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Abstract
Using non-equilibrium computer simulations, it is shown that various phenom-
enological criteria for melting and freezing hold not only in equilibrium but
in steady-state non-equilibrium as well. In particular, we study the steady
state of charge-polydisperse Brownian particles shaken by a time-dependent
oscillatory electric field. Among these criteria are the Lindemann melting rule,
the Hansen–Verlet freezing rule and the dynamical freezing criterion proposed
for colloidal fluids by Löwen, Palberg and Simon.

1. Introduction

The freezing and melting transition is far from being understood from first principles, even
in thermodynamic equilibrium and for relatively simple systems interacting via a radially
symmetric pair potential [1]. The essential difficulty arises from the collective many-body
effects resulting in a broken translational symmetry across freezing. Recent microscopic
descriptions [2,3] are based either on the liquid phase (such as density functional approaches)
or on the crystal phase (such as solid–defect theories) but it is fair to say that a fully predictive
theory with the interactions between the particles as the only input is not available. Therefore
phenomenological criteria based on empirical observations in experiments or computer
simulations have been very important for estimating the location of the freezing and melting
lines. In general, these criteria work if the freezing occurs at high densities, in which case the
relative density jump across freezing is small. The most traditional criterion is the Lindemann
melting rule [4]: it states that a solid melts if the root mean square displacement of particles
around their ideal lattice positions is roughly ten per cent of their nearest-neighbour distance.
This rule has been tested for different materials [5, 6] and model fluids [7, 8] and indeed
the relative displacement L was found to be within five to twenty per cent at melting. The
Lindemann criterion cannot be used to describe two-dimensional melting because the root
mean square displacement diverges there [9]. It can, however, be generalized by considering
relative displacements between neighbouring particles only [10]. Furthermore the Lindemann
rule was found recently to be valid in higher spatial dimensions [11], for re-entrant melting [12]
and for interfacial freezing transitions [13].
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A second criterion is the Hansen–Verlet freezing rule [14]. It states that a (three-
dimensional) liquid freezes if the amplitude Sm of the first maximum in the structure factor
S(k) exceeds 2.85. For two-dimensional freezing, however, the actual value of the amplitude
is getting much larger at freezing and is about 5.5 [15].

Third, a dynamical freezing rule for Brownian colloidal fluids was proposed by Löwen,
Palberg and Simon (LPS) [8]. This criterion is based on the ratio DL/D0 between the short-
time and long-time diffusion coefficients. A fluid freezes if this ratio becomes smaller than ten
per cent. This criterion was shown to be also valid in two dimensions [16] and was recently
related to the Hansen–Verlet freezing rule via mode-coupling theory [17,18]. It is particularly
useful for the crystallization transition of colloidal suspensions [19].

All these criteria have been developed and applied so far in equilibrium. In this paper we
investigate whether these criteria are also valid in non-equilibrium situations [20]. Freezing and
melting in non-equilibrium is, of course, much more complicated, as the traditional thermo-
statistical concepts break down. In many non-equilibrium cases, however, the systems run into
a steady-state situation where structural and dynamical correlations as well as phase transitions
can be defined [21–24]. Consequently, the Lindemann parameter L, the liquid structure
factor S(k) and the diffusion coefficients are still well-defined quantities there. Therefore
it is tempting to check whether the phenomenological criteria are fulfilled in non-equilibrium.
In fact, in experiments on two-dimensional colloids by Grier and Murray [25], the LPS criterion
for freezing was used in non-equilibrium and was confirmed there.

In this work we consider a particular steady-state non-equilibrium situation: a slightly
polydisperse Brownian Yukawa fluid is driven by a space-independent but time-dependent
oscillatory external field that couples differently to the different particles according to their
polydispersity. We have shown recently [26] that such a field shifts the freezing transition with
respect to equilibrium freezing. The shift depends strongly on the field amplitude, scaling
with the square of the relative polydispersity, and vanishes for very large field frequencies.
In this paper we use extensive computer simulations to test the validity of the three different
freezing and melting criteria mentioned above. We find that all three rules are indeed fulfilled
provided the polydispersity is not too large which means that the system is rather close to
equilibrium (see our discussion in section 3). Our results suggest that the freezing criteria are
robust when turning from equilibrium to non-equilibrium systems, provided the system is not
too far away from equilibrium. Thus our findings will be helpful in interpreting experiments
which are typically carried out in non-equilibrium [25]. As a by-product, we also confirm that
the freezing criteria are valid in equilibrium for small charge polydispersities. In this case,
similar tests for the Hansen–Verlet rule and the Lindemann criterion have already been made
by Tata and Arora [27, 28].

