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Colloids confined to a flexible container
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A model of hard spheres trapped inside a container of fluctuating shape is proposed to describe colloidal
particles in a vesicle or in an emulsion droplet. The container is assumed to be the convex hull of the particles
and is described by an integral geometric approach including volume and surface terms. In the limit of large
volume coupling, the model reduces to the well-known geometric problem of natural bin packing. Using
computer simulations and cell theory, we calculate equilibrium properties for various finite numbers of con-
fined particles in conformations ranging from clusters to planar and linear structures and identify transitions
between these different conformations.
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[. INTRODUCTION and the dispersed phase, say oil, tends to keep the droplet
shape spherical and thermal fluctuations tend to deform this
Clusters are present in a variety of systems, ranging frondeal shape. Another system that exhibits many complicated
atomic system$l] such as silicori2] or noble gasef3] to  shapes is vesicld46,17, which are closed two-dimensional
aggregated colloidal suspensions. Clusters are built up by membraneq18] that are suspended in a molecular liquid.
finite number of particles that tend to be closely separatedBesides the fluctuations of a spherical object, toroidal con-
The structural organization inside a cluster can be very ricligurations with holes or even starlike shapes are possible.
and originates from the interactions between particles andhey originate from the highly nontrivial membrane struc-
the interaction with the surrounding. One simple mechanismure itself, including curvature and elasticity contributions.
to generate such structures is the packing of hard spheres Colloidal particles can be trapped inside larger objects in
(HS) under different boundary conditions. quite a number of ways. Experimentally realized examples
The efficient packing of spheres is an F)ld problem datingge magnetic beads inside biological c¢ll§], liquid drop-
back to Kepler and Gauggl]. One question concerns the |atg jnside liquid droplets in double emulsiofi®0], small
densest packing of an infinite number of spheres. Only regeqgicies inside giant ond@1], and colloidal particles inside

cently, a mathematical pr_oof stating that no packjng denseﬁpid bilayer vesicleg22]. Vesicles in contact with nanopar-
than a face-centered-cubic structyfec) is possible in three ticles and colloids were studied also theoretichg].

dimensions was announced and published in gaiisRe- In the present work, we investigate which shape fluctua-

lated problems are optimal shapes of compact stii6gand . . . .
the efficient packing of a finite number of spheres inside %olns c?nlbe t(:]rl\:en npt by. the rggmpéarltﬁ 'tsif bltjt_lt_)% COIrIIO"
given container. A particular simple container is tiegural al particies that are imprisoned inside the object. The shape

bin. This is the smallest convex body that contains a giVer{luctuatlons are coupled to the positions of the colloidal par-

configuration of spheres. It is canonical to ask for the conliCles resulting in new cluster structures as well as new
figuration of spheres that leads to the smallest natural bin/€Sicle shapes. One interesting question is whether the pecu-

Contrary to intuition, this is not a spherelike cluster for aliar transition from a compact cluster to a linear configura-
small number of spheres. Up to 56 spheres, a linear configdion, the sausage catastrophe, is present in a system that not
ration in which the sphere centers lie on a straight {ieau-  only describes close-packed structures, but also accounts for
sage’) is denser than any spherelike or platelike configurathe entropy due to the positional degrees of freedom of the
tion. In four dimensions, the crossover from a sausage to particles. We consider particles inside a container, which is
spherelike cluster happens at about 300000 spheres. Thisodeled through a coarse-grained approach involving an in-
effect has become known as the ‘“sausage catastrophetegral geometric description. Integral geometry is a powerful
[4,7]. tool that is becoming increasingly populg24]. There are
Hard spheres are widely used to model dense liquids andpplications ranging from microemulsiof5] to complex
solids and they can be experimentally realized by susperfluids [26,27]. The basic ingredients of our model involve a
sions of sterically stabilize@ MMA particles[8,9]. Besides surface tension and an external pressure acting on the con-
the bulk freezing transition into an fcc crystal, hard spheredainer modeled as surface and volume couplings. As a result,
have been considered in a variety of confining situationsye identify different types of conformations corresponding
such as confinement between parallel plfés11], inside a  to rodlike, platelike, and spherelike vesicle shapes, and we
spherical cavity12-14, or inside emulsion droplefd5]. In  determine their relative stability as a function of temperature
all these cases, there is rigid confinement: The pores do ndiy using cell theory and computer simulations.
change their shapes. The paper is organized as follows. In Sec. I, we define
However, shape fluctuations do exist in nature. Examplesur theoretical model for colloids inside a fluctuating object.
are the deformations of liquid droplets in emulsions, whereA cell theory is developed in Sec. Ill. Details of the Monte
the surface tension between the continuous phase, say wat€arlo computer simulation are given in Sec. IV. Results
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thereof are presented in Sec. V, and compared to cell theory.
We finish with concluding remarks in Sec. VI.

