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Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1,
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Abstract
It is shown that a fluid near a topographically patterned wall exhibits
crystallization below the bulk freezing point (so-called precrystallization). In
detail, a periodic array of fixed hard spheres is considered as a wall pattern.
The actual type of the pattern corresponds to a face-centred-cubic (fcc) lattice
cut along the (111), (100) or (110) orientation, a hexagonal-close-packed (hcp)
solid with (110) orientation as well as a rhombic lattice distorted with respect to
the triangular one. The fluid is represented by mobile hard spheres of the same
diameter as the fixed wall spheres. By computer simulation we find complete
wetting by a crystalline sheet proceeding via a cascade of layering transitions
as the bulk freezing point is approached for the fcc (111) and hcp (110) cases,
provided that the wall crystal lattice exactly matches that of the coexisting bulk
crystal. On the other hand, there is incomplete wetting for the fcc (100) and
(110) cases. The freezing of the first layer starts at lower bulk pressures for a
lattice with a larger lattice constant as compared to that of the coexisting bulk
crystal. A rhombic pattern either results in incomplete wetting by a solid sheet,
which is unstable as a bulk phase, or prevents wetting completely. Using a
phenomenological theory we derive scaling relations for the thickness of the
crystalline layer which are confirmed by the simulation data. We furthermore
show that the Lindemann rule of bulk freezing can be applied also for interfacial
freezing transitions.

1. Introduction

Liquids at interfaces can exhibit structural changes and thermodynamic interfacial phase
transitions which are much more subtle than their bulk behaviour. One important phenomenon
is wetting [1, 2] which is interesting from a fundamental point of view but also has many
important applications. A special type of wetting transition is present if the wetting phase is
crystalline. Examples include precrystallization for hard-sphere fluids near smooth walls [3,4],
surface freezing [5–9] as found for alkanes [10–16] and alcohols [17, 18] and triple-point
wetting of rare gases on metallic substrates [19].
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In this paper we focus on the wall-induced precrystallization of hard-sphere fluids which
was found to occur very close to coexistence for a smooth wall [3,4]. We show that the surface
pattern plays a decisive role in determining the details of the wetting scenario. Depending on
the pattern there can be either complete wetting, incomplete wetting or no precrystallization at
all. Our work is motivated by the recent development of lithographic techniques by means of
which chemical and topological wall patterns can be imprinted onto a substrate. A profound
influence on the wetting behaviour of fluids on patterned substrates was found as in other recent
studies [20–23].

In our model we focus on a fluid of spherical particles modelled as hard spheres in
the neighbourhood of a substrate composed of fixed hard spheres forming a periodic two-
dimensional array. There are two main reasons for our approach. First, the model is kept simple
since the thermodynamics and phase diagram of the bulk hard-sphere system depend only on
the bulk volume fraction η. Understanding the molecular principles of precrystallization is thus
possible within this ‘minimal’ framework. Second, our model is actually applicable for index-
matched sterically stabilized colloidal suspensions on periodic patterned substrates which can
be prepared by ‘gluing’ colloidal spheres onto a periodic pattern [24–26]. Such colloidal model
systems bear the further advantage that real-space experiments can be performed as the relevant
length scale is shifted from the microscopic to the mesoscopic regime [27]. Nevertheless our
model may also serve as a simple microscopic description of molecular systems such as liquid
metals on crystalline surfaces. Consequently, all of our predictions can in principle be verified
in real-space experiments on colloidal suspensions [28–31] or by scattering techniques probing
the inhomogeneous microscopic structure of liquid metals near crystalline substrates [32].

By computer simulation we show that a pattern which is commensurate with the bulk
crystal can ignite complete precrystallization with an onset far away from bulk coexistence.
This proceeds via a cascade of subsequent layering transitions as the bulk freezing transition is
approached. However, whether there is complete or incomplete precrystallization depends on
the type of the surface pattern. A triangular lattice produces complete wetting while a square
lattice gives only incomplete wetting. On the other hand, a surface pattern which is distorted
from the compatible one leads either to incomplete wetting or prevents wetting completely.
For small distortions there is incomplete wetting by crystalline layers which are unstable as a
bulk phase. These layers directly inherit their structure from the underlying pattern. However,
above a critical distortion, precrystallization does not occur any longer. Furthermore, we show
that precrystallization can be tuned by a mismatch of the substrate pattern with respect to the
coexisting bulk crystal. For larger substrate lattice spacing, the first layer crystallizes at lower
bulk pressures.

Our simulation results are in quantitative agreement with scaling relations derived from a
simple phenomenological theory. Parts of this work we have already published elsewhere [33].

The paper is organized as follows. In section 2 we describe our model. A simple phenom-
enological approach is presented in section 3. Then we describe the simulation procedure in
sections 4 to 6. In particular, we identify a suitable order parameter for detecting layer-resolved
precrystallization in section 5. Results are presented and discussed in section 7 while section
8 is devoted to conclusions.

2. The model

We consider N hard spheres with diameter σ in a large volume V at a fixed temperature T .
The number density of the spheres is ρ = N/V which can be conveniently expressed in terms
of the dimensionless packing fraction η = πρσ 3/6. For excluded-volume interactions, the
temperature only sets the energy scale kBT (kB denoting Boltzmann’s constant) and does not
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affect the phase transitions or structural correlations. Hence the bulk system is completely
specified by the bulk packing fraction η. It is well established [34] that the bulk hard-sphere
system exhibits a first-order freezing transition from a fluid phase to a face-centred-cubic
(fcc) crystal [35]. The coexisting densities are ρ ≡ ρf = 0.943/σ 3 for the fluid and
ρ ≡ ρs = 1.041/σ 3 for the solid; the packing fractions are η ≡ ηf = 0.494 for the fluid
and η ≡ ηs = 0.545 for the solid. The scaled pressure P ∗ = Pσ 3/kBT at coexistence is
P ∗
c = 11.64.

