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Freezing transition of hard hyperspheres
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We investigate the system Bfdimensional hard spheresirdimensional space, wheBe>3. For the fluid
phase of these hyperspheres, we generalize scaled-particle theory to afitnadyfurthermore use the virial
expansion and the Percus-Yevick integral equation. For the crystalline phase, we adopt cell theory based on
elementary geometrical assumptions about close-packed lattices. Regardless of the approximation applied, and
for dimensions as high a® =50, we find a first-order freezing transition, which preempts the Kirkwood
second-order instability of the fluid. The relative density jump increasesviind a generalized Lindemann
rule of melting holds. We have also used ideas from fundamental-measure theory to obtain a free energy
density functional for hard hyperspheres. Finally, we have calculated the surface tension of a hypersphere fluid
near a hard smootthyperjwall within scaled-particle theory.
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[. INTRODUCTION proximate functionals can be obtained by imposing the
correct crossover to reducé&d This idea was exploited par-
In the last decades, our understanding of the freezing trarticularly in the construction of fundamental-measure density
sition has greatly advancéd,2]. Most of the success comes functionals[17,18 in dimensionsD =2,3[19-21].
from the insight that the essential molecular mechanism that Systems composed of hard hyperspheres, being the natu-
drives freezing can be understood in terms of different kindsal extension of hard spheres to arbitrary spatial dimensions
of entropy[3]. This is demonstrated by ordering transitions D, have, therefore, been considered quite extensively. The
that purely entropy-driven hard-core particles exhibit. Thelimit of infinite dimensions was studied in relation to the
simple model of hard spheres, which has only the spher¢ghermostatisticg10,22,24,23,1B and dynamics[25]. Fur-
packing fraction as thermodynamical parameter, has playedthermore, the third and fourth virial coefficients have been
key role in a statistical description of freezing; for a recentcalculated for arbitrary dimensiof&6], and different fluid
review seq4]. Computer simulationg5,6] have shown that state theories for the thermodynamics and structure proposed
there is a first-order freezing transition from a fluid into abased either on an overlap volume appro@#, the Percus-
face-centered-cubic crystal at a packing fraction of aroundrevick [28], mean sphericdl29], or hypernetted chaif80]
0.5 with a relative density jump across freezing of aboutapproximation. ForD=4,5, a crystalline phase of hyper-
10%. In two spatial dimensiorthard discg the precise na- spheres has been studied with free-volume th¢afy, the
ture of freezing is still a matter of debate but there is recenfreezing transition has been examined by computer simula-
evidence from computer simulations that the transition is intion [32], and density functional theor{33]. Furthermore,
accordance with the Kosterlitz-Thouless scendi® The  the demixing transition in a binary hypersphere mixture has
thermodynamics of the one-dimensional model, namely, hareen discussefB4,35 on the basis of a Carnahan-Starling-
rods, can be calculated analyticalB] revealing that there is type equation of statg36,37].
no freezing transition at packing fractions away from close In this paper we investigate the freezing transition of hy-
packing. perspheres irarbitrary dimension, which has not been ad-
From a more theoretical point of view, it is interesting to dressed until now. This aim requires a detailed description
study systems in spatial dimensi@nhigher than three. The for the free energies of the fluid and solid state. For the fluid
motivation to do so is twofold. First, the limit of infinite free energy, we use several methods such as the virial expan-
dimension may lead to enormous simplifications allowingsion, scaled-particle theory, fundamental-measure density
sometimes even for an analytical solution of the thermody4{unctional, and the Percus-Yevick liquid-integral equation.
namics, fluid structure, and phase transformations. Rece®ll these approaches feature the exact second virial coeffi-
examples include the hyperculy®] and hyperspher¢l0]  cient. For large dimensions, higher-order contributions are
fluid, the lattice plasm#l1], the Gaussian potentifl2,13 known to vanish, and consequently we obtain similar fluid
as well as systems with attractiofist,15. The advantage in free energies from all approaches. To access the free energy
high dimensions is that the third and higher virial coefficientsof the solid, we use the free-volume theory together with
vanish asymptotically. Once the limb—o is known, it geometric results about the close-packed density and the
may serve as a reference system in order to include finitstructure of so-called laminated lattices in high dimension. In
dimensions in a perturbative analysis as a function &f,1/ contrast to earlier approaches based on a fluid instability
see e.g., Refs[13,16 for such discussions. Second, the analysis[13,23, we obtain a first-order freezing transition
crossover between different spatial dimensions imposesven for high dimensions. We show that the freezing transi-
physical consistency constraints on the theories. Understantion preempts this Kirkwood-type second-order spinodal in-
ing a fluid in different dimensions is important for construct- stability of the fluid. The relative density jump across freez-
ing, e.g., density functionals explicitly. For hard spheres, aping even increases with rising dimensibn The Lindemann
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parameter at melting is very robust with respect to a change 10° remsm :

