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Hard discs in circular cavities: density functional theory versus
simulation
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Three different density functional approaches, namely the Rickayzen, Takamiva—Nakanishi
and Rosenfeld approximations, have been emploved to study the equilibrium particle density
distributions of hard-dise Muids in hard cireular cavities. Alse, Monte Carlo simulations have
been performed to test the theoretical results, The comparison with the simulation data shows
that the Rosenfeld approximation, which is based on the fundamental geometrical measures of
the particles, is better than the Takamiya—Nakanishi and Rickayzen approximations and
vields good agreement with the computer simulation data even for higher densities.

1. [Introduoction

The thermodynamic, structural and dynamical prop-
erties of fluids confined to cavities have been the subject
of long-standing theoretical, experimental and practical
interest, for recent investigations [1-3]. One important
application concerns the behaviour of fluids in porous
media or single cavities which leads to significant
changes due to confinement effects and shifts of the
static and dynamic correlations relative to the bulk be-
haviour. Most of the theoretical studies for structural
properties are based on density functional theory of
strongly inhomogeneous fluids [4, 3]. Different approx
imations for the free energy functional have been pro-
posed to describe the structural properties of a hard-
sphere fluid confined to different kinds of cavities; for
example, the weighted-density approximation of Tara-
zona and co-workers [6], the density functional approx-
imation of Rickayzen and co-workers [7, 8] based on the
density functional expansion, and the geometrically
based fundamental-measure free-energy model of
Rosenfeld [¥, 10]. The crux of the density functional
approximation lies in the fact that the exact form of
the free energy functional F[p| is not known. To find a
reliable approximation for Flp| is now a major activity
in the density functional research realm. A comparison
with ‘exact’ computer simulation data shows that den-
sity functional approximations generally describe the
thermodynamic and structural properties of confined
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three-dimensional hard-sphere fluids well, even if each
density functional approximation has its own advan-
tages and disadvantages in the actual application. How-
ever, almost every application has been restricted to the
three-dimensional hard-sphere fluid, not on the two-
dimensional system such as the hard-disc flusd [11].
Therefore, the thermodynamic and structural properties
of the confined hard-disc fluid have been studied little
compared with those of the confined hard-sphere fluid.
Moreover, the density functional approximations pro-
posed for the hard-disc fluid have not been tested in
the study of structural properties of a confined hard-
disc fluid in detail. Such a study is also of great import-
ance for investipating the physical properties of an emul-
sion interacting strongly in two dimensions [12] or for
recent experiments of paramagnetic colloids confined to
two dimensions in a circular-shaped cavity [13-16].
The purpose of this work is to examine three different
density functional approximations to study the struc-
tural properties of the confined hard-dise fluid. In
§2, we will briefly review three different density
functional approximations, which are the two-dimen-
sional weighted-density approximation proposed by
Takamiva and Nakanishi [17], the two-dimensional ver-
sion of the density functional approximation of Rick-
ayzen and co-workers [7, 8], and the two-dimensional
Tundamental measures’ free-energy model proposed by
Rosenfeld [9, 10], for the hard-disc fluid. In §3, we use
these approximations to study the equilibrium particle
density distribution of a hard-disc fluid in a hard air
cular cavity and compare it with computer simulation
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data. The structural stability limit for the confined hard-
disc fluid has also been investigated. Finally, our con-
clusions are presented in §:

2. Theory
In the density functional theory, the grand-canonical
potential £2[p| and the intrinsic (Helmholtz) free energy
functional Flp] are both a unique functional of the one-
particle density p(r) and they are related as

Q[p] = Flp| + | dep(r){ve () — o}, (1)
where p is the equilibrium chemical potential of the
system and w,,,(r) 15 an external potential. In two spatial
dimensions, the free energy functional F[p] can be gen-
erally written as the ideal contribution Fjy[g] plus the
excess free enerpy functional F_,[p| originating from
the particle interaction

Flp] = Filpl + Fexlpl
= 57! | drp(r){In [A*p(r)] — 1} + F..lg], (2)

where @ =1/kzT is the inverse temperature and
A = h{(2nmkgT)"? is the thermal de Broglie wave-
length.