The paper is organized as follow. In section 2, we define our model. In section 3 we
describe our simulation method. The different freezing criteria are tested and further results
for the inherent system anisotropy are presented in section 4. We conclude in section 5.

2. Model

Our model for non-equilibrium Brownian dynamics of charge-polydisperse colloids is defined
as follows [26]: N colloidal particles confined to a volume 
 (with a fixed number density
ρ = N/
 defining a mean interparticle spacing of a = ρ−1/3) are held at fixed temperature
T . Two colloidal particles i and j are interacting via an effective screened Coulomb pair
potential [29, 30]

Vij (r) = ZiZjU0σ
exp(−λ(r − σ)/σ)

r
(1)
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where r is the interparticle distance, U0 sets an energy and σ a length scale. The quantity λ is
a dimensionless screening parameter. Zi > 0 denotes the reduced colloidal charge of the ith
colloidal particle. The charges Zi are drawn from a given distribution p(Z) around a mean
valueZ which can be set equal to unity without loss of generality. The width of the distribution
is governed by the prescribed relative polydispersity

pZ =
√
Z2 − 1.

In our simulations we took either a bimodal distribution

p(Z) = [δ(Z − 1 + pZ) + δ(Z − 1 − pZ)]/2 (2)

or a rectangular distribution

p(Z) =
{

1/(
√

12pZ) for |Z − 1| < √
3pZ

0 otherwise.
(3)

Apart from the direct interaction (1), there is an external oscillatory force �Fi(t) resulting from
an ac electric field which acts on the ith colloidal particle in the z-direction:

�Fi(t) = �ezZiE0 sin(ωt) (4)

where ω is the field frequency, E0 the field amplitude and �ez the unit vector along the z-
direction. Neglecting hydrodynamic interactions, the stochastic Langevin equations for the
colloidal trajectories �ri(t) = (xi(t), yi(t), zi(t)) (i = 1, . . . , N) read as

kBT

D0

d�ri
dt

= −�∇�ri
∑
j �=i

Vij (|�ri − �rj |) + �Fi(t) + �F (R)
i (t) (5)

where kBT is the thermal energy, D0 is the short-time diffusion coefficient and the random
forces �F (R)

i describe the kicks of the solvent molecules acting on the ith colloidal particle.
These random forces are Gaussian random numbers with zero mean:

�F (R)
i = 0

and variance

( �F (R)
i )α(t)( �F (R)

j )β(t ′) = 2(kBT )2

D0
δαβδij δ(t − t ′) (6)

guaranteeing that

D0 = lim
t→0

(�ri(t)− �ri(0))2/6t . (7)

The subscripts α and β stand for the three Cartesian components. As has been shown earlier,
the external field has no influence for a monodisperse system apart from adding a trivial overall
dynamical mode [26]. Hence a finite polydispersitypZ > 0 is essential to drive the system into
real non-equilibrium and the polydispersity itself measures the ‘distance’ from equilibrium.

3. Simulation methods and diagnostics for the freezing and melting transition

We solved the Langevin equations (5) by means of a finite-time step Brownian dynamics
simulation [31] using N = 864 particles in a cubic box with periodic boundary conditions.
The Brownian timescale is set by τ = kBT a

2/U0D0 and a typical size of the time step was
)t = 0.003τ . The system was carefully ‘equilibrated’ for a time of typically 100τ until a
steady state was reached. In order to reduce the multi-dimensional parameter space we kept
the density, the field amplitude and the dimensionless screening parameter fixed to ρ = 1/σ 3,
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E0 = 10.5U0/a, λ = 5.8, such that the crystalline structure is either face-centred cubic
(fcc) or hexagonal close packed (hcp) with random occupancy for small pZ . We studied
the system as a function of reduced temperature T ∗ = kBT /U0, starting with small (large)
temperatures and continuing our simulations by gently heating (cooling) the system, and further
varied the polydispersity and the field frequency. The parameter combinations investigated
are summarized in table 1. Note that ω = 0 implies a vanishing field and thus an equilibrium
situation.