of dimensionality such that the Lindemann rule of melting RN

can be carried over to arbitrary dimensions. As a side product I e

of scaled-particle theory, we derive an analytical expression 10%} -~-...,,........__glichfeldl 1
for the surface tension between a smooth hagberjwall n cp |
and a hard hypersphere fluid for aly Furthermore, we
develop a density functional for arbitrary spatial dimension 10t TR
in the spirit of Rosenfeld’s fundamental-measure theory |

[17-21].

The paper is organized as follows. In Sec. Il, we briefly 10721 o
summarize mathematical properties of close-packing densi- i Minkowskd ]
ties. The solid free energy is outlined in Sec. Ill. In Sec. IV, 6
we describe different approaches to the fluid free energy. 10— 2o D 30 20 50

Section V is devoted to the construction of a density func-

tlonal_ for |nhomogenec_)us hard hypersph_eres. Results f_or FIG. 1. Close-packing fractiom, as a function of dimension-
freezing are presented in Sec. V1, and we finally conclude "Nty D. Blichfeldt's upper bounddotted ling, Minkowski's lower
Sec. VII. bound(dashed ling and the corresponding data for the laminated
lattices (symbolg are shown. Note the logarithmic scale gy, .

Il. HYPERSPHERES, LATTICES, AND CLOSE PACKING

herefore, we restrict our investigation of the solid state to
aminated lattices. However, as we shall show below, the
general methodology can be applied to other crystals as well,
w, r<2R provided their close-packing fraction is known.

uN=1g  [=2r @

The interaction between hard hyperspheres is pairwis
and given by the potential

lll. FREE-VOLUME THEORY FOR THE SOLID STATE
wherer is the Euclidian center-to-center separatiorDirdi-
mensions andR denotes the hypersphere radius. Thermody-
namical and structural properties of the hard hyperspher
system are independent of temperaflyghich only sets the
energy scal&kgT=1/8. The system’s only relevant param-
eter is the number densify, measuring the number of par-
ticles perD-dimensional volume. A suitable dimensionless
packing fraction is defined viagg=pVp(R), whereVp(R)
=RP#P2/T(1+D/2) denotes th®-dimensional volume of
the hypersphere of radiigandI'(x) is the gamma function.
To simplify the notation, we denote the volume of the unit
sphere of radiufR=1 asVp=Vp(1). We also define the
(D—1)-dimensional surface &% _,(R)=DVpRP 1.

Due to packing constraints; has aD-dependent upper
limit, which is the so-called close-packing fractien,. The
value of 5., is known in a mathematically rigorous sense
only in the case® =1,2,3, see e.g., Ref4]. While obvi-
ously n.,=1 for D=1, the close-packed configuration for
D=2 is a triangular lattice withy.,= m/(2/3)=0.91 and a
face-centered-cubic lattice fodD=3 with #.,= w(3./2)

We employ free-voluméor cell) theory in order to calcu-

te free energies of the solid state. This approach, see e.g.,
39], was also discussed for arbitrabyrecently in Ref[31].
Cell theory is based on the common partitioning of physical
space into Wigner-Seitz cell®VSCO) of the lattice structure
under consideration. For hard spheres, no overlap between
neighboring particles can occur, provided that each sphere
stays completely within its WSC. Carrying out a partition
sum where only this restricted set of configurations is taken
into account strictly underestimates the f(dkac) partition
sum. In detail, leta denote the distance between nearest
neighbors. The boundaries of the WSC are the distai2e
apart from the lattice site. The spheres are supposed to stay
completely within the WSC, such that each sphere center is
allowed to move only a distana@@2— R from its lattice site
towards a neighboring site. We assume that the shape of the
accessiblg“free” ) volume is the same as that of the WSC.
Then the free volume of each sphere scales with Ditle
power of @—2R)/a, and we obtain