The equilibrium particle density distribution of the
inhomogeneous fluid corresponds to the mimmum of
the grand-canonical potential satisfying the Euler
Lagrange relation [4]
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If the inhomogeneous fluid is in contact with the homo-
geneous bulk fluid, its chemical potential g is equal to
that of the homogeneous bulk fluid. The equilibrium
particle density distribution {or density profile) is then
given by the equation

ple) = o exp { ~ften (1) + <V (ws o)) — ()}, ()
where g, is the homogeneous bulk density, ¢'''(r; [2]) is
the one-particle direct correlation function (DCF) of the
. r ¥ . s
inhomogeneous fluid and ¢'"(p,) is the one-particle
DCF of the homogeneous Auid
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Since the exact form of the excess free energy (or the
one-particle DCF) for the hard-disc fluid is unknown,
some kind of approximation must inevitably be intro-
duced to calculate the equilibrium particle density dis-
tributions of a hard-disc fluid in a confined system.

2.1, Takamiva—Nakanishi approximation

Takamiya and Nakanishi [17] have proposed a den-
sity functional approximation, which is based on =
weighted-density approximation, o calculate the radial
distribution function of hard-disc fluids and the static
structure of hard-disc fluids around a central hard tria-
tomic molecule. In doing so, the density-dependent
weighting function in the density functional method
proposed by Tarazona [6] for 3D hard-sphere fluids
has been applied to 2D hard-disc flmds. In the Taka
miya—Nakanishi approximation, the excess free energy
functional F,,[g] is assumed to be

drp(r)fa(r)], (6)

Fulpl =

where [ p) is the excess free energy per particle and the
weighted density p(r) is defined as
2aa0E)
T 7 0
1= py(0)] + {[1 — ()] - =In,n;.I:r::_.-}3[r_|}
with

ilr] ‘dﬁ_.-}ljs}w'.[ r—s|}, i=012 &)

In equation (8), the weighting functions, w,(r), are given

as
{r pet 2 e ()
wilr) &, r<a, (9

wi(r) = 0.390 — 0.552(%) +0 {“‘jl;} r<o,

Wi
fe : fs
- 0.282(=) —0.966 +0.791 ()

=

- l'J.]éik}(F)'. o <r<le, (10)

7

wy(r) = 0.580 — 1.481(=) +0815(2), r<o, (1)
AT Wi

where o is the diameter of the hard discs. Equations (6)
(11} constitute the Takamiyva—INakanishi approximation
for the hard-disc fluid [17].

In this case, the one-particle DCF, ¢"(r;|g]),
appearing in the density profile equation is simply
Ziven as

S [p]) = =81 [p(r)] [dsﬂ{!‘»] i [p(s)]
where the prime of fip) denotes the derivative with
respect to the density. In the homogeneous state,
equation (12) becomes
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since p(r] = p(r) = py, and _|'tirg-l,[r'] = ] for the homo-
geneous state, Therefore, the Takamiyva-Nakanishi
approximation requires the excess free energy fip) for
hard-disc fluids as input. For numerical calculations a
suitable choice of the excess {ree energy f{p) of the hard-
disc Hluid 1s the empirical free energy of Santos er al [18]

Wi = — L
flm) 2(1—m)

[14)

where n=mnpo /4 is the packing fraction and
142 » . .

iy = (377 /6] is the maximum packing fraction corre-

sponding to the closed-packed density.

