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Abstract
A recent density functional theory is used to investigate the free interface
between demixed fluid phases in a model colloid–polymer mixture. Both the
colloid and polymer density profiles oscillate on the colloid-rich side of the
interface, provided the polymer reservoir packing fraction ηr

p is sufficiently
high. Results for the surface tension are in reasonable agreement with
experiment. When the mixture is adsorbed against a hard wall, entropic
depletion effects give rise to a wetting transition whereby the colloid-rich phase
wets completely. Prior to complete wetting we find three layering transitions,
the first of which extends far into the single-phase region. This pattern of surface
phase transitions is very different from that observed for simple one-component
fluids at planar substrates.

Adding non-adsorbing polymer to a colloidal suspension can considerably enrich the bulk
phase behaviour. In particular, for sufficiently large size ratios Rg/Rc, where Rg is the radius
of gyration of the polymer and Rc is the radius of the colloid, a colloid–polymer mixture
can exhibit stable colloidal gas, liquid and solid phases, with the packing fraction of the
polymer reservoir ηr

p playing a role equivalent to that of inverse temperature for a simple
substance [1]. Colloidal gas–liquid phase separation is induced by the depletion effect, i.e.
an effective attraction between the colloids arises from the exclusion of polymer from the
depletion zone between colloids [2]. Although much attention has been paid to the bulk phase
behaviour and structure, relatively few experimental [3, 4] or theoretical [5–7] studies have
been carried out on the interfacial properties of such mixtures. One might expect the entropic
depletion mechanism to lead to interesting adsorption phenomena and to rich surface phase
behaviour. Here we investigate the free interface between the demixed colloid-poor (gas)
and colloid-rich (liquid) fluid phases and the adsorption of the mixture at a hard wall using
the simple model introduced by Asakura and Oosawa (AO) [2] and Vrij [8], which treats the
colloids as hard spheres with radius Rc and the polymer coils as interpenetrating and non-
interacting as regards their mutual interactions. The polymer particles are excluded from the
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colloids to a centre-of-mass distance Rc +Rp, where the polymer ‘radius’ Rp = Rg . Assuming
that the polymer is ideal constitutes a drastic oversimplification. Nevertheless the binary AO
model does capture the observed variation of the bulk phase behaviour with increasing size
ratio q = Rp/Rc [1] and thus it is a natural choice for a first study of inhomogeneous colloid–
polymer mixtures. Whilst some progress has been made in calculating the interfacial properties
of the AO model, all work to date relies upon a mapping to an effective one-component system
of colloids interacting via the AO pairwise potential [5–7]. This approach is useful for certain
adsorption situations [6] but does have serious limitations as it is strictly valid only for highly
asymmetric mixtures, with q < 0.1547, where many-body effective interactions between
the colloids are absent [6, 9]. We have recently developed an alternative density functional
theory (DFT) for the binary AO model using the techniques of fundamental measure theory
(FMT) [10]. Our new functional treats arbitrary size ratios q and is thus able to incorporate
the effects of many-body interactions which arise at larger values of q, and which represent
an important feature of the model. In bulk a stable (w.r.t. the fluid–solid transition) fluid–fluid
demixing transition occurs for q � 0.3 [9]. Our functional accounts for this transition as the
bulk free energy is identical to that from the free-volume theory of Lekkerkerker et al [11].
The functional yields analytical partial structure factors via the Ornstein–Zernike (OZ) route
of a similar quality to those obtained from Percus–Yevick (PY) theory but with the advantage
that they are consistent with the bulk free energy, i.e. the thermodynamic and structural routes
to the fluid–fluid spinodal are equivalent [10], a property which is especially advantageous for
our present studies of interfaces at or near two-phase coexistence. We emphasize that, unlike
DFT treatments of interfacial phenomena in simple fluids, where an explicit attractive fluid–
fluid potential is treated in a perturbative (mean-field) fashion, here the effective interactions
emerge naturally from the DFT and are treated non-perturbatively.

Applying the DFT to the free fluid–fluid interface we find oscillatory behaviour of both the
colloid and polymer density profiles on the colloid-rich side for states removed from the bulk
critical point. The calculated surface tensions are similar to those measured in real colloid–
polymer mixtures [3]. At the hard wall we find novel depletion-induced wetting and layering
transitions as the bulk fluid–fluid phase boundary is approached from the colloid-poor side by
increasing the colloid packing fraction ηc at fixed ηr

p. At first glance one might expect there
to be little difference, in terms of the physical phenomena displayed, between the interfacial
properties of this model complex fluid and those of a simple (atomic or molecular) fluid;
the colloids behave as an effective one-component fluid where the strength of the attractive
interaction is determined by ηr

p. Since for an ideal polymer, and a hard wall, each term in the
effective Hamiltonian is proportional to ηr

p [6] one might expect equivalent Boltzmann weights
in the two types of fluids. The crucial difference is that the functional now incorporates the
effects of two- and higher-body interactions which depend on the distance of the colloids from
the wall and which would be present in the effective Hamiltonian for the colloids. Studies of
one-component fluids are usually based on a simple pairwise additive potential function for
the fluid–fluid interaction and a simple one-body wall–fluid potential representing interactions
with a substrate.