In detail, the centre-of-mass positions of the spheres are denoted by �ri = (xi, yi, zi)

(i = 1, . . . , N). Two hard spheres i and j interact via the pair potential

U(�ri, �rj ) =
{

∞ if |�ri − �rj | < σ
0 otherwise.

(1)

In the following we include a surface in the hard-sphere system. The presence of such a surface
is described by an additional external potential which in general can model any wall pattern.
Yet to simplify the model this interaction is modelled asNw fixed hard spheres interacting with
the mobile ones with the potential from equation (1) which acts on the centres of the ith hard
sphere (i = 1, . . . , N) and the j th wall particle j = 1, . . . , Nw. The actual wall area is A and
the positions of the fixed spheres on the given lattice are denoted by {�rwj }.

In the following we will concentrate on a few selected wall structures which are either
interesting for experiments or which show a generic behaviour. We choose the triangular wall
pattern, resulting from a cut along the (111) plane of a fcc crystal, as it is intuitively the most
favourable surface that we can offer for a solid. This substrate pattern is shown in figure 2(a)—
see below. It corresponds to a triangular crystal whose lattice constant a
 = 1.1075σ matches
the coexisting bulk crystal. With this example we investigate in detail the effects of a strained
crystal by distorting this pattern to form a rhombic crystal. This rhombic pattern can be derived
from the ideal triangular one by squeezing the particles in the x-direction and stretching them
in the y-direction as depicted in figure 1. a
 is the ideal lattice spacing from the triangular
pattern, h
 = √

3/2 and a and h are the lattice spacing of the distorted wall pattern in the x- and
y-directions. This leads to strain tensor components εx = (a−a
)/a
 and εy = (h−h
)/h

with all other components being zero. For our analysis we restrict ourselves to systems where
the surface area Ac = A
 of the original and the distorted unit cell at the wall is constant.
The advantage of doing so is that this strain leads to a simplified form of the elastic energy as
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Figure 1. The geometry of the triangular and rhombic substrate patterns. The rhombic pattern
results from the triangular one by distorting the lattice as indicated by the arrows such that the area
Ac of the unit cell remains constant. For the triangular pattern the three types, A, B and C, of
honeycomb cells defining the stacking order parameter are also shown.
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we obtain

A
 ≡ a
h
 = a
(1 + εx)h
(1 + εy) ≡ Ac. (2)

Equation (2) gives a relationship between the two strain tensor components εx and εy which
allows us to define the distortion with only one dimensionless strain parameter:

ε =
√(

a − a

a


)2

+

(
h− h

h


)2

. (3)

Furthermore, we study the effects of a lattice constant mismatch within this example. This
is done by assuming a unit cell which is shrunk or grown in comparison to the ideal one by a
relative distortion which is equal in the x- and y-directions. Although not keeping the surface
area constant, we can again define the distortion using one dimensionless strain parameter

ε =
√

2
a − a

a


=
√

2
h− h

h


. (4)

Another type of wall pattern which we investigate is a square wall pattern which is
generated by cutting a fcc crystal along the (100) plane as depicted in figure 2(b). This
results in a square lattice of fixed spheres. We consider that the lattice constant a� = 1.1075σ
exactly matches the coexisting bulk crystal but again include the effects of a slight lattice
constant mismatch within this example, as this is of particular experimental interest. In the
same way as in equation (4) we define the relative distortion which will be equal in the x- and
y-directions as

ε =
√

2
a − a�

a�
=

√
2
h− h�

h�
. (5)

Figure 2. A sketch of different wall patterns: (a) a fcc (111) (triangular) wall pattern with lattice
constant a
 = 1.1075σ ; (b) a fcc (100) (square) wall pattern with lattice constant a� = 1.1075σ ;
(c) a fcc (110) wall pattern with lattice constants h = 1.1075σ and a = √

3h; (d) a hcp (110)
zigzag wall pattern with lattice constants h = 1.1075σ and a = √

2h.

Furthermore, we investigate a pattern made out of linear rows by cutting a hexagonal-
close-packed (hcp) as well as a fcc crystal along the (110) plane as shown in figure 2(c)
and figure 2(d). We again exactly match the lattice constants to the coexisting bulk crystal.
This leads to wall patterns which are quite tightly packed particles in one direction with a
separation of h = 1.1075σ forming one-dimensional rows. These rows represent a zigzag
structure relative to each other; the spacing in the other direction is a = √

3a
 for the hcp
(110) pattern and a = √

2a
 for the fcc (110) pattern—see figure 2(c) and figure 2(d). These
substrate patterns are interesting from an experimental point of view [36].
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3. Phenomenological theory

Let us now describe a phenomenological theory for wetting by a crystalline layer. The key
quantity of any wetting theory [1] is the difference  of the grand canonical free energies per
unit area for a wetting and a non-wetting situation. This quantity is discussed as a function
of the thermodynamic and system parameters and the width ! of the adjacent solid sheet.
Minimizing  with respect to ! yields the equilibrium profile provided that the quantity  
evaluated at its minimum is negative. There are several contributions to the total free energy
 resulting from bulk and surface thermodynamics as well as effective interface interactions
and free-energy penalties resulting from elastic distortions of the solid. Therefore splits into
three terms:

 =  1 + 2 + 3 (6)

which we will subsequently discuss.