2.2, Rickayzen approximation

In the density functional approximation ol Rickayzen
and co-workers [7, 8] the excess free energy functional
F..[n]

exlp] is given as

BF o [p] = — dr[dsh’[:r s/ iplripl(s)

B | dr J ds | dtL(r,s, t)p(ripis)pit), (15)

where K{|r —s|) and L{r.s,t) are the unknown kernels
which are symmetric in their arguments. B is an
unknown constant, the strength parameter, and deter-
mined by the equation of state of the system. Following
Rickayzen's argument for three-dimensional hard-
sphere fluids, we assume the kernel Lir.s t) for the
two-dimensional hard-disc sysiem to be

Lir.s.t) = | dua(|r —u|la(|s —u|}a{[t —u|), (16)

with

v 1 . e
alr) = —=tMr—a), (17)

no-
where #(r) is the Heaviside step function which is equal
to 1 if r > o, and 0 otherwise. The kernel K({|r — s|} is
chosen to satisfy the two-particle DCF, ¢'(|r — s/, g ).

of the model system so that

¢ |e — 8|, py) = 2K(|r — 5|} + 6Bpy, |u‘u..;'r.h.:;.. (18)

In the Rickayzen approximation, the one-particle
DCF, ¢'"(r; [g]) — &' (), becomes

13 ¢ A 1 4 A 5
el —c V) = [d.‘in' e — 5, op) [P15) — o)

+ iR [L|.\;:!|:§r . Hi::_:.-'?[ﬁ':::‘ (193

with

[plr)]” = [ dsa(|r — s|}[p(s) — m]| - (20}
The strength parameter B in equation (1Y) is chosen Lo
satisly the equation of state for the homogeneous bulk
fluid

10| p]
sl

e = | dse'® (|r — 8|, o) + Hpﬂ. (21}

iP ==

where P is the pressure of the system and V is the
volume [8]. As the input, the two-particle DCF
¢“'(r,n) and the equation of state for hard-disc fluids
which are given by Baus and Colot have been used [19]
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where x = r/o and Z(xn) is the equation of state for the
hard-disc fluid
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with a; =0, a; = 01280, a; = 00018, o, = —0.0507,
as = —00533 and o= -0.0410. The constant
a = a{n) 15 determined from the following equation [1Y9]
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Equations (4), (19, (21), (22} and (23) constitute the
Rickayzen approximation for the confined hard-disc
fluid.

2.3, Rosenfeld approximation
The ‘fundamental measures’ free-energy model for
inhomogeneous, two-dimensional hard-sphere fluid mix-
tures, which 15 based upon the fundamental geometric
measures of the particles, was proposed by Rosenfeld [9,
10]. In this approximation, the excess free energy lunc-
tional for hard-dise fluids is assumed to have the form

g

AF . [rho] = | de@[n, (r]], (23)

where @[n, (r})] is the excess free energy per volume, It is
assumed that the excess free energy density @[n,,(r)|
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Pn,(r)] = —np(r) In [l — nair)]

| ny(riag (el — n, (r) -n, (1)

. - [26)
dr|l — ny(r)] \e0)

is only a function of the system averaged fundamental
geometric measure of the particles

n.(r) = j dspis)}u''(|r — s|), (27

where w'"'(r) is the weighting function representing the
geometrical properties of the particles and is defined as

W) = 80r —o/2), VP = (0/R8(r — af2),

w(F) = flr—af/2), W) = (1 (me))b(r — a/2).
28]
Combining equations (3) and (23), the one-particle
DCF ¢"'(r: [o]] becomes

o g A in. (8] ) )
e pl) = = ‘d"‘z = [;H ifr—sl). (29]

For the homogeneous state, equation (29) simplifies to

£ 1 2RYE
M pyl=In(l — &) ] ;'J i I
—&2 LR

— e (30

4m (1 — £ Lot

with & = Ry, RY =1, R = 17 and R = no’/4.
The advantage of the Rosenfeld approximation com-
pared to the Takamiya—Nakanishi and Rickayzen
approximations is that it does not need any information

about the equation of state or the two-particle DCF of

hard-disc fluids to calculate the density profiles. For the
numerical calculation, we have used the two-dimen-
sional Fourier transform method, that is, Hankel trans-
form, to calculate the weighted densities n,(r) and
density profiles p{r) because of the special properties
of the weighting functions «'"'{r) [20]. Taken together,
equations {4), (29) and (300 constitute the Rosenfeld
approximation for the confined hard-disc fluid.