Table 1. Phase transition temperature T ∗
0 , Lindemann parameter L, amplitude Sm of the first

maximum in the liquid structure factor and the ratio of long-time and short-time self-diffusion
coefficients, DL/D0, at freezing/melting for different parameter combinations characterized by
the polydispersity pZ and field frequency ωτ . Note that ωτ = 0 implies an equilibrium situation.
If the given polydispersity is marked by a star, the system was bimodal; otherwise the poly-
dispersity was drawn from a rectangular distribution. The number in brackets indicates the error
of the last digit.

pZ ωτ T ∗
0 L Sm DL/D0

0 0 0.204(14) 0.183(7) 2.9(2) 0.10(2)

0.05 0 0.20(2) 0.183(7) 2.9(2) 0.10(2)

0.05 1.57 0.19(1) 0.186(7) 3.1(3) 0.11(2)

0.05(*) 0 0.205(15) 0.184(7) 2.9(2) 0.10(2)

0.05(*) 6.28 0.205(15) 0.187(9) 2.9(2) 0.10(2)

0.15(*) 0 0.180(9) 0.190(9) 3.0(2) 0.10(2)

0.15(*) 6.28 0.178(13) 0.181(9) 3.0(3) 0.11(2)

In particular, we are interested in the freezing/melting transition in the non-equilibrium
steady state. We detect this transition by means of an analysis of the temperature dependence
of the Lindemann parameter L in the crystalline state, defined through

L =
√√√√〈 N∑

i=1

(�ri(t)− 〈�ri(t)〉)2
〉/
a. (8)

Here the mean interparticle spacing a is close to the solid lattice constant. The brackets 〈· · ·〉
denote an ensemble, a polydispersity and a time average in the steady state at discrete times ntp
set by the period tp = 2π/ω of the electric field. Neglecting hopping processes in the solid,
the quantity 〈(�ri(t) − 〈�ri(t)〉)2〉 becomes time independent in the solid for large times where
〈�ri(t)〉 sets the ideal lattice positions. At this stage we remark that the square involved in the
definition (8) is inherently anisotropic, but it will be shown later that the anisotropy is small.

In principle, the freezing and melting temperatures should coincide. In practice, however,
there is a hysteresis loop upon heating and re-cooling the system, whose finite width indicates
that the non-equilibrium freezing transition is first order. The width of the hysteresis loop can
be used to estimate the error in locating the phase transition temperature. In detail, we used
the following procedure. We monitored L as a function of reduced temperature T ∗ during the
process of heating a solid; see figure 1. L increases slowly with increasing T ∗. Upon reaching
a characteristic temperature T ∗

m, L exhibits a kink and increases much faster upon heating the
system further. T ∗

m is an estimate of the melting temperature of the solid (at least it should
be an upper bound for the melting temperature). Upon further heating, L grows dramatically,
indicating that a fluid phase has been reached. Thereafter the system is cooled down, resulting
in a hysteresis loop for L (see figure 1) until L has practically reached the value corresponding
to the original solid. The temperature T ∗

f where this happens is an estimate for the freezing
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Figure 1. Lindemann parameter L versus reduced temperature T ∗ upon heating and subsequent
cooling as indicated by the arrows. The parameters arepZ = 0.05 andωτ = 1.57. The estimates of
the reduced freezing and melting temperatures T ∗

f and T ∗
m are indicated by the vertical dashed lines.

temperature of the fluid (at least it should be a lower bound for the freezing temperature).
Hence the real phase transition temperature T ∗

0 should fulfil T ∗
f < T ∗

0 < T ∗
m. Hence it is a

reasonable estimate to assume

T ∗
0 = 1

2
(T ∗
f + T ∗

m)± 1

2
(T ∗
m − T ∗

f ). (9)

Indeed, comparing the result obtained from our procedure with the equilibrium freezing/
melting temperature of Yukawa systems as obtained by the much more accurate method of
thermodynamic integration, we obtain good agreement: the parameters in the first row in
table 1 lead to an exact transition temperature of T ∗

0 = 0.205 as obtained by the thermodynamic
integration method [7] which agrees well with our estimateT ∗

0 = 0.204±0.014. The important
fact, however, is that our method can be applied also to non-equilibrium phase transitions where
the concept of thermodynamic integration breaks down.