Details of the functional are given in [10]. We simply recall that this is constructed
using the well-tried recipes of FMT developed for additive hard-sphere mixtures [12]. The
full functional is designed to satisfy the zero-dimensional situation of extreme confinement
and involves tensor weight functions [10]. Here we employ the simpler version which
omits the tensor contribution to the free energy density and which can be regarded as a
linearization, in the polymer density, of the original Rosenfeld FMT functional3. Density

3 In equation (6) of [10] we set n̂im2 ≡ 0.
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Figure 1. The bulk phase diagram calculated from free-volume theory [9, 11] for q = 0.6. ηc
is the packing fraction of the colloid and ηrp that of the polymer in the reservoir. F denotes the
fluid and S the solid. The long broken curve shows the fluid–fluid spinodal and the short broken
curve shows the (FW) line obtained from DFT (see footnote 4). The latter intersects the binodal at
ηrp,FW = 0.53. The horizontal tie lines a, b, c, d connect coexisting fluid states. Horizontal arrows
indicate paths I and II by which the phase boundary is approached for the adsorption studies of
figures 3 and 4.

profiles for colloid (c) and polymer (p) are obtained by minimizing the grand potential
functional �[ρc(r), ρp(r)] = F[ρc(r), ρp(r)] +

∑
i=c,p

∫
d3r(Vi(r) − µi)ρi(r) where F

denotes the intrinsic Helmholtz free energy functional of the AO mixture, µi is the chemical
potential (fixed by the reservoir) and Vi(r) is the external potential coupling to species i with
i = c, p. In the case of the free interface V ≡ 0; for a hard wall Vc = ∞ for z < Rc and
0 otherwise, while Vp = ∞ for z < Rp and 0 otherwise. z is the coordinate perpendicular
to the wall. The thermodynamic state point is specified by the packing fraction of colloids:
ηc = 4π(Rc)

3ρc/3 and of polymer in the reservoir: ηr
p = 4π(Rp)

3ρr
p/3, where ρc and ρr

p

refer to the number densities. Diameters are denoted by σc = 2Rc and σp = 2Rp.
We consider first the free interface between demixed fluid phases. Figure 1 shows the

bulk phase diagram obtained from the present theory for a size ratio q = 0.6 for which there
is a stable fluid–fluid demixing transition with a critical point at ηr

p,crit ∼ 0.495. It should be
emphasized that the fluid–fluid and solid–fluid phase boundaries presented here are those of
the original free-volume theory [9, 11]. A full investigation of the freezing properties of the
present functional is outside the scope of the present study, which is restricted to fluid states.
The colloid density profiles are shown in figure 2. For states approaching the triple point
the interfacial width is ∼σc, similar to values inferred from ellipsometric measurements [4].
Striking oscillations develop on the colloid-rich side. The general theory of asymptotic decay
of correlations in mixtures with short-range forces predicts that the period and decay length
of oscillations in the density profiles of both species should be identical [13]. We confirmed
that, for states where the colloid profile oscillates, the corresponding polymer profiles exhibit
oscillations, on the same, colloid-rich, side of the interface, with identical period and decay
length as those of the colloid.
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Figure 2. Colloid density profiles for the free interface between demixed fluid phases for a size
ratio q = 0.6. The polymer reservoir packing fractions correspond to the tie lines in figure 1,
i.e. ηrp = 1.0 (a), 0.8 (b), 0.6 (c) and 0.52 (d) (near critical point). States a, b and c lie on the
oscillatory side of the FW line. The inset shows the surface tension γ versus the difference in the
colloidal packing fraction in coexisting liquid (l) and gas (g) phases for q = 0.6 and 1.0. The
colloid diameter is taken to be 26 nm to compare with experimental data of [3] (points) where
q = 1.0.

In simple fluids the presence of oscillations in one-body density profiles is intimately
connected to the existence of the Fisher–Widom (FW) line which divides the bulk (density–
temperature) phase diagram into regions where the asymptotic decay of bulk pairwise
correlations is either monotonic or exponentially damped oscillatory [13, 14]. There is an
analogous FW line for the present model (see figure 1), where the three partial pair correlation
functions change their asymptotic decay simultaneously4.