A

II. MODEL OF COLLOIDS IN A CONTAINER
A. Definition of the model

We consideN hard spheres with diameterwith position
coordinates;, i=1,...N in three spatial dimensions that in-
teract with the pair potential,

o ifr<o FIG. 1. Sketch of the model of colloids inside a container. The
d(r)= circles represent the particles with diameder; andr; are position

0 vectors. The solid line is the convex hull with surfé&and volume
é{. The model considered in this work is three-dimensional.

otherwise,

wherer is the separation distance between two particles. Th

&u:mzbfggf particles we consider is finite and small typlcallyi.e” lie at the boundary, and which of the points lie inside

The particles are wrapped into a closed membrane that and do not contribute to the hull. For a collection of points

is is a well-known problem in geometry and efficient nu-
modeled as the convex hull of the set of sphergs Math- merical algorithms are availabl28]. We start from the set;

ematically, the convex hull of one or more geometric bodies ) ) | ) (0)

is the smallest convex body that encloses the basic objects. %n;j |derr]1t|fy the boufndaryl pr)]mgts, der;]c_)tﬁd '69/ j I-Irhk?rj f
body is called convex if for any two points inside the body he ine t e_cornzlrs or a polyhedron, whic wg ca ¢Iee|o h
all points that lie on a straight line between both points liethe container. Elementary geometry is used to calculate the

also inside the body. The convex hull is a uniquely defined“inkowski functionalsVo,Aq,M, of the core. In particular,
the core surface is obtained by summing up the surface areas

object. s : .

The physical motivation for using the convex hull is a of all its faces. The integral mean curvature is
situation in which the surface tension between the inside and 1
the outside is large enough so that any free deformation of |\/|0=§2k [y, 2

the membrane can be neglected. On the other side, the ther-
mal energykgT of the colloids is large enough, so that they

can move and squeeze the membrane. To allow for volumﬁge normal vectors of the two faces adjacent to ritgés

growth, oil may diffuse into the inside of the vesicle. : .
Once we have established the membrane shape, it |th actual container is the parallel body of radRigo the

straightforward to assign a potential energy,, to it by Egsr};aggegb?gir:, we can use Steiner's theo(sge, e.g., Ref.
considering integral geometry,

herel, is the length of ridgé and ¢ is the angle between

— 2 3
r= IV + JpA+IyM+ . 0 V=Vy+ AR+ MR?+47R%/3, (3)
Here, the Minkowski functionals or Quermass integ(akse, A=Ag+2MR+47R?, 4
e.g., Ref.[25]) are volumeV, surface ared, integral of
mean curvaturdl, and the Euler characteristjcof the con- M=Mq+4mR. ®)

vex hull. For a convex body =4 holds, soJ, is an irrel-
evant parameter for the current investigation and is set to C. Relation to the Helfrich Hamiltonian
zero without loss of generality. A nonzero value Jf may

. S . Concerning the status of the mod introduced
be of interest once fission processes of the container aréD g Wi

taken into account, or, e toroidal shapes are considere ove, we note that the familiar Helfrich Hamiltonian
» or, €.g., for P 9,17 for membranes is recovered if the membrane confor-
Furthermore, we set the coupling to the mean curvature t

- ations are restricted to convex hulls of spheres. To see this,
zero, Jy=0. This ensures that the model does not favor P

o : consider
spontaneous curvature. The remaining coupling constants are

volume coupling,Jy,, modeling an external pressure acting

k(1 1 1\2 «
on the container, and a surface tensign We define dimen- PDHelfrich= é dA o\ + P r_) Tl (6)
sionless parameters ashy=Jyo/(kgT) and A\, o2 re
=Ja0?l(kgT). See Fig. 1 for a sketch of the model. whererg is the radius of spontaneous curvatukejs the
bending rigidity,« is the elastic modulus of Gaussian curva-
B. Computational details ture, and the local curvature radii on the surface are denoted