=0.74. The latter structure is degenerate with respect to the a—2R]P
stacking sequence. For higher dimensions, there is Minkow- Viree= Vs ©)
ski's lower bound and Blichfeldt's upper boufi@8] for 7., a
such that )
If one relaxes the assumption of the same shape of free-
(D) D+2/ 1\° volume cell and WSC, the real free volume is still larger than
Fs Nep< > E for D>1, (2 yfree. Let the f_ree energy per particle HiE‘C{— fid, Wh_ere the
ideal contribution isf=In(7)—1. One obtains a strict upper

Pound for the excess free energy per particle of the solid

State
1/D
- (i) _

Mep

where{(x) denotes the Riemann zeta function. The class o
laminated latticeqg 38] is defined inductively and gives in
general high packing fractions. The numerical values)gf
are shown in Fig. 1 as a function @&. In particular, for Bf°<1-Dln

4
D <25, their packing is close to the upper bound, E2). @
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Note that if one inserts a lower bound fax, (as, e.g., for 1030 ————
the laminated lattices considered in this paghe resulting exact +
expression is still an upper bound for the free energy. An [ SPT= ]
alternative for obtaining an estimate of the free energy is to DFT~ e
calculate the free volume of each sphere with all the other 10%°} Fre 5
spheres kept fixed. This allows each sphere to move twice as « :’i'o"
far from its lattice site as in the former approach. Of course, B; | «
here one counts also forbidden configurations, so that the ééﬁ‘
bounding property of the free energy is lost. However, in 10"} Eﬁ". ‘_‘.--""
D =3 this gives a more accurate, albeit empirical estimate of sﬁ’ o :
the exact free energy. For geneal we obtain ¥ iaﬁ
. |\ ¥P 10° o
~1— Y - 0 10 20 30 40 50
Bf=1-DlIn|1 (%p> DIn2. (5) D

FIG. 2. Various approximations for the third virial coefficients
IV. THEORIES FOR THE FLUID STATE B; as a function of dimensioB. Shown is the exact result, as well
. . as the results from scaled-particle the@8PT), density-functional
A. Virial expansion theory (DFT), and Percus-Yevick theor{PY).
Wyler, Rivier, and Frisch[24,10 have considered the
Mayer series of the hard hypersphere fluid, and have showequations explicitly forD=1,3,5. We follow his approach
that in the limit of infinite dimensionality, the virial expan- and treat the equations numerically for higliedd dimen-

sion up to second order becomes asymptotically exact. Thsions. We use the Wiener-Hopf factorization of the structure

o magnitude. Hereéd(q) is a regular function, which can be
Bp=p+ >, Bup", (6)  written as
n=2
~ K 2R ik
where p is the pressure. The second virial coefficient is Q(a)=1—(2m) Pfo Q(r)e™'dr. (8)
known analytically asB,=2°"'Vp(R). The expansion of
the excess free energy of the fluid state then reads It can be shown tha®(r) is a polynomial of order R in r of

the general form
Bs

+5 ————= 7+ 0(7?). 7
2 Vo(RT” (7°) (7

Q(nN=(2R)%> Qn(ﬁ—l) , O0=<r=2R. (9

The third virial coefficienB; can be expressed by a quadra- "o

ture [24] that can be solved analytically in even dimensionsThe system of integral equations can be reduced to a system
[26]. For odd dimensions we rely on a numerical solution.qf k+1 algebraic equations for the unknow@s, . . . ,Qy .

Our results foiB3 are shown versud in Fig. 2. Although the  Tyg out of these equations are linear

numerical value oBj is quite large a® — o, for small 5 its

contribution to the free energy may become negligible. This (—1)*=—k12*Qy+ p(2m)K(2R) 21
is indeed the case for the densities relevant for freezing, as «

we will demonstrate below. We remark, however, that it is D n Qn

not proven that the virial expansion converges in the density Xn=0 (=1 (k+n+1)’
region important for freezing40]. There is thus still the

possibility that the virial expansion does not describe the (—1)%=—(k—1)12%1Q,_,+ p(2m)K(2R)2*1
fluid state correctly. A similar situation exists in three dimen-