We have further monitored the behaviour of bond-orientational order parameters Q4 and
Q6 [32, 33] which provide a sensitive diagnostics for crystallization into fcc and hcp lattices.
For example, in a fluid, Q6 is very small while it has a value of 0.57 for an ideal fcc solid.
The advantage of bond orientations is that they discriminate clearly between a crystal and an
amorphous glass. Corresponding data forQ6 within a hysteresis loop are presented in figure 2.
The kink at T ∗ = T ∗

m is much less pronounced than in the Lindemann parameter development
(figure 1). On the other hand, the transition back to the crystalline state during cooling is
clearly seen. The fact thatQ6 goes almost back to its original value close to 0.57 (which is for
an ideal fcc solid) clearly indicates that the system has refrozen into an fcc crystal.

4. Results

Using the diagnostics of the previous section [34], we determined the freezing/melting trans-
ition temperature T ∗

0 for seven different parameter combinations summarized in table 1. T ∗
0

decreases with increasing polydispersity pZ and increasing ω, consistently with our earlier
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Figure 2. As figure 1, but now for the bond-orientational order parameter Q6.

findings [26]. For a rectangular charge distribution (3) the stable crystal exhibited an fcc
structure, while we found a random occupied hcp crystal as the stable phase for the bimodal
distribution (2). Once the phase transition temperature T ∗

0 is known, one can calculate L, Sm,
DL/D0 at the transition in the solid and fluid phases, in order to test the freezing and melting
criteria.

(i) The first quantity is the Lindemann parameter L as defined in equation (8). Fortunately,
in the crystalline state, L varies only slowly with temperature such that the value of L at
the kink near T ∗

m is close to L at melting; see the small error bar in table 1.
(ii) In the fluid state near the transition, we furthermore calculated the height Sm of the first

maximum in the orientationally averaged particle–particle liquid structure factor S(k),
defined through

S(k) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ

〈
1

N

N∑
i,j=1

exp[−i�k · (�ri − �rj )]
〉

(10)

where �k = (k cosφ sin θ, k sin φ sin θ, k cos θ). In the case of a binary mixture, S(k) is
the number–number structure factor which is a linear superposition of the partial structure
factors. The amplitude Sm of the first peak in S(k) is shown in figure 3 for a cooling cycle
of the fluid. Sm depends sensitively on temperature. The error (9) associated with the
determination of the phase transition temperature (see equation (9)) therefore produces
a large error in Sm, which is indicated in table 1 and can also be read off from figure 3
together with our estimate (9) of the phase transition temperature.

(iii) Finally, we have computed the long-time self-diffusion coefficient as defined in the fluid
state through

DL = lim
t→∞

[〈
1

N

N∑
i=1

(�ri(t)− �ri(0))2
〉/

6t

]
. (11)

The long-time limit can be estimated in a computer simulation by an extrapolation method
similar to that used for the equilibrium case [35–39]. One example of the temperature
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Figure 3. Height Sm of the maximal structure factor peak (circles, left y-axis) and the ratioDL/D0
(stars, right y-axis) versus reduced temperature T ∗ during a cooling process. The estimates of the
reduced freezing and melting temperatures T ∗

f and T ∗
m are indicated by the vertical dashed lines.

The parameters are as for figure 1.

dependence of DL/D0 is shown in figure 3, revealing that DL/D0 decreases significantly
upon decreasing the temperature. Further results are summarized in table 1 together with
the uncertainties caused by T ∗

0 .

As can indeed be concluded from table 1, the freezing and melting criteria are stable
with respect to a non-equilibrium situation. L stays at around 0.18, well in the range relevant
for equilibrium melting of Yukawa systems [7], and is pretty robust upon a change in field
frequency and polydispersity. The maximum Sm of the first peak in the fluid structure factor
also falls into an interval between 2.7 and 3.4; thereby, the Hansen–Verlet rule is stable with
respect to non-equilibrium situations. The main cause for the deviation of Sm is the error in
determining the phase transition temperature. Finally, the ratio DL/D0 of long-time to short-
time diffusion is indeed about 10%, implying that the LPS rule is valid in non-equilibrium.
We finally note that among the parameter combinations shown in table 1 there are also three
equilibrium situations (i.e.ω ≡ 0) of binary and polydisperse systems. Hence, as a by-product,
our results also confirm the validity of the melting/freezing rules in equilibrium for binary or
polydisperse systems. However, for stronger polydispersities, the system does not recrystallize
but freezes into an amorphous glass [34] for a continuous charge distribution or exhibits lane
formation of equally charged particles for a bimodal charge distribution [24,40]. Since a non-
equilibrium freezing transition is lost under these circumstances, a systematic study of these
situations has not been pursued further here but will be published elsewhere.