For the present mixture oscillatory profiles arise at the free interface when the colloid
density in the coexisting liquid is greater than the colloid density where the FW line intersects
the binodal, i.e. for all states with ηr

p > ηr
p,FW = 0.53 for q = 0.6. However, the amplitude of

oscillations can become very small for states just above the FW intersection point and this is
why profile (c) does not show oscillations on the scale of figure 2. For state (a) with ηr

p = 1.0
the amplitude of the oscillations is substantial and appears to be larger than the corresponding
amplitude for a square well fluid near its triple point [14]. Thermally induced capillary-wave
fluctuations of the interface will act to erode the oscillations in the ‘bare’ (mean-field) density
profiles obtained from DFT. Because of the extremely low surface tensions γ which occur in
colloidal systems one might expect the oscillations to be completely washed out by fluctuation
effects. However, it is the dimensionless parameter ω = kBT/4πγ ξ 2 which determines the
strength of these fluctuation effects and we find that ω takes values of a similar size as those
for simple fluids. Further details will be given elsewhere [15]. This is due to the fact that
the bulk correlation length ξ scales roughly as σc [10] and γ as 1/σ 2

c [5]. From our explicit
calculations of γ and ξ we find that ω ≈ 0.04 for states such as (a) in figure 2. This implies

4 The FW line was determined by calculating the poles of the partial structure factors Sij (k), following [13].
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Figure 3. Colloid density profiles showing the complete wetting of a hard wall by the colloid-rich
phase at ηrp = 0.55 as the bulk phase boundary is approached along path I in figure 1. Bulk colloid
fractions are ηc = 0.04, 0.06, 0.07, 0.076, 0.0775, 0.0778 and 0.0779 (from bottom to top). The
inset shows the polymer profiles for the same ηc (from top to bottom).

that detecting oscillations of the colloid profile should be no more difficult than for simple
fluids. Indeed, it could be more favourable to investigate such structuring in colloidal systems,
where the period is of colloidal size, than in atomic fluids where the period is about one atomic
diameter. The inset in figure 2 shows the tension, γ , for size ratios q = 0.6 and 1.0. We find
that the tension calculated using the present functional is consistently larger than that calculated
using the effective one-component Hamiltonian treated by square gradient DFT [5] and agrees
better with the experimentally measured tension for mixtures of a silica colloid, coated with
1-octadecanol, and polydimethylsiloxane (PDMS) in cyclohexane at T = 293 K [3]. The size
ratio for this mixture is approximately 1.0. In order to compare our DFT results with experiment
we choose σc = 26 nm, the mean diameter of the particles investigated in [3]; there are no other
adjustable parameters in the theory. The measured tensions are 3–4 µN m−1, values which are
about 1000 times smaller than tensions of simple fluids. Theory predicts a rapid decrease of
the tension as the critical point is approached, i.e. γ ∼ (η l

c −η
g
c )

3 in this mean-field treatment.
The decrease should be even more rapid for proper Ising-like criticality where the exponent is
replaced by 2ν/β ≈ 3.9. That the experimental data do not indicate such a decrease probably
reflects the difficulty in working close to the critical point5.

Next we consider the AO mixture adsorbed at a hard wall. As a test we first calculated
profiles for q = 0.1 where simulation results are available for the colloid profiles since, for
such a small size ratio, the mapping to an effective Hamiltonian with only a pairwise additive
fluid–fluid potential and an explicit wall–fluid depletion potential is exact [6]. We find that
the present functional provides a very good description of the colloid profiles, in particular the
dramatic increase in the wall contact value as polymer is added [15]; the functional accounts

5 In a very recent study of a similar mixture of silica particles and PDMS in cyclohexane the density difference and
surface tension between coexisting phases were determined closer to the critical point than in [3]. Chen et al [16]
report tensions <1 µN m−1 and a good fit to Ising-like scaling.
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Figure 4. Colloid density profiles showing the layering transition at ηrp = 0.7 corresponding to path
II in figure 1. Bulk colloid fractions are ηc = 0.010, 0.015, 0.018, 0.019 and 0.020 (from bottom
to top); the transition occurs between 0.019 and 0.020. The inset shows the Gibbs adsorption "

which jumps at the transition and remains finite at bulk coexistence ηc = 0.0203.

for the depletion attraction between the wall and the colloids. Here we focus on larger size
ratios where fluid–fluid demixing occurs. We fix ηr

p and approach the bulk phase boundary
from the colloid-poor side.

Depending on the value of ηr
p chosen, the adsorption behaviour changes dramatically.