k=0, (10

sions, where the convergence of the virial expansion can K . Qn

only be proven rigorously up tey~0.02 [40]. Numerical Xzo (-1 ke n<2)’ k=1, (13)
evaluation of the expansion to seventh order, however, show

satisfactory results up tg~0.5. and the remainings— 1 equations are nonlinear

B. Percus-Yevick integral equation Q(Z”“)(O): Ep(Z’ﬂ)k(— 1)““[Q(“)(O)]2—p(277)k
Integral equations provide a very successful description of 2

fluids. For hard spheres, the Percus-Yevick cloddrq is n—1
remarkably successful in three dimensions. One of its ap- % E (—1)"Q™(0)Q@"~»(0)
pealing properties is that it can be solved analytically for this =0 '

system. Leutheusser generalized the solution to all odd di-
mensionsD=2k+1, k=0,1,2... [28] and solved the O=n<k-1, (12
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whereQ®(0) denotes theth derivative ofQ(r) atr=0. o PR ([
We solve Eqs(10)—(12) numerically. As the effort quickly =1=pVpr-+ = [ g(r)Vi(r)sp_o(r)dr’, (18)
increases with rising dimensiofwe are faced with D 0

+1)/2 coupled equatiofiswe restrict ourselves tB<33.  \yhereg(r,,r,) is the hypersphere pair distribution function
The functionQ(r) provides us with all the necessary infor- 54 r'=|r,—ry|; furthermoreV,(r') denotes the overlap

mation about the thermodynamics of the fluid state, as it i§;gjume of two spheres with radiusat a distance’. We will
related to the contact value of the pair distribution functionastrict ourselves in the following to odd dimensioBs

g(r) of the hyperspheres via =2k+1. Fromg(r)=0 for r<2R it follows that p, is k
k1A 2K +1 times continuously differentiable at=R. Since G(r)
9(2R7)= (=D Q™ (2R)/(2R)™, 13 follows from py(r) by differentiation[see Eq(15)], G(r) is
e : ; - k times continuously differentiable at=R. Since we know
\[Agzhﬂm turn determines the free energy via the virial routethe exact behavior d&(r) for r <R, the firstk derivatives of
' G(r) atr=R are also known.
Bplp=1+2P"15g(2R"). (14) A further constraint orG(r) is obtained by noting that
G(°)=Bpl/p [42]. Equating with the virial expression for
The second virial coefficient determined in this way is exacthe pressure yields
for any dimension. Formally expanding the solution into a 1
power series with respect tg, we obtain the third virial 1+ 22°9G(2R) = G(=). (19)
coefficient numerically. As can be seen in FigB2,obtained 2

in this way slightly overestimates the exact result. . I
y Sightly Together with thé&k+ 1 values of the derivatives we have got

i k+2 constraints 016 (r). Next we expands(r) into a series
C. Scaled-particle theory

in 1/r,
The key idea of scaled-particle theo(@PT) [42] is to -~
insert a spherical test particle of variable radius into a bulk B a,
fluid of hard spheres. The test particle is gradually expanded G(r)=1+ap+ <1 (r/R) (20)

to the same size as the other spheres. One then obtains the

free energy by thermodynamic integration of the virial equa-This involvesk+2 unknownsa;, which must be chosen to
tion. The key function by which all other properties can befysill

expressed i$5(r), which is the contact value of the pair

distribution function between test particle and the other 1 k1
spheres, if the radius of the test particle equaltR. m=1+ao+ 21 a, (21)
In what follows, we generalize the SRWhich was origi- -

nally developed forD=3) to arbitrary dimensions. The k1 (+]-1) DI

probability po(r) of a spontaneous appearance o_f a cavity > a(—1))———~— J ~=p(l+ag)——r

large enough to hold the test particle of radiuis directly =1 (i—=1)! (D=

connected to the work required in making it. This probability K1 )

is equivalent to the probability of finding a spherical space n 2 a (D—i)!

with radiusr unoccupied. By elementary statistical reasoning ”i: "(D—=i—j)!’

such as irD =3 [42], one obtains a relation betwegg and

G(r), which is (22)

1 d r 1 k+1 .