3.1. Bulk thermodynamics and elastic free energy

Near bulk fluid–solid coexistence, an expansion of the energy around coexistence yields both
the bulk thermodynamics and the elastic energy. We assume that the adjacent crystalline layers
pick up exactly the structure of the wall pattern and exhibit no spontaneous shearing. This
causes a strain ε if the wall pattern is incommensurate with the coexisting bulk crystal [37],
which in turn gives rise to a free-energy penalty due to the wall-induced elastic distortion of the
solid. Harmonic elasticity theory can be used to calculate the penalty  1 from an expansion
of the grand potential per area around the coexisting bulk crystal:

 1/! = fs(ρs) + f ′
s (ρs)(ρ − ρs) +

C11

2
(ε2
x + ε2

y + ε2
z ) + C12(εxεy + εyεz + εzεx)− µρ + P

(7)

where ρ is the mean density of the solid which has to be minimized, µ is the given chemical
potential, P is the bulk equilibrium fluid pressure, fs(ρ) is the Helmholtz free energy per
volume of the solid, εx , εy , εz are the relative strains in directions x, y, z and Cij are the
bulk elastic constants of the fcc solid at coexistence. For a hard-sphere fcc crystal these
elastic constants have been determined by computer simulation [38]. As the density is directly
dependent on the elastic distortions we can write ρ = ρs(1 − εx − εy − εz) and take εz rather
than ρ as the variation parameter with εx and εy fixed by the wall pattern. Furthermore, we
use the relations

µc = ∂fs(ρ)

∂ρ

∣∣∣∣
ρ=ρs

= f ′
s (ρs) Pc = −fs(ρs) + µcρs

with µc, Pc denoting the chemical potential and the bulk pressure at coexistence. Defining
%P = Pc − P > 0 and %µ = µc − µ we obtain

 1/! = −%P +%µρs −%µρs(εx + εy + εz) +
C11

2
(ε2
x + ε2

y + ε2
z ) + C12(εxεy + εyεz + εzεx).

(8)

Minimizing with respect to εz yields εz = %µρs/C11 − (εx + εy)C12/C11. Inserting this into
equation (8), the bulk thermodynamics and elastic energy contribution becomes

 1/! = −%P + µρs − (εx + εy)%µρs
C11 − C12

C11

+ (ε2
x + ε2

y )
C2

11 − C2
12

2C11
+ εxεy

C12C11 − C2
12

C11
− (%µρs)

2

2C11
. (9)
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Using thermodynamical relations and the hard-sphere equation of state, we can approximate
equation (9) to second order in ε2

x , ε2
y and (%P )2. We introduce the density ratio τ = ρs/ρf =

1.103 and α = 1 − τ = 0.103, the relative density jump across bulk freezing. From the
Carnahan–Starling hard-sphere equation of state [39], we obtain

κ = ρ−1
f

/∂P
∂ρ

∣∣∣∣
ρ=ρf

= 0.020σ 3/(kBT ).

Using these abbreviations, we can substitute %µ via %P as %µ = %P τ/ρs + (%P )2τκ/ρs .
This can be inserted into equation (9) and yields terms of second order.

For the rhombic case, with εx = ε/
√

2, εy = −ε/√2 we obtain using this procedure

 1 = α %P ! +

(
κ − τ 2

2C11

)
(%P )2! + βrε

2! + O(ε3, ε2%P, ε(%P )2, (%P )3) (10)

where βr = (C11 − C12)/2 = 24.43kBT /σ 3.
For the lattice constant mismatch case, on the other hand, we use εx = ε/

√
2, εy = ε/

√
2

and insert it into equation (9). This yields

 1 = α %P ! +

(
κ − τ 2

2C11

)
(%P )2! + βmε

2!− τβ∗%P ε!

+ O(ε3, ε2%P, ε(%P )2, (%P )3) (11)

with the coefficients

βm = (C11 + C12 − 2C2
12/C11)/2 = 38.23kBT /σ

3

and

β∗ =
√

2(C11 − C12)/C11 = 1.03.

Note that there is a mixed term proportional to%P ε which vanishes for the rhombic case due
to area conservation.

3.2. Surface thermodynamics

The next leading thermodynamic term in an expansion for large ! involves interfacial free
energies:

 2 = γws + γsf − γwf . (12)

Here, three interfacial free energies extrapolated to coexistence occur: these are tensions
between the patterned wall and the solid (γws), between the patterned wall and the fluid (γwf )
and between the bulk solid and the fluid (γsf ). A necessary condition for complete wetting to
occur is

γws + γsf � γwf . (13)

Note that in our calculation we use extrapolated interfacial free energies and therefore equation
(13) is an extension of Antonow’s rule to an inequality. We remark that γws and γwf depend on
the wall pattern while γsf only depends on the relative orientation of the planar solid surface
with respect to the fluid. The latter quantity has recently been calculated for hard spheres by
computer simulation for different orientations [40] while the first two quantities are not known
in general.
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3.3. Effective interface potential

The next leading contribution is the effective interface interaction  3 between the wall–solid
and the solid–fluid interface as a function of their average distance !. This quantity can be
derived from microscopic density functional theory by minimizing the functional with respect
to a constraint of fixed width ! [41].

For large widths !, as we are dealing with short-ranged interparticle interactions, the
asymptotic behaviour of  3(!) is

 3 = γ0e−!/!0 (14)

where γ0 is a positive prefactor implying that the interaction is repulsive and !0 is a correlation
length in the bulk solid at fluid coexistence.

More subtle information is contained in  3(!) for smaller !. First, if  3(!) is mono-
tonically decreasing with ! there is complete wetting provided that the relation (13) is fulfilled.
Second, non-monotonic behaviour with a minimum of  3(!) at ! = !∗ leads to incomplete
wetting with a finite width of !∗ at coexistence. Finally, if  3(!) exhibits oscillations on the
scale of the molecular layer widths, wetting may proceed via a finite or infinite cascade of
layering transitions [42, 43].