3. Results and discussion
For the hard-disc fluid in a hard circular cavity, the
spatial dependence of quantities like plr) = plr),
plr) = plr), and n,(r) = n,(r] is for symmetry reasons
on r only, The wall-fluid interaction Fu... () 15 given as

St (r)=0, r<R

=og, r>R, (31}

where R is the radius of the hard circular cavity and r is
the distance to the centre of the cavity. Note that the

centre of the Thard-discs can only  access
D<r=< R-—oa/2

To verify the theoretical results, we have performed
grand-canonical and canonical Monte Carlo (MC)
simulations for various particle numbers N, also varying
the cavity radius R. In a grand-canonical simulation the
disc number N is an averaged number since the chemical
potential is prescribed. In contrast N is fixed in the
canonical ensemble. However, to compare results for a
given average number of discs the chemical potential in
the grand-canonical simulation is iterative adjusted so
that a predefined average number of particles is
achieved. In order to find a suitable initial configuration,
we started from the corresponding close-packed config-
uration [21] and scaled the disc diameter to preserve the
imposed area fraction. For further details of the grand-
canonical MC technique we refer to recent work in three
spatial dimensions in [22].

Within density functional theory we obtain the den-
sity profiles via solving the equation
]

N exp [— Bty (1) + V(x5 Bl — e { )]

[ dr exp [— Bty (r) + cMi{r

pir} = (32)

o) = eMip)]

MNote that this ensures the a priori correct normalization
for a prescribed averaged N corresponding to the pre-
scribed chemical potential g in the grandcanonical
ensemble.

We depict the DFT equilibrium particle density dis-
tribution p{r)c” of the hard-disc fluid in a circular cavity
with four different radii (R = 5.00, 4. 87, 4.60 and 4.220)
in figures 1-4 together with the computer simulation

data. Again for canonical simulations the number of
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Figure 1. Equilibrium particle density distributions p(r)e” of
a hard-disc fluid (N = 37} in a hard circular cavity with
radins R = 500, The solid, dashed, and dotted lines are
from the Rosenfeld, Rickavzen and Takamiya—Nakanishi
approximations, respectively. The open circles are the
data obtained from computer simulations.
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Figure 2. As figure 1, but for R = 4.8+
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Figure 4. As figure 1, but for R = 4.22+,

hard discs is fixed to N =37 and for grand-canonical
calculations, the chemical potential is fixed to vield an
average number of hard discs of N = 37. N = 37 corre-
sponds to a magic number associated to a closed-packed
configuration with the curved hexagonal symmetry [21,
23].

From figure 1 (R = 5.0, N = 37) we find excellent
agreement of the Rosenfeld and Takamiyva—Nakanishi
approximations with the computer simulation. How-
ever, the Rickayzen approximation exhibits a small dis-
crepancy near the hard cavity wall. No deviations
between canonical and grand-canonical computer simu-
lations can be found such that the two ensembles are
practically equivalent. The equilibrium particle density
distribution exhibits a maximal local density at the
cavity boundary followed by an oscillatory behaviour
due to layering inside the cavity., The local density at
the cavity centre, on the other hand, is governed by
global packing constraints, particularly for high densi-
ties near close packing. This density is another diag-
nostic tool to test the capability of density functionals
to describe packing properties of discs correctly,

The results of the confined hard-disc fluid for smaller
radii (R = 4.8z and R = 4.6) with N = 37 are shown in
figures 2 and 3. As before, the Rosenfeld approximation
exhibits an excellent agreement with the computer simu-
lation. However, by observing small deviations in the
first depletion zone near the cavity boundary. it is
again confirmed that the Rosenfeld approximation is
more precise than the Takamiya-Nakanishi and Rick-
ayzen approximations. For the latter two approxima-
tions, the agreement with the computer simulation
deteriorates with increasing density.