m%):_ple(r)G(r)_ (15) a0=§2D77 1+a0+;1 a;2 '). (23

If the cavity is so small that at most one sphere fits insideThe first two sets of equatiori21) and (22) are linear and

i.e.,r<R, the probability of finding this cavity unoccupied is can be used to express the, ... a1 in terms of » and

clearly po(r)=1—pVprP. Therefore, ao. The last Eq.(23) can then be turned into a quadratic

equation foray, which can be solved analytically. The non-

1 linear equation23) has to be solved numerically. Froay
G(r)=——— for r<R. (16) =-1+1/G(=) we obtain directly the pressursee Eq.
1—pVnrP . . -

pVpl (19)] and the equation of state. Decomposing the equation of

, , . . state into a power law expansion with respect to density, we
Next we consider a cavity with radit®<r<2R/\3. Then get the second and third virial coefficients. The second virial

two, but not three spheres fit into the cavity. We have togqefficient is exact. The third virial coefficient is shown as a
correct for double-counting pairs, and obtain function of spatial dimensio in Fig. 2. As in Percus-
Yevick theory it is larger than the exact value.

pozl_pVDrD+J J g(ry,ro)drqdr, (17) It is possible to obtain the surface tensignbetween a
cavity hard hypersphere fluid and a hafidypen planar wall via
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SPT. In order to accesg, we consider the work required to
form a cavity with a very large radiugR, which can be ex-
pressed as

W(r)=pVp(r)+ysp_1(r). (24)

The quantityy is connected to the physical surface tensjon
via the relationy="+pR, compare, e.g.[43]. The prob-
ability po(r) of observing a fluctuation containing such a
cavity is further given by 10]

FIG. 3. Geometry of the two cavities used to derive the free
energy functionalF{ p]. Indicated are the possible positions of the
sphere (; or r,) and the local packing fractiom(r) within the

po(r)ZEXF[—,BW(I‘)]. (25) reSpeCthe region.

Hence, one finally obtaing as a function oD and » as Here »(r)=fdr’ p(r')®(R—|r'—r]|) is the local packing

density andwp(R;)=1/sp_1(R)8(R—|Ry|) is a measure
_ kgTD 14g._ 2 ) (26) over the surface of the sphere. The integral kernel
Y Sp_1(R) K ° D-1) Po(R1,Ry), therefore, couples densities averaged over the
. o . ] sphere surface. In order to make this functional unique we
which we will discuss as a function @ in Sec. VI. consider cavities of increasing complexity. These cavities are
sketched in Fig. 3. A simple cavity capable of holding a

V. DENSITY-FUNCTIONAL THEORY sphere in just one place will uniquely determipg(») and

thus ®{?)[p]. It turns out, however, that the exact free en-
ergy is not reproduced in a slightly more complicated cavity

It provides in principle a concept unifying the fluid and solid that can hold a spr_]ere at either Qf two places._ The require-
state within a single approach. For hard spheres, one partict'pent that thg funct|onal shc_)uld give the e_malytlcally knc_>wn
lar approximation, the Rosenfeld functional, has the remarkyalue even in this case uniquely (_determlnes the functional
able property of describing both the fluid state and the solid®™ ©f ¢2(7) and Pp(R;,R;). This procedure has been
state very well incorporating the limit of close-packing cor- Invented(for D=3) in[21]. ,

rectly [44]. Within the Rosenfeld functional, or fundamental- ~ 1N€ Simplest cavity is spherical, and just large enough to
measure theory, the nonlocal dependency of the excess fr&@!d one sphere. The single particle density must then be
energy F of the densityp is treated via averages of the P(")=Nd&(r). The local packing densityy(r) equals N
density over the sphere volume, surface, and other funddvithin asphere of radiuR and vanishes outside. I_ntroducmg
mental geometric measurggs]. The Rosenfeld functional the quantityrg. (r)=NO(R+ e—|r[), we can write

may be formulated in such a way that it gives the correct

zero-dimensional crossovgl9,20. The thermodynamics of (D) 1 d

a hard sphere system inside a cavity so small, that at most %1 [P]:f dr [ ﬂ(fﬂm EﬂR#—e(r)le:O

one sphere fits into it can be solved exactly. One obtains the
excess free enerdyl 9,20