3.4. Prediction of scaling laws

In summary, our theory works for small %P , small ε and large !. We further assume that the
parameters γ0 and !0 characterizing the asymptotic form of the effective interface potential
 3(!) are not affected by the small distortion ε. We further note that the phenomenological
approach does not predict whether complete wetting occurs as it does not fix the sign of
γws + γsf − γwf . This requires a full microscopic calculation. However, putting equations
(6)–(14) together and minimizing  with respect to !, one finds the following quite general
scaling relations which no longer depend on the interfacial free energies γws , γsf and γwf ; the
asymptotic relations are valid close to coexistence:

(i) For vanishing ε, the thickness ! diverges logarithmically with %P :

! = −!0 ln

(
!0α %P

γ0

)
(15)

provided that there is complete wetting.
(ii) Again we are assuming that there is complete wetting for ε = 0. Then, for ε = 0, there

is incomplete wetting and the maximal thickness which is achieved at %P = 0 varies
logarithmically with ε:

! = −!0 ln

(
β!0ε

2

γ0

)
(16)

with β = βr or β = βm.
(iii) For an area-conserving (e.g. rhombic) case: if there are layering transitions, these trans-

itions occur when

α%P = γ0

!0
e−naz/!0 − βrε2 (17)

where az is the layer spacing in the z-direction. In detail, az = √
2/3a
 for a triangular

wall pattern and az = √
2/2a
 for a square wall pattern. Equation (17) shows that in the

plane spanned by %P and ε2, the transition lines are linear. The slope is predicted to be
the very general ratio α/βr which can be tested against simulations. Note that a linear
relation with a slope α/βr is valid both for wetting and incomplete wetting at ε = 0.
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(iv) For a stretched or shrunken lattice the precrystallization of the nth layer at fixed %P at a
distortion ε is determined by the quadratic form

α %P − τ %P ε = γ0

!0
e−naz/!0 − βmε2. (18)

Equation (18) shows that in the plane spanned by %P and ε, the transition lines are
parabolic, with their apices lying on the straight line ε(%P ) = [β∗/(2βm)]%P . The
lowest possible prefreezing pressure is

%Pmin = 2βmα − 2
√
β2
mα

2 + (β∗)2βmα %Pn
(β∗)2

(19)

with %Pn being the prefreezing pressure of the undistorted nth layer as obtained by
inverting equation (15) or by computer simulations. Note the interesting fact that a slightly
expanded lattice will have a lower prefreezing pressure than the ideal matching lattice.
However, it will not show complete wetting.

4. Simulation technique

We simulate the hard-sphere fluid using a rectangular simulation box of size V = LxLyLz
with periodic boundary conditions in the x- and y-directions. In the z-direction the system is
confined by two patterned walls at distance Lz. The surface area of the simulation box under
consideration is A = LxLy . Onto these walls any pattern can be imprinted as described in
section 2.

We use standard NVT Monte Carlo (MC) simulation techniques [35, 44–46]. In NVT
simulations, the volume, the (irrelevant) temperature and the particle number of the system are
fixed. To check that the results are independent of the ensemble used, we also perform some
NPzT Monte Carlo simulations. In this case the walls in the z-direction can fluctuate under
an external applied pressure Pz. Yet most results have been achieved by NVT simulations
as they have the advantage of better equilibration. Especially with crystalline layers present,
NPzT simulations equilibrate only very slowly. Within the statistical uncertainties, the two
set-ups yield the same results.

Furthermore, the size of the system in the z-direction, i.e. perpendicular to the wall, has
to be fairly large to avoid capillary effects and other spurious mutual influences of the two
walls. Moreover, we need large surface areas to exclude effects from the lateral periodic
boundary conditions. System sizes of about N = 640 to N = 10 400 particles yielding
surface areas of about A = 16σ 2 to A = 271σ 2 and an extension into the z-direction of
about Lz = 40σ to Lz = 100σ have been used during our simulations. In order to avoid
lateral compressional strains in the crystal, the lengths Lx and Ly were adjusted to the given
crystallographic orientation such that a laterally periodic bulk crystal fits exactly into the
simulation box.

In figure 3 we show a typical snapshot of a computer simulation, where a hard-sphere
fluid is in contact with a triangular wall pattern. The system shows the prefreezing of the first
few layers and inherits the offered triangular wall pattern.

5. Order parameters

To detect layerwise precrystallization we monitored suitable order parameters during our
simulations. To analyse in particular the behaviour of freezing in a sequence of layers we
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Figure 3. A snapshot at η = 0.490 and P ∗ = 11.25 for a triangular wall. The first few layers are
marked with different shadings to show their frozen nature (left) while toward the bulk (right) the
system becomes fully fluid. On the front area of the first layer the system mimics the triangular
wall pattern which is not shown for the sake of clarity.

(This figure is in colour only in the electronic version, see www.iop.org)

first have to determine the position of the minima in the laterally integrated density profile
ρ(z) defined via

ρ(z) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ρ(x, y, z) (20)

where ρ(x, y, z) is the full inhomogeneous one-particle density field.
The minima of ρ(z) define the spacing of the nth layers in the z-direction. The analysis

of an order parameter in the nth layer can be performed for each layer, i.e. for all particles in
a chosen layer.

In the following we describe four different order parameters which were used as diagnostics
for the freezing transition. In general we find consistency between these different diagnostics.

5.1. Bond order parameter

One basic order parameter for detecting precrystallization is a bond-order parameter as
frequently used in 2D hard-disc systems [47, 48]. These bond-orientational order parameters
detect the symmetry of the ‘bonds’ between particles. For the sixfold symmetry of the triangular
pattern, the /(6) parameter is used and for the fourfold symmetry of the square pattern /(4) is
used. For linear ordered systems such as those given by the fcc (110) and hcp (110) wall, the
/(2) order parameter is applied.
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In general the order parameter /(k)n for k-fold symmetry in the nth layer is defined as

/(k)n =
〈∣∣∣∣∣ 1

Nl

Nl∑
i=1

Ni∑
j=1

ekiθij

∣∣∣∣∣
〉

(21)

where θij is the angle between the separation vector of the particles i and j and an arbitrary but
fixed reference axis. The sum i is over all particles of the nth layer and the sum j is over the
Ni neighbours of particle i in the same layer. For simulation purposes particles are defined as
neighbours if the distance between particle i and j is less than (1.35–1.40)σ . This somewhat
arbitrary definition for neighbours can be used as the resulting /(k)n depends only weakly on
the exact definition of a neighbour distance.