Let us show how the container volume and surface areRY 1 andro. If the set of possible surface shapes is re-
can be computed efficiently. We exploit the relation of theSticted to convex hulls o spheres of radiui, we obtain
convex hull of a set of spheres and the convex hull of the
corresponding sphere centers. In both cases the crucial point
is to identify which pointgor spherescontribute to the hull,

K 2K
DHelfrich= EA + R Ts

M+ (k+K)x, (7
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which is a linear combination of Minkowski functionals, 1
apart from the missing volume term precisely like the con- Z= WJ (l)drl"'f <N>drN exd — Bouu({rih]
tainer energy ¢y, . The parameters are related Ry, ¢ c (10)

=«l(2r%), = (kIR)—(2«/rg), andJ, = k+x.

1
= dr---f dryexd =z WV{r;
D. Ensembles WJC(D e N H—AV{ri)
The central quantity in the microcanonical ensemble is the —MAJED ], (11)

density of states, defined as _ o )
where the factor N! in the definition ofZ, Eq. (9), is can-

L celed by the number of possibilities to distribiNeparticles
QVI,AY)= | dry-- | dry on N cells.
) ) In order to obtain a tractable integral, we construct an
XSV =V{riHlslA'=A{riH], (8  approximate container

K*= U K{ri}), 12
where the integration only runs over allowed hard-sphere reC (rih) 12

configurations. Thé&microcanonical entropy is obtained as
S=kg In Q. The central quantity in the canonical ensemble iswhich is the union of all possiblK that are realized if each
the partition sum particle moves freely inside its cell. The crucial point is that
K* is independent of the position coordinatgs This will
allow us to carry out the integrations over space, @4).
7= %f dfl"‘f drye AerL i), (99  K* depends, however, on the shape and positions o€the
A=TN! In particular, it can be computed as the parallel body of
radiusR of the convex hullC, see also Sec. Il fof the cells,

where A is the thermal wavelength of the colloids. The K*=Tg, (13)
Helmholtz free energy i& = —kgT In Z. Note that as we are
dealing with a finite system, the canonical and the microca- ['=C(Cq,....Cn), (14)

nonical ensembles are not equivalent.
where the subscript denotes the parallel body with ragius
If T is known, Steiner’s theorem can be used to calculate the
lll. CELL THEORY volumeV* and surface ared* of K*. Due to the definition

* i )
The cell theory(CT) is a simple, yet accurate, approach to of K* and the fact that only convex bodies are involved,

hard-sphere systems. Crystals are well-described in bulk * = L

[30,31] as well as in rigid confined geometrig$0,11] and Vi=VArieCib, (19
near walls[32]. Here we generalize the concept to flexible A*=A({r;eC;}) (16)
confinement. The striking feature of yielding an exact upper

bound to the free energy is preserved. hold. Finally, the lower boun&* <Z for the partition func-

tion is obtained as

A. General scheme 1

* — Ny VF -\ pAF
Our strategy consists of two steps. First, we constrain the 2= Cu)drl”' C(N)drNe . 17)
colloids to fixed cells in space. Instead of integrating over all
space, we require the center of each parii¢telie inside its N .
cell C;. Thus, the integration region in the partition s{if). =exp — A V* = MAN T [08dA%] (18
(9)] becomes smaller. Second, we construct a bi§dythat =1
is larger than any possible contairtéiin this restricted sys — eXH = MV* — MaAF) (0l AN, (19

tem. Replacing the volume and the surface in the Boltzmann
factor by those oK*, the Boltzmann factor also becomes
smaller and the approximate partition sirh we obtain is a
lower bound to the exact partition sufnFrom that naturally
an upper bound to the free energy is obtained.

wherev ), is the volume of cellC;. The last equality holds
if all cells have the same volumgye=v'!.. The free en-
ergy within CT is readily obtained as

In detail we proceed as follows. Let us introduce the no-  px _ —KgTInZ* (20)
tion of cellsC;, i=1,...N, which are geometric objects that
are constructed such that they have a distance of at least the _ — NKgT IN(vree/ AZ) + KgTOWV* + A AA*),
particle diametero from each other. If each particleis (22)

confined to its cellC;, the particles of neighboring cells
cannot overlap. We can then drop the hard-core term in thevhere the property of being an upper bousti>F to the
Boltzmann factor and obtain exact free energy is inherited from the bound to the partition
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F* can be easily minimized numerically with respectl{o
andr;.