Density-functional theoryDFT) has been very successful
in describing inhomogeneous fluids in three dimensi@js

e=0

1 d
—SDfl(R) %JA dr F[ﬂR+e(r)]

where 0=N=<1 denotes the average number of particles in- “s (R ;F(N)VD(FH €)

side the cavity. The same free energy is obtained from the So-1(R) de =0

Rosenfeld functional, if an external potential corresponding —F(N) (31)

to the walls of the cavity is introduced. This provides a sys- '

tematic way of deriving a similar DFT in arbitrary dimen- i ) . o

sions[21]. In the sequel we will work this out explicitly. with F denoting the integral of,. Comparing this with the
The general functionaf p] is assumed to be a sum of Correct zero dimensional limit, one gets

terms of the form

BFLOI=0P o1+ D], @ PIp)= [ or eulnn)] | dRo(R-1)p(Ry),

BFP=0pl=¢o(N)=N+(1-N)In(1-N), (27

(32

P p]= f dr ¢s[ 7(r)] f dRyWp(R;—1)p(Ry), _
29  With @1(m)=deo(n)/dn=—In(1=7).
Consider another cavity witp(r)=N,5(r —rq) +Nydo(r
—r,),N=N;+N,=<1, andr,=|r;—r,|<2R. For this kind
q’gD)[P]:f dr <Pz77(f)f def dR, of cavity the first term®{®) of the free energy functional
derived above does not give the correct free enesgyN)
XWp(Ry—=r)wp(R—1)Pp(R1,Rp). (300 but
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FIG. 4. Geometrical interpretation &fx(r,,) as the overlap
volume of two spheres of radil® with distancer 5.

DL p1=@o(N) = £(r12)[ @o(N) = 9o(N1) — @o(N2) 1,

(33
Eri) =1 e Ve il oo

=1 o (Pl -ofa), (34

Ip(@)= f:sin%p)dcp, (35

Rcog a)=rq,2. (36)

VRr+(r1y) denotes the overlap volume of two spheres of"

radiusR+ € at a distance 1,, see the sketch in Fig. 4.
We next determine the second contributi@t@D)[p] o)

PHYSICAL REVIEW E65 016108

be necessary iD dimensions. Due to the geometrical com-
plexity, we have not followed thigalbeit desirablgroute in
the present work.

For the homogeneous phase the integrals in(E@). can
be evaluated analytically. One obtains for the excess free
energy per particle

1
= eu(n) +5 2 )(2°-2), (41)
which we will also use as an estimate for the fluid free en-
ergy. Expanding into a power series with respectjtcone
obtains

fexc—

1 1
5207+ E(ZD—l)n2+0(n3). (42

2
hence, the correct second virial coefficient is reproduced by
our density functional. The third virial coefficient is shown
versusD in Fig. 2. It is significantly smaller than the exact
result. We attribute this failure to the restricted set of cavities
considered(Note that inD =3 threed spikes are needed to
getB; correctly) However, our functional has all terms that
are important near close packing ih= 3 [44], and we be-
lieve that this holds also fob>3. We further emphasize
that this functional has much more predictive power than just
giving the equation of state of the fluid. In principle, it could
further be used to derive structural fluid correlations and in-
homogeneous situations including freezing. We have not

considered such applications here but leave them for future
studies.

VI. RESULTS AND DISCUSSION

that the deviation of the free energy from the exact zero-

dimensional limit is corrected for. We obtain
P o1 [ dr ool (1)1 | dRwo(R,~1)p(Ry

Xj dRowp(R2—-1)p(R2)P(R1,R,),  (37)

with

§(rip)= DV, (38)
£(r1)D?VEr,
P =
o(r12 Vp_1RP(D—1)sif° 3(a)cog a)
for r,<2R, (39
_dei(np) 1
®a(m)= Ton 1-g (40)

With the theories described above, we calculated freezing/
melting coexistence densities using Maxwell's double tan-
gent construction. We find a first-order freezing transition
occurring at densities well below close packing. In Fig. 5, we
plot the coexisting fluid ) and solid (7s) packing frac-
tions obtained by using either third-order virial expansion or
scaled-particle theory for the fluid and free-volume theory
with unfixed neighbor§Eq. (4)] for the solid as a function of
dimensionD. Close-packing fractions;., are included for
comparison. It might seem from this graph that the fluid and
solid coexisting densities are not affected very much by the
variation of the close-packed density with dimension but this
is due to the logarithmic density scale.