An example of an order parameter distribution in the different layers for k = 4 is shown
in figure 4. The distribution clearly signals whether the layer has fluidlike or solidlike bond-
orientational order: The first layer shows a very pronounced fourfold symmetry. The second
layer is still well ordered but the ordering is less pronounced. The third layer is just at the
transition to the ordered fourfold symmetry and all other layers are fluidlike.

0 0.2 0.4 0.6 0.8 1

Ψ
0

5

10

15

20

25

30

p(    )Ψ

n=1

n=2

n=3
n=4

n=5

n=6
n
(4)

n
(4)

Figure 4. The order parameter distribution P(/(4)n ) for the first six layers of a hard-sphere fluid
near a square-patterned wall with fourfold symmetry at η = 0.488 and P ∗ = 11.06.

5.2. Stacking order parameter

A crystal on top of a triangular or rhombic wall pattern can have different stacking orders. If
the wall has the fixed stacking A, the next layer is either packed in B or C and the following
one can then be either A or C, or A or B, depending on the second one. This can be exploited
to define a stacking order parameter2n, which probes the ideality of stacking in the nth layer
and is sensitive to layerwise precrystallization.

In what follows, we explain the definition of2n for a triangular pattern, the generalization
to a rhombic pattern being straightforward.
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For each layer n the stacking properties are probed by projecting the particle positions
onto the surface. Figure 1 depicts the honeycomb-like cells A, B and C which correspond to
the three stacking possibilities that the projection can fall into. Hence one obtains the averaged
probabilities {p(A)n , p(B)n , p

(C)
n } for a particle in the nth layer to be projected into a honeycomb

of type A, B or C. The stacking order parameter 2n for the nth layer is now defined as the
difference between the two largest numbers of the set {p(A)n , p(B)n , p

(C)
n }. For a fluid near a

non-structured wall, all stacking probabilities are equal; hence2n vanishes. For the first layer
of a structured wall, an inhomogeneous liquid has p(A)1 < p

(B)
1 , as it is unlikely that a particle

will sit on top of a fixed wall sphere. Furthermore, due to symmetry, p(B)1 = p
(C)
1 ; therefore21

vanishes again. A freezing transition in the nth layer is indicated when2n > 0, corresponding
to a broken discrete symmetry of the two stacking possibilities. Finally, in a perfect solid with
close-packing density, 2n = 1.

The order parameter 2n has the important property that it is zero for the inhomogeneous
fluid phase but non-zero for a crystalline layer. Hence it yields precise information about
precrystallization. Figure 5 shows an example of the order parameters of the first four layers
for a triangular wall as functions of the bulk pressure, proving that 2n provides a sharp
diagnostic for precrystallization.

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

P P* c

Φ

*

n= 1 2 3 4

n

Figure 5. Order parameter 2n (n = 1, 2, 3, 4) versus reduced pressure P ∗ for a triangular
wall pattern with P ∗

c indicating the coexistence pressure of the bulk system. The system size
is Lz/σ = 45 and A∗ = 106.

5.3. Minima of the density profile

Another possibility for checking the freezing of the system is to analyse the depth of the
minima of the lateral integrated density profile as given by equation (20). We find that the
precrystallization can be detected by a rough criterion. It occurs if the minimal density drops
to about 5% of the corresponding bulk density. This criterion is in accordance with the
diagnostics using the other order parameters and has the additional advantage that it is robust
close to coexistence. In figure 6 an example of ρ(z) is shown. The freezing of the first two
layers can be clearly seen from a very small density minimum. The third layer is about to
freeze, consistent with the diagnostics of the order parameters 2n and /(6)n .
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Figure 6. The density profile of the hard-sphere fluid at a pressure of P ∗ = 10.87 near to a
structured wall with a triangular pattern imprinted.

5.4. Lindemann parameter

Another order parameter which has proven to be useful as regards the freezing of a bulk solid
is the Lindemann parameter [49]. The normalized root mean square displacement of particles
around their ideal lattice positions �rwi

L :=
√

〈(�ri − �ri)2〉
a

(22)

is known as the Lindemann parameter L of the solid [50].
The traditional Lindemann melting rule [49] states that a bulk solid melts if L is roughly

10%. We check this rule for interfacial freezing. In order to do so, we define a layer-resolved
Lindemann parameterLn by applying equation (22) to all particles in the nth layer. Simulation
data for Ln are shown in figure 7 for the first four layers of a triangular wall pattern. First, it
can be seen that Ln varies very slowly with the pressure, thus not providing a sharp diagnostic
for interfacial freezing. If the interfacial freezing is fixed by the clear-cut diagnostics of 2n
(see figure 5), however, then one can check how large Ln is at interfacial melting. Indeed
Ln at melting varies from 0.18 for the first layer to 0.14 for the fourth layer but is close to
the bulk value of 0.13 [49] as presented by the dashed line in figure 7. This implies that the
rough Lindemann melting rule also applies for interfacial freezing. We have further tested the
Lindemann rule for other wall structures and find similar behaviour.

6. Analysis for finite system size

Particular attention has to be paid to finite-size effects in the system under consideration. In
the length in the z-direction as well as in the area A = LxLy , finite-size effects could affect
the results. We use the system with the commensurate triangular wall pattern to investigate
these finite-size effects in more detail.
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Figure 7. The Lindemann parameterLn for the first four layers (from bottom to top) for a triangular
wall pattern. The horizontal dashed line indicates the bulk freezing Lindemann parameter and the
vertical dashed line indicates the bulk freezing pressure P ∗

c .

