution conditions. In
particular Coulombic forces are functions of pH (which determines the total charge of the
proteins) and of electrolyte concentration, which controls the Debye screening length λD, and
hence the effective range of Coulombic interactions. This dependence on solution conditions
is exploited in “salting-out” experiments where large salt concentrations are used to trigger
protein crystallization, a crucial step towards the determination of their structure by X-ray
diffraction [3]. While the forces acting between micro-sized colloidal particles are dominated
by generic interactions, and are directly measurable by optical means [4–6], the interactions
between globular proteins are highly specific at short range, and are less directly accessible.
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One possible indirect determination of the total force between two proteins may be achieved
via measurements of the osmotic equation of state by static light scattering, which in the low
protein concentration regime yields the value of the second osmotic virial coefficient B2 [7,8].
The variation of B2 with solution conditions yields valuable information on the underlying
effective protein pair interactions. Moreover, it has been shown empirically that there is a
strong correlation between the measured values of B2 and the range of solution conditions
under which protein crystallization is achieved [7–10]. This letter focuses on the effective
interactions between globular proteins mediated by the microscopic co and counterions, and
on the resulting B2. The conventional Derjaguin-Landau-Verwey-Overbeek approach [11],
borrowed from colloid science, leads one to expect that B2 will monotonically decrease as the
concentration of salt increases, since higher salt concentrations lead to enhanced screening (i.e.
reduction of λD), and hence to a decrease of the effective protein diameter. This behavior
rests on the standard “coarse-grained” model of uniformly charged colloids and smoothed
local densities of the microions. We show that the discrete nature of the protein surface
charge distribution, together with the Coulomb correlations between all charges involved,
lead to a striking non-monotonic variation of B2 with salt concentration cs. The occurrence
of a minimum of B2 as a function of cs has recently been reported in lysozyme solutions
for cs = 0.3M [12] and in apoferritin solutions for cs = 0.15M [13]. Related experimental
findings are non-monotonic variations of other quantities which strongly correlate with B2

[12,14] such as the interaction parameter [15,16],the cloud point temperature [17,18], and the
solubility [19]. All these trends can be qualitatively understood by our calculation.

We consider two spherical proteins of diameter σp, each carrying a total charge Ze (where
Z depends on pH), surrounded by monovalent co and counterions, assumed to have identical
diameters σc. The solvent (water) is assumed to be a dielectric continuum of permittivity
ε; this simplification, which ignores the molecular granularity of the solvent, amounts to the
standard “primitive” model of ionic solutions [20].

In the case of highly charged colloidal particles, the total negative charge −Ze is usually
assumed to be uniformly distributed on the surface, a situation which will be referred to as
the “smeared charge model” (SCM). This simplification is much less justified for the smaller,
weakly charged proteins (where Z � 10). We have hence adopted a second, discrete charge
model (DCM) where Z monovalent discrete point charges are distributed over the surface of a
sphere of diameter σp − 2∆ = 0.96σp (i.e. slightly inside the surface of the protein), in such a
way as to minimize the electrostatic energy of the distribution; the resulting pattern kept fixed
in the following does not correspond to the real charge distribution on any specific protein, but
does provide a well-defined discrete model for comparison with the SCM, and between different
values of Z. At this stage the two models (SCM and DCM) involve only excluded volume and
bare Coulombic interactions (reduced by a factor 1/ε to account for the solvent) between all
particles (proteins and microions). However, in view of the large-size asymmetry, the effective
force between the proteins, which ultimately determines the second virial coefficient, involves
a statistical average over microion configurations in the field of two fixed proteins [21]. For
distances r > σp between the centres of proteins 1 and 2, the total force �F1 = −�F2 acting
on each of the proteins is the sum of three contributions, �F1 = �F

(1)
1 + �F

(2)
1 + �F

(3)
1 , where

�F
(1)
1 is the direct Coulomb repulsion between the charges on the two proteins, �F

(2)
1 is the

microion-induced electrostatic force and �F
(3)
1 is the depletion force due to the imbalance of

the microion osmotic pressure acting on opposite sides of the proteins [21]. Both �F
(2)
1 and �F

(3)
1

are averages over microion configurations; according to the contact theorem �F
(3)
1 is directly

related to the integral of the microion contact density over the surface of the protein [22,23].
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The statistical averages leading to �F
(2)
1 and �F