We note that the coexistence densities do only depend
weakly on the particular solid state theory for lai@elf the
virial expansion up to third order is used for the fluid free
energy(Fig. 5), a freezing transition shows up fbr>11. On
the other hand, Percus-Yevick, scaled-particle and density-
functional theory(all of which are more reliable for smaller
dimensionalitiesresult in a freezing transition at afy=3.

We have compared our theoretical results to computer simu-
lation data in the special casBs=3,5[32], (see Table)l. For
D=5, we find reasonable agreement within the statistical

This completes the prescription of our functional. In prin- error of the simulation.
ciple, one could go further, and consider cavities that enforce The agreement between the different fluid state theories

S density distributions composed of three or mérspikes.
Indeed in the cas® =3 [21], up to three & spikes were
considered. One might speculate that upté spikes should

becomes better with increasing dimensionality. This is ex-
pected, since the virial expansion becomes exacDferw
and all our approaches reproduce the exact second virial co-
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the basis of our data we conclude that/».,—0 and

7t/ ns— 0, for largeD.

fluid. A second-order freezing transition was predicf2d]
in the case of first taking the limD — < and then taking the
thermodynamical limit. For finiteD the instability density
has been worked out explicitly by Frisch and Perf23] as

7~0.871¢e/8)°2D 1/6g1.47DY3

on D, but a different prefactor such that

These densities are compared to our fluid coexisting dens

7~0.239 e/8) /2D Yegl 47D

10 20

D

30 40 50

FIG. 6. Relative jump in coexistence densitieg { 7;)/ 5 ver-

FIG. 5. Fluid (7;) and solid ¢75) coexistence packing fractions Sus dimensiom.
and the close packing fraction., of the corresponding laminated

stability only applies for a metastable fluid. This has indeed
been suggested in a recent paper by Frisch and PEL6ls
efficient. The relative density jump in the coexistence densiwhere relevant diagram resummations are carried out before
ties, (ns— )/ ns, is plotted against dimension in Fig. 6. taking the limitD — < resulting in a prior spinodal. The au-
This quantity approaches its maximal value of unity for largethors suggest that “at a density less than that of the Kirk-
D. That implies that the transition is strongly first order. Onwood, a first-order transition intervenes.” Provided the virial

expansion approaches exactnéss assumed in the instabil-

ity analysis of Refs[13,24]) [45], our analysis indicates a
Let us discuss the relation of this theory to a perturbativdirst-order phase transitions for large dimensions, because the
analysis based on the Kirkwood spinodal instability of thefree-volume theory provides a strict upper bound for the

solid free energy(see Sec. I), which means that the real
coexisting fluid density can only be smaller than in our cal-
culation. As an aside, we apply the same analysis to hard
hypercubesand find a qualitatively different result. The in-

stability densities as calculated analytically by Kirkpatrick

(43

[9] are smaller than the coexisting densities obtained from

our analysis. This implies that for hard hypercubes the fluid
Bagchi and Ricg13] found the same functional dependenceinstability can be real. Of course, this system is qualitatively
different form hard hypersheres. The close-packing fraction
of hard hypercubes is unity, independent of dimension, and

(44)

the fluid is anisotropically ordered due to the fixed orienta-
tions of the particles. Apparently, this makes it easier for the

) g : >Eolid to step in via a second-order phase transition.
ties based on the virial expansion and free-volume theory i

n k . . .
; ) - o : The Lindemann arameter is defined vid
Fig. 7. Oury; are smaller than the instability densities. This P
implies that the fluid instability is preempted by first-order 109
freezing at all high dimensions such that the Kirkwood in- o
EH;\'\
TABLE |. Results for the coexistence densitigg, 75 for small "“a'\.j:*n:
dimensionalityD=3 and 5 obtained from cell theoryCT) with 1074 Ba!n\,\*,
fixed and unfixed neighbors compared to simulation results. We ’u!! T
estimated the simulation values fBr=5 from the results given in T] 'u,. “*’~=,~’~
Ref.[32]. , %
10-8 Mep  + ...l ~¢‘1"~ N4
D Method i Vs Nep vi:ialexpanssilglrj :i : -..... \\1
DFT n; o 'n-

3 CT, unfixed 0.74048 10712+ Frisch,APer(fus JE— '.-

CT, fixed 0.562138  0.601772 Bagel, Reiss  ---- -

simulation 0.494 0.545 1'0 2'0 3'0 D 4'0 50
5 CT, unfixed 0.27353 0.348053 0.465258

CT, fixed 0.202184 0.258753 FIG. 7. Comparison of the freezing densitigs from different

simulation[32] ~0.19 ~0.29 theories against the Kirkwood instability density obtained by Frisch

016108-7
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FIG. 9. Reduced surface tensig®rysy_,(2R) according to
scaled-particle theory as a function of the dimendbmt the re-
spective densityy=4/2°, which is close to freezing.