For even higher density (R =4.220, N = 37), the
comparison with simulation data reveals that the Rosen-
feld approximation again yields the correct oscillatory
behaviour, see figure 4. The Takamiya-Nakanishi
approximation, on the other hand, exhibits a discre-
pancy compared to the computer simulation near the
hard circular cavity wall and at the cavity centre,
Whereas the Rickayvzen approximation shows the
worst results compared with the computer simulations,
Figure 4 shows that the density of the first peak at the
centre of cavity is almost the same as that of the sec-
ondary peak which is not reproduced by the Takamiva-
Makanishi approximation. From the close-packed con-
figuration with the curved hexagonal symmetry, we
expect that for N = 37 the first peak of the density
will occur at the centre of the hard cavity and is sup-
posed to become even higher than that of the secondary
peak for increasing density (or with decreasing cavity
radius). This effect can also be seen from the density
profiles of a confined hard-dise fluid with the ‘magic’
number N = 7 associated with a closed-packed config-
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Figure 5. Asfigure |, butfor N =7TforR=22cand N = 10
for R = 2.280.

uration, while for N = 10, for instance, the first peak is
expected to occur off the cavity centre [21].

We finally calculated density distributions for these
two average numbers, close to the freezing packing den-
sities [21] in figure 5: N = Tfor R = 2.2g and N = 10 for
R = 2.280. We note that a bulk phase transition in a
finite system depends strongly on the system size and
freezing as manifested by slow dynamics occurring for
lower density as compared to the bulk density. For these
extreme cases, there are deviations at the cavity centre
for the Rosenfeld functional as compared to the grand-
canonical simulation data. To reproduce the central
density is a stringent test for any density functional
approximation as this density respects global packing
constraints.

We further remark that canonical computer simula-
tions with fixed particle number N = 7, 10 yield density
profiles which are very close to the canonical ones. The
only notable difference occurs at the cavity centre for
N = 10. This is explained qualitatively as follows. The
density profile in the grand-canonical ensemble is a
linear superposition of canonical density profiles corre-
sponding to different N. In particular, for an average
N = 10, the weight of the N = 9 contribution is about
30% which has a central disc in its close-packed config-
uration [21]. Thas i1s the reason why the central density 15
slightly higher in the canonical than in the grand-cano-
nical ensemble.

We finish with two remarks: first, in a complementary
sense, one could also use a density functional in the
canonical ensemble as recently discussed by Whate er al.
[24]. Secondly, as a numerical remark, we note that for
increasing density the density functional approximations
show a so-called ‘structural instability” [25]. Even

though the threshold density of this structural stability
depends slightly on the numerical iteration method, the
stability limit falls close to the freezing density for con-
fined hard-disc fluids in the Rosenfeld approximation.
This 15 similar to the three-dimensional studies in the

bulk [25].

4. Conclusions

In summary, we have used three different density
functional approximations to study the structural prop-
erties of a hard-disc fluid in a hard circular cavity, The
calculated results show that the Rosenfeld approxima-
tion is a significant improvement upon those of the
Takamiva—MNakanishi and Rickayzen approximations
and yields good agreement with the computer simula-
tions. For the confined hard-disc fluid, the Rosenfeld
approximation shows the ‘structural instability’ near
the freezing density. Qualitatively the physics mostly
resembles that of three-dimensional hard-sphere fluids
confined in a spherical cage [22, 26].

As far as future research is concerned. it would be
very interesting to apply the Rosenfeld approximation
to study the structural correlarions of a two-dimensional
hard-disc Auid 1n a small circular cavity as was done in
three dimensions in confinement [24, 27, 28]. There is a
further need to study density functionals in extreme
cases with only a few discs in cavities in order to high-
light differences in the thermodynamic ensembles [22
and to fix problems of symmetry breaking with respect
to the angular (orientational) symmetry if a freezing
transition 15 crossed [13]. Also one can think about
improving the Rosenfeld functional further in order to
get full complete agreement for high densities in small
cavities.

We thank Y. Rosenfeld and R. Evans for helpful
discussions. This paper was supported in part by grant
no. 2001-1-11400-002-2 from the Basic Research Pro-
gram of the Korea Science and Engineering Foundation
and by the Deutsche Forschungsgemeinschafi, Ger-
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