(3)
1 were computed using Molecular Dynamics

(MD) simulations. The two proteins were placed symmetrically with respect to the centre
along the body diagonal of a cubic simulation cell of length L = 4σp, which also contained
monovalent co and counterions in numbers determined by their bulk concentrations; periodic
boundary conditions were adopted. The choice of L was made to ensure that the box length
is much larger than the range of the total (effective) protein-protein interaction, so that the
results would be independent of L. For our model to be a rough representation of lysozyme,
we chose σp = 4nm, and Z = 6, 10 and 15, corresponding to three different values of the
solution pH. The microion diameter is σc = 0.267 nm. Note that the SCM always implies
vanishing multipole moments, whereas within the present DCM, the only charge pattern with
a non-vanishing dipole moment is that for Z = 15. A snapshot of a typical equilibrium
microion configuration around two proteins is shown in fig. 1, for the case Z = 15. Note
that the dimensionless Coulomb coupling parameter for a protein-counterion contact, namely
Γ = e2/[εkBT (∆ + σc/2)] for the DCM, and Γ = 2Ze2/[εkBT (σp + σc)] for the SCM, are
comparable and of the order of Γ = 3 at room temperature. For the DCM, the total force
�F1 = �F1(�r, �ω1, �ω2) depends on the centre-to-centre separation vector �r = �r1 − �r2 and on the
unit vectors �ω1, �ω2 describing the orientations of the charge patterns. However, by comparing
data for 100 different orientations, fixed during the simulation, the anisotropy turns out to be
weak. The standard definition of the second virial coefficient is B2 = 1

2

∫
d3r[1 − b(r)] with

b(r) =
1

16π2

∫
d2ω1

∫
d2ω2 exp [−Veff(�r, �ω1, �ω2)/kBT ] . (1)

Here, Veff is the effective potential such that ∂Veff(�r, �ω1, �ω2)/∂�r = �F1(�r, �ω1, �ω2). Using the
identity b(r) = exp[

∫ r

−∞ dr′ d
dr′ [ln b(r′)], B2 can be expressed —in formal analogy with the

spherically symmetric case of the SCM— as

B2 =
1
2

∫
d3r[1 − exp [−V (r)/kBT ]] , (2)

involving the potential of the orientationally averaged projected force

V (r) =
∫ ∞

r

dr′
〈

�r

|�r | ·
�F1(�r ′, �ω1, �ω2)

〉
ω1ω2

. (3)

where 〈...〉ω1ω2 refers to a canonical statistical average over mutual orientations of the two
proteins [24]. Results for the second virial coefficient in units of its value 2πσ3

p/3 for hard

spheres of diameter σp, B∗
2 = B2/B

(HS)
2 , are shown in fig. 2 for the SCM and DCM models,

with three values of the total protein charge. The second virial coefficient in units of its value
2πσ3

p/3 for hard spheres of diameter σp, B∗
2 = B2/B

(HS)
2 , can then be proven to be given by

B∗
2 = 1 +

3
σ3

p

∫ ∞

σp

drr2 [1 − exp [−V (r)/kBT ]] , (4)

a result formally identical to that valid for spherically symmetric forces. Results for B∗
2 as a

function of salt concentration are shown in fig. 2 for the SCM and DCM models, with three
values of the total protein charge. In order to obtain values of B2 comparable to measured
virial coefficients, we have taken short-range attractions between proteins into account, by
adding to the effective Coulomb potential in eq. (4) a “sticky” hard-sphere potential of the
Baxter form [25], with potential parameters δ = 0.02σp and τ = 0.12, which are known to
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Fig. 1 – Snapshot of a typical MD-generated microion configuration around two proteins, separated
by r = 1.7σp. The proteins carry 15 discrete charges e; monovalent salt molarity is cs = 0.206 M/l,
the system temperature is T = 298 K. The globular protein molecules are shown as two large gray
spheres. The embedded small dark spheres on their surface mimic the discrete protein charges in the
DCM model. The small gray spheres are counterions, while the black spheres are coions.

Fig. 2 – Normalized second virial coefficient B∗
2 = B2/B

(HS)
2 of a protein solution vs. added salt

molarity. Results are shown for protein charges Z = 6 (dashed lines), Z = 10 (solid lines) and Z = 15
(dot-dashed lines). The lines with (without) symbols correspond to the SCM (DCM) model. The
inset shows the effective protein-protein interaction V (r) in the DCM model vs. separation distance
r for Z = 10. Various symbols in the inset relate to the different added salt molarities, indicated in
the legend.

yield reasonable osmotic data for lysozyme solutions [9, 26] in the high salt concentration
regime, where Coulombic interactions are essentially screened out. The key result, illustrated
in fig. 2, lies in the considerable qualitative difference between the predictions of the SCM and
the DCM models for the variation of B∗

2 with monovalent salt concentration cs, irrespective
of the total protein charge Ze. While the SCM (dashed curves) predicts a monotonic decay of
B∗

2 with cs, the DCM leads to a markedly non-monotonic variation, involving an initial decay
towards a minimum followed by a subsequent increase to a maximum and a final decrease
towards a high cs value similar to that predicted by the SCM. The location of the minimum
and of the maximum shift to higher values of cs for larger protein charges Z.