From reference [51] we know that box lengths of Lz > 40σ are necessary to avoid finite-
size effects such as capillary condensation. We check our simulation results therefore with
different box lengths ranging fromLz = 40σ toLz = 100σ . In this analysis we could not find
any dependence on the box length and hence can confirm the results of [51,52]. We conclude
that we are beyond capillary effects [52] and other effects related to a finite box length.

Even more important is the finite-size effect of the surface area A. Hence we made a
careful analysis of surface areas between A = LxLy = 16σ 2 and A = LxLy = 271σ 2. We
find a size dependency for small surface areas, as depicted in figure 8. Only around 100σ 2 do
the curves begin to approach asymptotic values. Explicit data for this are collected in table 1.
We also extract the average value for the freezing densities for the triangular wall from the
data of figure 8 and table 1 for values of A > 100σ 2. This gives rise to the statistical errors
which are also presented in the table.

Table 1. Freezing pressures P ∗ for the first four layers of a triangular wall pattern for various
surface areas A. The average is formed from the data for A > 100σ 2, which do not exhibit
finite-size effects any longer.

A/σ 2 Layer 1 Layer 2 Layer 3 Layer 4

17.0 9.84 11.06 10.96 11.25
38.2 9.30 10.87 10.93 10.96
67.9 8.71 10.70 10.93 11.20

106.2 8.53 10.60 11.10 11.28
152.9 8.52 10.53 11.08 11.15
271.9 8.51 10.40 10.97 11.15

Average 8.53 ± 0.13 10.51 ± 0.12 11.05 ± 0.11 11.20 ± 0.05
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Figure 8. The transition pressure P ∗
n in different layers n = 1, 2, 3, 4 versus surface area for a

triangular wall pattern. The pressure saturates for all layers at about A ≈ 100σ 2.

From the finite-size analysis in the z-direction and area A we find that systems of around
Lz = 45σ and areas of 106σ 2 are sufficient. Our further studies are based on systems with
such a size.

7. Results

7.1. Triangular (fcc (111)) and rhombic wall patterns

The most favourable wall pattern which we can offer for the system is a triangular pattern with
a lattice spacing which exactly matches the bulk crystal at bulk melting [33, 51]. We use this
configuration as a reference point for the investigation of wall patterns.

Performing simulations on such systems yields complete wetting by crystalline layers
starting at very low bulk pressures of P ∗ = 8.53 (corresponding to a packing fraction of
η = 0.457) well below bulk freezing. From this pressure onwards we find a cascade of layered
freezing transitions whose pressures are summarized in table 1.

The fact that the wetting proceeds layer by layer is a subtle effect. For instance, in
sedimentation profiles [53] the opposite, namely a continuous growth, as a function of the
gravitational constant was found. The layerwise freezing transitions in our system can be
understood intuitively as follows: when the first layer freezes at the pressure P ∗

1 , the spheres
become much more localized, reflecting the triangular pattern. These frozen layers then act
as a template for freezing of the second layer at P ∗

2 . P ∗
2 is larger than P ∗

1 , as the spheres in
the first layer are still mobile. This is repeated for the third layer and so on, forming a whole
cascade of layering transitions.

As predicted by asymptotic theory, complete wetting is achieved by a logarithmic growth
of the wetting layer ! ∝ − ln%P ∗ as shown in figure 9. Here we show the prefreezing as
found with the order parameter 2n. Except for the first layer, which is not expected to follow
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Figure 9. The thickness of the crystalline wetting layer ! versus − ln%P ∗ as measured by the
order parameters 2n. The straight line is the best linear fit to the data excluding the first layer.

a logarithmic growth law as the theory is only valid for large !, we find a good agreement with
a logarithmic growth of the wetting layer. Although we only have data for a limited range
of layer thicknesses as shown in figure 9, the fact that the logarithmic growth law is fulfilled
very well gives strong evidence that the wetting is really complete, i.e. every layer is frozen
for P → Pc.

From a fit of the data from figure 9 we can extract the two parameters γ0 and !0 which we
used in the phenomenological theory; see equation (14). The actual value for the correlation
length is !0 = 2.50σ and the amplitude1 is γ0 = 0.47kBT /σ 2.

We now distort the triangular wall pattern to create a rhombic pattern with ε > 0;
see equation (3). The maximal distortion is given for two spheres touching and occurs at
ε2 → ε2

m ≡ 0.021. At this point the cost in free energy due to the lateral distortion diverges.
As the theory considers only harmonic distortions, any higher-order effects and especially this
divergence are not accounted for. Computer simulations prove this behaviour. We obtain for
a rhombic distortion again a wetting by a cascade of crystalline layers but at shifted freezing
pressure. The actual data are collected in table 2.

Putting the parameters γ0 and !0 into equation (16) and equation (17) we can verify the two
other theoretical predictions. We show the results in figure 10. The inset of figure 10 shows our
simulation data using a log–linear plot for equation (16) where we do indeed find qualitative
agreement. However, the uncertainty of the data is large since the measured thickness of the
layer is actually a multiple of the layer spacing az = √

2/3a
 in the z-direction. Note that
the solid line in the inset of figure 10 involves no fit parameters as these are fixed by the fit as
shown in figure 9.

Furthermore, the layering transition of the nth layer can be estimated by the theory to
occur according to equation (17). In the plane spanned by%P and ε2, these transition lines are
predicted to be linear. In fact, as shown in figure 10, most of our computer simulation data for

1 In comparison to those of [33], the fitting parameters that we get are slightly different, as we fit the data only for
the asymptotic part.
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Table 2. Prefreezing pressures P ∗ of the first five layers for a triangular wall pattern which is
distorted to a rhombic one by a distortion ε2.