As an example we consider the size ratio q = 0.6 and describe the phenomena encountered.
We first choose a path just above the critical point, ηr

p = 0.55, see path I in figure 1. On
approaching the phase boundary we find that the wall is completely wet by the colloid-rich
phase. Figure 3 shows the colloid profiles signalling the growth of a thick layer of colloidal
liquid against the wall6. The corresponding polymer profiles are shown in the inset and indicate
how polymer becomes more depleted as the colloid-rich layer grows. At large values of ηr

p

(>0.72) we find that the wall is only partially wet by colloid; the layer thickness increases
continuously, remaining finite at bulk coexistence. At lower values (0.62 < ηr

p < 0.72) we
find a first-order layering transition. This is illustrated in figure 4 where the colloid profiles
are plotted for ηr

p = 0.7, following path II in figure 1 along with the Gibbs adsorption
" = σ 2

c

∫ ∞
0 (ρc(z) − ρc(∞)) dz. At the transition the densities ρc(z) in the first (contact)

layer and in the second layer increase substantially and " jumps discontinuously. " remains
finite at bulk coexistence, i.e. there is still partial wetting. The layering transition line ends in a
critical point at ηr

p ≈ 0.62 (see figure 5), below which the adsorption increases continuously as
ηc increases towards its value at bulk coexistence. Further layering transitions can be located
by calculating the density profiles along the coexistence curve. These are shown in figure 5.
At the second transition a third adsorbed layer of colloid develops and the local density in
the second layer increases significantly so that " jumps discontinuously. Similarly, at the

6 Strictly speaking macroscopically thick wetting films can only occur on the monotonic side of the FW line, i.e. for
ηrp < ηrp,FW, since oscillatory binding potentials will stabilize very thick but finite films which would otherwise be
infinite [17]. For ηrp = 0.55 (path I) we can easily obtain films of thickness 20 or 30σc .
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Figure 5. Surface phase diagram for the mixture at a hard wall. The full curve is a portion of the
bulk coexistence curve of figure 1 and the circles denote the onset of three layering transitions. The
first layering transition line (broken curve) extends deep into the single- (gas-) phase region, ending
in a critical point near ηrp = 0.62, whereas the second and third transition lines are extremely short.
The transition from partial to complete wetting is denoted by the lowest circle and the accompanying
pre-wetting line is also extremely short.

(This figure is in colour only in the electronic version)

third transition the fourth adsorbed layer develops with an accompanying increase in density
of layer three, giving another jump in ". Unlike at the first transition the second and third
transition lines are extremely short in ηr

p and as it is very difficult to determine these accurately
we have simply represented the transitions as circles in figure 5. Below the third transition "

remains finite at bulk coexistence until ηr
p ∼ 0.595 where the transition to complete wetting

occurs. This appears to be first order, i.e. " appears to diverge discontinuously. However,
it is difficult to determine the prewetting line, which should emerge tangentially from the
coexistence curve at the wetting transition. All we can say with certainty is that any prewetting
line is extremely short7.

This pattern of surface transitions is quite different from what is usually found for simple
fluids adsorbed at strongly attractive substrates where, for temperatures not too far from the
triple point, complete wetting often proceeds via a sequence (possibly infinite) of layering tran-
sitions [19] extending away from bulk coexistence. Here we have three layering transitions,
only the first of which extends far into the single (gas) phase, occurring far from the triple point
which is at ηr

p ∼ 1.43 in the free-volume theory. Although there may be a fourth, fifth, etc, lay-
ering transition we are unable to detect these. The occurrence of such a pattern of transitions re-
flects the underlying difference between a one-component fluid, described by a simple pairwise
fluid–fluid potential, and the present binary AO mixture, for which the effective one-component
Hamiltonian [6] involves pairwise potentials which depend on the distance of the colloids from

7 In a preliminary conference report of our results [18] we correctly identified the first layering transition line but
failed to identify the second and third transitions and to determine accurately the wetting transition.
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the wall as well as complex higher-body interactions8. How the pattern of surface transitions
depends on the size ratio q will be described elsewhere [15] but we believe our present pre-
dictions of entropically driven wetting and layering transitions might encourage experimental
investigations of adsorption in colloid–polymer mixtures. Real space techniques, such as con-
focal microscopy, should provide a useful tool for observing wetting in colloidal suspensions.

In summary we have shown that interfacial properties of the simplest model colloid–
polymer mixture can be extremely rich. That such a diversity of phenomena should arise in
a system where the bare interactions are either hard or ideal is remarkable and points to the
importance of entropic depletion forces in determining surface as well as bulk phase behaviour.
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