The origin of the non-monotonic variation of B∗
2 with cs can be traced back to the depen-

dence of the effective (screened) Coulomb interaction on salt concentration as shown in the
inset of fig. 2 for Z = 10. While the spherically averaged, repulsive effective potential V (r) of
the DCM is initially strongly reduced as cs is increased, its amplitude and range increase very
significantly at intermediate concentrations (cs � 1M/l), before it nearly vanishes at the high-
est salt concentrations. Note that V (r) becomes even slightly attractive at contact (r = σp)
for cs � 2M/l. The enhanced effective Coulomb repulsion at intermediate salt concentrations
cannot be rationalized in terms of simple mean-field screening arguments; it is caused by a
subtle correlation effect which leads to the non-monotonic behavior of B2 within the DCM.
The protein-microion correlations are of a sufficiently different nature in the SCM, to lead to
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Fig. 3 – Total density profiles ρ(r) = ρ+(r) − ρ−(r) of small ions around a single protein, for salt
molarities cs = 0.206 (bottom set of curves) and cs = 0.824 (upper set of curves). The solid and
dashed lines are simulation results for DCM and SCM models, respectively, while the dot-dashed
lines are predictions of non-linear Poisson-Boltzmann theory.

Fig. 4 – Microion density imbalance ∆ρ vs. salt molarity for protein charge Z = 10 and separation
r = 1.2σp. The solid and dashed lines correspond to the DCM and SCM models, respectively. The
inset shows the angular range over which ∆ρ is averaged (see text).

a much more conventional, monotonic decay of B2 with cs, similar to that expected from a
linear screening picture.

Even though the effective Coulomb potential between proteins is of small amplitude, only
a few percent of the thermal energy kBT , the effect on B2 is dramatically enhanced by the
presence of the strong short-range attractive component due to van der Waals and hydrophobic
interactions, which we have included in the form of the Baxter “sticky” sphere potential.
This potential is independent of salt-concentration, and has no influence on the qualitative
dependence of B2 on cs.

In order to gain further insight into the physical mechanism responsible for the unusual
variation of the effective Coulomb potential and of B2 with salt concentration, we have inves-
tigated in detail the local microion density in the immediate vicinity of the protein surfaces.
First, as a reference case, the radial microion density profile ρ(r) = ρ+(r) + ρ−(r) around a
single isolated protein is shown in fig. 3, for Z = 10, and two salt concentrations (the pro-
files are orientationally averaged in the case of the DCM). At the lower salt concentration
(cs = 0.206M/l) the SCM and DCM models both yield an accumulation of the microion
density near contact, in semi-quantitative agreement with the prediction of standard Poisson-
Boltzmann (PB) theory. At the higher salt concentration, however, there is a marked depletion
in the microion density, signaled by a minimum of ρ(r) well below the asymptotic bulk value.
This correlation effect is of course absent in the (non-linear) PB theory, which always predicts
a monotonically decreasing density profile ρ(r). Note however a significant difference between
the SCM and DCM profiles. While the latter predicts a contact value ρc(r = (σp + σc)/2)
larger than the bulk value, SCM predicts a much stronger microion depletion near contact.
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This finding illustrates the sensitivity of correlation effects to the assumed charge pattern at
the surface of a protein: taking into account the discreteness of the surface charges leads to a
significant reduction of microion depletion at contact, compared to the simplified picture of a
uniformly smeared charge (SCM).