ε2 a/σ Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0.0 1.108 8.53 10.51 11.05 11.20 11.32
0.0009 1.063 8.65 10.73 11.20 11.38 11.52
0.0022 1.072 9.26 11.19 11.64 — —
0.0036 1.085 9.53 11.23 — — —
0.0050 1.054 9.96 11.64 — — —
0.0079 1.040 10.89 — — — —
0.0092 1.035 11.15 — — — —
0.0115 1.027 — — — — —
0.0143 1.018 — — — — —
0.0190 1.005 — — — — —
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Figure 10. The location of the first five layering transitions in the plane spanned by %P ∗ and
ε2. The symbols represent simulation data with their statistical errors. The straight lines are the
theoretical predictions. The simulation result for ε2

c is indicated by the dashed line. The inset shows
the maximal thickness ! versus − ln ε2. The straight line is the theoretical prediction; see equation
(17). Symbols represent simulation data with the sizes of the symbols indicating the error.

the layering transitions fall upon straight lines. We emphasize that the slope does not involve
any fit parameter; therefore quantitative agreement between theory and simulation is obtained
within the error bars of the simulation data.

However, there are deviations for large strains which we attribute to anharmonic elasticity.
In fact, when ε2 → ε2

m ≡ 0.021, the divergence in free energy is not accounted for in the theory.
Furthermore, the logarithmic growth law does not hold for the very first layer as it is derived
asymptotically only for large !. As we did not include the data for the first layer into the linear
fit, this leads us to adjust the offset of the theoretical lines in figure 10 for the first two layers
to the actual measured data from the computer simulation. However, the slope of these lines
is still in agreement with the theory, as the theory is quite robust against the exact form of the
effective interface potential  3(!). We emphasize that none of the other layers require any
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additional fit parameter. The slope and offset are given by the theoretical prediction of the
phenomenological theory.

A further notable fact drawn from figure 10 is that there is no precrystallization at all
if ε exceeds a critical value εc. The theory predicts ε2

c = 0.014 while the simulations
yield a smaller value, ε2

c = 0.011 ± 0.001 due to the anharmonic elastic free energy. For
ε2
c < ε2 < ε2

m = 0.021 the large free-energy cost of elastic distortion prevents the system
from undergoing precrystallization. The actual situation is a strongly inhomogeneous fluid,
reflecting the surface pattern which remains stable up to the bulk freezing point.

As discussed within the framework of the phenomenological wetting theory, we
investigated the effect of a lattice constant mismatch for the triangular lattice. This results
in a growing or shrinking of the wall pattern compared to the ideal one. In figure 11 we plot
the theoretical prediction of the resulting prefreezing pressures versus the distortion ε—see
equation (4) and equation (11)—and compare it with the computer simulation data. There is
a good agreement between the computer simulation data and the theoretical prediction. For
the first layer, there are deviations which we attribute to the non-quadratic corrections in the
thermodynamical part of the theory.
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Figure 11. The location of the first four layering transitions in the plane spanned by %P ∗ and ε.
The curves are the theoretical predictions for a crystal lattice constant which is shrunk (ε < 0)
or expanded (ε > 0) compared to that of the coexisting bulk crystal. The different symbols
show computer simulation results for the crystallization transitions in the different layers with their
error bars.

For ε = 0 there is complete wetting by the crystal. On increasing or decreasing ε, a
crystalline sheet of prefrozen layers still exists. However, the shrinking or growing of the
pattern leads to a shift in the onset of the freezing density as well as to a reduction of the
maximal thickness achieved for the wetting layer. No complete wetting is possible any longer.
Comparing this situation with the rhombic distortion we find that the onset of prefreezing no
longer follows a pure quadratic ε2-behaviour. The additional expansion or shrinking of the
crystal leads to a linear term in ε %P which shifts the wetting curves. For a slightly stretched
crystal with ε > 0, the pressure for which precrystallization still occurs is now shifted to lower
values compared to the ideal matching substrate pattern with ε = 0. We note though that there
is no complete wetting any longer if ε = 0. The theoretical critical distortion above which
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there is no precrystallization at all is εc = 0.10. There is no maximal distortion for an enlarged
lattice and a maximal distortion of |εm| = 0.14 for a shrunken lattice. The lowest possible
prefreezing pressure is P ∗ = 8.16 as predicted by the theory and P ∗ = 8.28 ± 0.21 as found
in the computer simulations.

7.2. Hard-sphere fluid near a fcc (100) wall

We continue the analysis with a square wall pattern which is a cut through a (100) plane of
a fcc crystal as shown in figure 2(b). In contrast to the results for the triangular wall, we do
not find complete wetting in this case—not even for the ideal lattice spacing. This can be
concluded from figure 12 where the growth of the wetting layer seems to saturate at around
!m = 3.9σ leading to incomplete wetting by the crystal. However, approaching coexistence
further poses enormous equilibration problems in the simulations. However, the decreasing
slope in the !/σ versus − ln%P ∗ plot seems to indicate incomplete wetting.

0 1 2 3 4 5 6
0

1

2

3

4

5

10 12
0

2

4

-ln   P∆

l
σ

*

l
σ

P
* P

*
c

Figure 12. Thickness ! of the wetting layer versus − ln%P ∗, as measured using the order
parameters /(4)n . The thickness seems to converge toward 3.9σ as shown in the inset, where
the thickness ! is plotted versus P ∗.

As discussed within the framework of the phenomenological wetting theory, we also
investigated the effect of a lattice constant mismatch for the square lattice. This results in a
growing or shrinking of the wall pattern compared to the ideal one.

In figure 13, the theoretical prediction and computer simulation data for the resulting
prefreezing pressures versus the distortion ε are plotted; see equation (5) and equation (11).
We start at ε = 0 with the prefreezing pressures as found in the computer simulation and
shown in figure 12 and extend these points with the data as obtained from equation (17).