FIG. 8. Lindemann parametdr at melting as a function of
dimensionD.

= \/((AF)2>/a as the ratio between the root-mean-square dis-
placement of a particle in the solid and the lattice constant

Three-dimensional crystal melting is accompanied by a Lin- VII. CONCLUSIONS
demann parameter of roughly 0.1. We test this ri46]
within our theory for arbitraryD in Fig. 8. Free-volume In conclusion, we have studied the fluid and solid free

theory, where we assume a constant density profile within thenergies for hard hyperspheres. We have generalized scaled-
free volume cell, can be used to estimateWe have used particle theory to arbitrary dimensions and solved the
approaches with both unfixed and fixed nearest neighbor$ercus-Yevick liquid integral equation theory numerically in
The main effect of using the fixed nearest neighbors apedd dimensions up t®=33. We have further proposed a
proach is a doubling of the available space for the spheres ifiee energy density functional for an inhomogeneous hard
each direction. If the coexistence densities were the saméypersphere fluid for arbitrary dimension. Assuming lami-
the difference inL between the fixed and unfixed approachnated lattice structures for the solid, we have used free-
would be a factor of 2. However, if the approach with thevolume theory for the solid that provides a strict upper bound
fixed nearest neighbors is used, the solid coexistence dendd the free energy. As a result, we find a first-order freezing
ties s change slightly, leading to a differeatin L. Data for  transition where the density jump approaches the solid coex-
L at coexistence are presented in Fig. 8. For the fluid state wistence density a® grows. We have shown that this first-
have used the virial expansion. The difference.ihetween order freezing transition preempts the second-order Kirk-
the approaches using unfixed and fixed nearest neighbors an®od spinodal instability of the fluid.

nearly a factor of 2. Within cell theory the Lindemann pa- We point out that computer simulations are needed for
rameter at coexistence does not vary dramatically from it >3 in order to improve the statistics of the simulations
threshold value of 0.1, valid in three dimensions, and it isdone forD=4,5[32] and to explore the fluid-solid phase
rather insensitive to the dimensionality. The data lfoob-  boundaries folD>5. The numerical effort for such simula-
tained within the fixed neighbor approach show that the retions, however, increases rapidly with dimension, as the
sult is stable(up to a trivial factor of 2 with respect to a number of particles in a hypercubic bdwith periodic
different solid state theory. Thus the crude melting rule alsdoundariesincreases significantly witb.

holds in higher spatial dimensions. The Lindemann criterion |t would also be interesting to access hypersphere freezing
is thus pretty robust. Note that it is also valid for=2, by the unifying concept of density functional theory. The
provided the relative mean-square displaceniéfl is used. fluid free energy was derived in this paper. To get the solid
Furthermore it holds ifD=3 even for interfacial freezing free energy, one could use an ansatz based on Gaussian den-

[48] and freezing of polydisperse spheres both in equilibriunSity Peaks centered on(&minated or any othgtattice and
and nonequilibriuni49]. minimize the free energy with respect to the width of the

We finally show, as a side product, the wall-fluid tensionP€aks and the lattice structure. One could further extract the

y of hard hyperspheres, as given by E26). In Fig. 9, we wall-fluid and wall-solid surface ten'_sions from DFT. We
plot y for a fixed scaled packing fraction=22"0 versus leave these problems for further studies.

dimensionality D. This packing fraction is close to bulk

freezing. For this choice of parametessjncreases wittD.

Note that in three dimensions, the scaled-particle expression ACKNOWLEDGMENTS

was found to be in very good agreement with computer

simulations[43] and density-functional studi¢&0] for any We thank Y. Rosenfeld and J.-P. Hansen for helpful re-
packing fraction up to freezing. marks, and T. White for proofreading the manuscript.
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