Next, consider the influence of a second near-by protein on the microion distribution near
contact. We have computed the difference between “inner” and “outer” shell microion contact
densities, as schematically illustrated in the inset to fig. 4. The local microion density is no
longer spherically symmetric, due to the interference of the electric double-layers associated
with the two proteins. The difference ∆ρ = ρin − ρout between the mean number of microions
within a fraction of a spherical shell of radius R = 0.6σp subtended by opposite 60◦ cones is
plotted in fig. 4 vs. salt concentration. ∆ρ is always positive, indicating that microions (in
fact mostly counterions) tend to cluster in the region between the proteins, rather than on the
opposite sides, as one might expect due to the enhanced lowering of the electrostatic energy
for counterions shared between the two proteins. However, there is a very significant difference
in the variation of ∆ρ with cs, between the SCM and the DCM models. Both exhibit similar
behavior for cs ≤ 0.5M/l, with a small maximum around 0.2M/l. Beyond 0.5M/l, however,
the SCM predicts a monotonic decrease of ∆ρ, while the DCM leads to a sharp peak in ∆ρ for
cs � 1M/l. This highly non-monotonic behavior clearly correlates with the non-monotonicity
of B2 evident from fig. 2. The excess number of microions between the two proteins leads
to an imbalance in osmotic pressure, which is the origin of the increased repulsion between
proteins around cs = 1M/l, as shown in the inset of fig. 2. The main finding of the present
work is that the second osmotic virial coefficient of protein solutions has a non-monotonic
dependence on salt concentration if the charge pattern on the protein surface is discrete (as
is the case for real proteins) rather than uniformly smeared out, as usually assumed in the
related case of charge-stabilized colloidal dispersions, involving much larger particles. The
lesson to be learned from this finding is that one must be cautious in attempting to extend
coarse-graining concepts and approximations, developed and routinely used on the colloidal
scale, to the nanometric scale of proteins. The discreteness of the charge pattern is crucial
to obtain non-monotonic behavior of B2, which is a subtle Coulomb correlation effect [27],
totally missed by non-linear PB theory.

We chose our simple models to help highlight and separate the effects of discrete charge
patterns and Coulomb correlations. Extending our MD calculations to the more complex
(pH-dependent) charge patterns of realistic proteins [28] is technically straightforward. We
expect that the physical mechanism leading to enhanced protein repulsion at intermediate
salt concentration, which is illustrated by the microion density imbalance shown in fig. 4, will
carry over. Since the second osmotic virial coefficient determines much of the excess (non-
ideal) part of the chemical potential of semi-dilute protein solutions, it is anticipated that the
non-monotonicity of B2 may have a significant influence on protein crystallization from such
solutions in the course of a “salting-out” process. The non-monotonic behavior also suggests
the possibility of an inverse, “salting-in” effect, whereby a reduction of salt concentration may
bring B2 into the “crystallization slot” [8].

∗ ∗ ∗

The authors are grateful to R. Piazza, I. L. Alberts, P. G. Bolhuis, G. Bricogne,

J. Clarke, S. Egelhaaf, J. F. Joanny, and W. C. K. Poon for useful discussions, and
to Schlumberger Cambridge Research and the Isaac Newton Trust for financial support.



E. Allahyarov et al.: Discrete charge patterns, Coulomb correlations etc. 737

REFERENCES

[1] Dill K. A., Nature, 400 (1999) 309.
[2] Israelachvili J., Intermolecular and Surface Forces, 2nd edition (Academic Press, London)

1992.
[3] Durbin S. D. and Feher G., Annu. Rev. Phys. Chem., 47 (1996) 171.
[4] Kepler G. M. and Fraden S., Phys. Rev. Lett., 73 (1994) 356.
[5] Larson A. E., Nature, 385 (1997) 230.
[6] Verma R., Crocker J. C., Lubensky T. C. and Yodh A. G., Phys. Rev. Lett., 81 (1998)

4004.
[7] George A. and Wilson W. W., Acta Crystallogr. D, 50 (1994) 361.
[8] Rosenbaum D. F. and Zukoski C. F., J. Crystal Growth, 169 (1996) 752.
[9] Rosenbaum D., Zamora P. C. and Zukoski C. F., Phys. Rev. Lett., 76 (1995) 150.

[10] Vliegenthart G. A. and Lekkerkerker H. N. W., J. Chem. Phys., 112 (2000) 5364.
[11] Verwey E. J. W. and Overbeek J. T. G., Theory of the Stability of Lyophobic Colloids

(Elsevier, Amsterdam) 1948.
[12] Guo B., Kao S., McDonald H., Asanov A., Combs L. L. and Wilson W., J. Crystal

Growth, 196 (1999) 424.
[13] Petsev D. N., Thomas B. R., Yau S.-T. and Vekilov P. G., Biophys. J., 78 (2000) 2060.
[14] Bonnetè F., Finet S. and Tardieu A., J. Crystal Growth, 196 (1999) 403.
[15] Grigsby J. J., Blanch H. W. and Prausnitz J. M., J. Phys. Chem. B, 104 (2000) 3645.
[16] Mikol V., Hirsch E. and Giege R., J. Mol. Biol., 213 (1990) 187.
[17] Wu J. Z., Bratko D., Blanch H. W. and Prausnitz J. M., J. Chem. Phys., 111 (1999)

7084.
[18] Broide M. L., Tominc T. M. and Saxowsky M., Phys. Rev. E, 53 (1996) 6325.
[19] Arakawa T., Bhat R. and Timasheff S. N., Biochemistry, 29 (1990) 1914.
[20] Friedman H. L., Ionic Solution Theory (Wiley Interscience, New York) 1962.
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