For ε = 0 we have incomplete wetting by a few prefrozen layers. On increasing ε,
a crystalline sheet of prefrozen layers still exists. However, the shrinking or growing of the
pattern leads to a shift in the onset of the freezing density as well as to a reduction of the maximal
thickness achieved for the wetting layer similar to the one detected for the triangular lattice.
In fact, the theoretical critical distortion is εc = 0.09 while there is no maximal distortion
for an expanded lattice and a maximal distortion of |εm| = 0.14 for a shrunken lattice. The
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Figure 13. The location of the first four layering transitions in the plane spanned by %P ∗ and ε.
The curves are the theoretical predictions for a crystal lattice constant which is shrunk (ε < 0) or
expanded (ε > 0) compared to that of the coexisting bulk crystal. The different symbols show
computer simulation results for the crystallization transitions in the different layers.

theoretical value for the lowest prefreezing pressure is P ∗ = 8.92, which is higher than that
for the corresponding (111) case but lower than the prefreezing pressure of the undistorted
(100) crystal.

7.3. Hard-sphere fluid near a fcc (110) wall

We now focus our analysis on a wall pattern which is a cut through the (110) plane of a
fcc crystal as shown in figure 2(c). To analyse this system we mainly apply the /(2)n order
parameter (see figure 14). As this order parameter only indicates a one-dimensional ordered
system which is not necessarily two-dimensionally ordered, we compare the data with the
order parameter as obtained from the minima of the density profile. We find good agreement
in locating precrystallization using the two different order parameters.

Like for the square lattice, we find incomplete wetting by the crystal. The crystallization
proceeds via discrete layering but stops at P ∗ → P ∗

c . The width of the wetting layer converges
toward a maximum thickness of about !m = 5.5σ when approaching the bulk freezing point.
Again, the deviation from a logarithmic growth law is small, so there is still some uncertainty
in this prediction.

7.4. Hard-sphere fluid near a hcp (110) wall

Using the order parameter/(2)n for the hcp (110) wall, we find precrystallization starting at very
low values of P ∗ = 9.5 leading to complete wetting by the crystal. This wetting behaviour is
summarized in figure 15 where we show the thickness of the wetting layer ! versus − ln%P ∗.
Although we were not able to resolve the order parameter to a very high layer thickness,
the thickness measured from the minima of the density profile clearly indicates a logarithmic
growth of the wetting layer.
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Figure 14. Thickness ! of the crystalline wetting layer versus − ln%P ∗ as measured using the
order parameters /(2)n . The thickness seems to converge toward 5.5σ as shown in the inset, where
the thickness ! is plotted versus P ∗.
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Figure 15. Thickness !of the wetting layer versus− ln%P ∗ as measured using the order parameters
/
(2)
n . The straight line is the best linear fit for the simulation data.

Again, complete wetting proceeds via a cascade of discrete layering transitions. From a
fit of the data of figure 15 we extract the correlation length of !0 = 1.01σ and the amplitude
of γ0 = 0.56kBT /σ 2. !0 is remarkably lower than for a triangular pattern. Clearly, !0

depends on the surface pattern, as described in more detail in the different context of surface
melting [54, 55].
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8. Conclusions

In conclusion, the structure of a substrate pattern profoundly influences the scenario of wetting
by crystalline phases. First, the onset of precrystallization can be significantly shifted away
from coexistence by using a pattern that favours the crystal. We have investigated different
patterns such as the triangular one and the hcp (110) one which lead to complete wetting by
crystalline sheets. However, by applying patterns which are distorted from the ideal form
such as the rhombic pattern or an ideal pattern which has lattice constant mismatch, we find
incomplete wetting by a crystal, i.e. there are only a finite number of crystalline sheets as
bulk coexistence is approached. This number depends crucially on the lattice distortion with
respect to an ideal lattice, which is commensurate with a coexisting bulk crystal. Yet there
is an important fact to note: despite having no complete wetting any longer, it is possible to
shift the onset of prefreezing to even lower pressures by slightly expanding the wall pattern
compared to the ideal-matching coexisting crystal. Furthermore, even a commensurate wall
pattern can lead to incomplete wetting as demonstrated for the square wall and the fcc (110)
pattern. In the case of very unfavourable structures, e.g. the highly distorted rhombic pattern,
precrystallization is completely prevented. Moreover, we have confirmed the Lindemann
melting rule even for interfacial freezing. All of our predictions can be verified by real-space
or scattering experiments on sterically stabilized colloidal suspensions near a patterned wall.

We finish with a couple of remarks. First, the fact that a suitable wall pattern can generate
sheets of a crystal which is unstable as a pure bulk phase could possibly be exploited for
producing colloidal crystals with unconventional structures relevant e.g. for optical band-gap
materials. An ‘exotic’ example is a one-component quasicrystal which may be nucleated at a
suitable non-periodic wall pattern. Second, a more subtle question which we did not address
in our paper concerns the roughness of the solid–fluid interfaces. This is still an open issue.
Third, an as yet unsolved question is the formation of crystal defects at the interface if the wall
pattern is too different from the bulk crystal structure. Such effects are much more complicated
and are encaptured neither by our simple theory nor by our finite-size simulations. Finally, our
ideas in combining thermodynamical and elastic terms in the theory of wetting by a solid phase
can also be useful for other problems, e.g. that of triple-point wetting [19]. Furthermore, the
precrystallization effects discovered by simulation could provide benchmark data for testing
microscopic density functional theories of inhomogeneous hard-sphere freezing as, e.g., given
in the Rosenfeld approximation [56]. Our further work will be focused in this direction.
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[55] Löwen H 1990 Phys. Rev. Lett. 64 2104
[56] Rosenfeld Y 1998 Mol. Phys. 94 929