In order to understand in more detail why the Lindemann criterion still holds, we have
further explored the anisotropy of the mean square involved in its definition (8). For other
anisotropic equilibrium systems, such as interacting particles in one-dimensional periodic
grooves, it is known that the anisotropy of particle displacements may trigger unusual
phenomena such as re-entrant melting [41–45] which violates the Lindemann rule (so-called
laser-induced melting [24]). The same is true for freezing of circular rings in two-dimensional
confined systems [46, 47]. In our case, as the external electric field sets a preferred direction,
the particle displacements are inherently anisotropic. In order to quantify the anisotropy, we
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define a dimensionless anisotropy parameter α as

α = 2

〈
1

N

N∑
i=1

(zi(t)− 〈zi(t)〉)2
〉/〈

1

N

N∑
i=1

[(xi(t)− 〈xi(t)〉)2 + (yi(t)− 〈yi(t)〉)2]

〉
. (12)

In the monodisperse or field-free isotropic cases, α is evidently equal to 1, whereas, for a
polydisperse sample, the shaking electric field will lead to larger distortion in the z-direction
relative to the x- and y-directions, so we expect α > 1. A typical example of the anisotropy
parameter versus temperature is shown in figure 4. Two facts can be concluded from this figure.
First, α is decreasing with temperature. This could be expected, as temperature increases
the displacements equally in all three directions and thus reduces the anisotropy. Second,
although α is definitively different from unity, the deviations are not large. In particular, near
the melting point, α ≈ 1.1 which implies that the anisotropy is still small. This explains why
the Lindemann rule is still applicable. If α had been much larger than 1, the system would
consist of driven rows where—in analogy to laser-induced melting—the physics of the melting
process is qualitatively different. As a final remark, we state that the long-time diffusion is
also anisotropic in the fluid phase [48]; its relative anisotropy is small and comparable to α
near the transition, explaining why the LPS criterion is still applicable.

Figure 4. Anisotropy parameter α in the crystalline phase versus temperatures T ∗ for pZ = 0.15
( ) and ωτ = 6.28. For comparison, the equilibrium result α ≡ 1 is indicated as a dashed
horizontal line.

5. Conclusions

In conclusion, we have confirmed the validity of various empirical freezing and melting
criteria in steady-state non-equilibrium situations, induced by a shaking electric field acting on
charge-polydisperse colloidal particles. The deviation from equilibrium can be controlled
in our model by the relative polydispersity. We have shown that the criteria are valid
provided the polydispersity is not too large, such that crystallization is not pre-empted by
glass or lane formation. When field-induced crystallization occurred, the fluctuations were
still almost isotropic, in clear distinction to highly anisotropic systems, which exhibit a
different physics of melting. The criteria are surprisingly stable and this gives confidence
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in the expectation that they also hold in different situations of a non-equilibrium steady
state, e.g., oscillatory shear flow [49–52]. It would be interesting to establish the validity
of these criteria within a more microscopical theoretical picture. This requires, however,
a generalization of the current equilibrium approaches [17] to non-equilibrium situations.
Another important research direction should incorporate the hydrodynamic interactions. While
these are irrelevant for L and Sm in equilibrium, they play a crucial role for dynamical
equilibrium correlations and control the non-equilibrium for concentrated suspensions. The
inclusion of hydrodynamic interactions in driven systems may lead to further interesting
phenomena, such as electrohydrodynamically induced pattern formation [53, 54]. Finally,
a direct experimental verification of the freezing criteria should be carried out. One advantage
of experiments is that the location of the non-equilibrium phase transition can be determined
more precisely than in the computer simulation.
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[18] Pesche R, Kollmann M and Nägele G 2001 J. Chem. Phys. 114 8701
[19] Palberg T 1999 J. Phys.: Condens. Matter 11 R323
[20] A further criterion, based on the vanishing residual multi-particle entropy, was put forward by Giaquinta et al:

Giaquinta P V, Giunta G and Giarritta S P 1992 Phys. Rev. A 45 R6966
but it has no immediate generalization to non-equilibrium systems.

[21] Schmitz R 1994 Physica A 206 25
[22] Frink L J D, Thompson A and Salinger A G 2000 J. Chem. Phys. 112 7564
[23] For a review on driven diffusive systems, see

Schmittmann B and Zia R K P 1995 Phase Transitions and Critical Phenomena vol 17, ed C Domb and J L
Lebowitz (London: Academic)
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