2. Platelike shapes (“Pizzas™)

[ TR ! The cell centers are assumed to build a portion of a two-
f dimensional(2D) hexagonal lattice with lattice spacird

FIG. 2. Cell model for sausage configurations. Shown are partie€nceci=jde; +(v3/2)kde,, wherej, k are integers enu-

ticles (spherek cells (cylinders, and the containeK* (enclosing ~Merating lattice sites, and tiggbuild the basis of the Carte-
cigarlike shapg sian coordinate system. The cells are assumed to be different

in magnitude within thee; —e, “pizza plane” and perpen-
sum. The remaining task is to optimize with respect to thedicular to it. For simplicity, we assume rotationally symmet-
positions of the cells in space, their shape, and their sizdic cells arounde;. Hexagonal shapes could be considered,
ThenV* and A* serve as estimates for average containefut we expect the differences to be smi@B]. HenceC
volume and average surface area. again is a cylinder with radius; and heightl;, and is
aligned alonge;. In order to avoid overlapd=o+2r;.
We obtain with straightforward calculus

B. Application to different structures

The structure of thécrystalling arrangement of particles Vi=A"l¢, (28
is an input to the CT. We prescribe this by specifying the
positionsc; of the cell centers. All cells are chosen to have an Ar=2A"+U"l;, (29

identical shap&. Calculation of the bod¥' [Eqg. (14)] yields

volumeV* and surface are&* of the approximate container Mo T U+ ol
K*. In the following, this recipe is carried out for the three F_EU tal, (30
types of conformations under consideration, see also Fig. 3.
where
1. Rodlike shapes (“‘sausages”) ) )
We assume a one-dimensional arrangement of cells, A'=y AU T A, (31)
=ide, where the cells are labeled by=1,...N, d is the U=l + 27+, 32)

distance between cell centers, ami some unit vector that

we refer to as “sausage axis.” The free volume for eachynga’ andu’ are the surface area and perimeter of the hull
particle is assumed to be rotationally symmetric aroend .t the cell positionsc, . The precise arrangement of cells
and to have different magnitudes along and perpendicular t8n|y enters througth’ andU’. This remarkable property is

e. Hence the cell is a cylinder with radius and heighily, ~ oyen true for arbitrary 2D cell arrangements other than por-
and is aligned along. The distance between the centers ofij;ns of the hexagonal lattice.

two neighboring cells must bel=o+1;, so overlap of
neighboring particles cannot occur. Obviously the convex 3. Spherelike shapes (“clusters”)
hull T" of the cells is a cylinder of lengtNl;+(N—1)0o and

radiusr; . Its Minkowski functionals are In contrast to the above structures, clusters(apporoxi-

mately) isotropic in all three spatial directions. Therefore, we
Vp= 7.rrfz[,\||f+(,\|_ 1)a], (22) choose spherical cells of radius.
FromV’, A’, M’ of the hull of thec;, the bodyK* can

An=2D NI+ (N=1)o]+2mr2, 23 be computed as the pargllel body With raqmsrf. Volume
r=2mr[ Nl Jol+2mts (3 U* and surface* are directly obtained without the need to
Mp=#2r i+ NI+ (N=1)o]. (24) ~CAloulatel as
4
The volumeV* and surface ared* of the approximate V*=V'+A"(R+r{)+M'(R+r{)2+ ?(R+rf)3,
containerK*, see Fig. 2, are obtained through Steiner's (33)
theorem as
- A*=A"+2M'(R+r)+4m(R+r)2 (34)
VE=g N|fr$+(|\|r$+N|frf)a+(N—1+Z reo?
IV. COMPUTER SIMULATION
Nlfo? (N=1 m\ | . .
+| ——+ =] o3, (25) We have performed Monte CarldC) simulations for
4 4 6 particle numberdN=4,13,55. These were done in the ca-
) nonical ensemble with prescribéaduced volume and sur-
A* =a[2ri+2Nlri+(2N=2+ m)r¢o (260 face coupling. Each MC consists of a check for possible
overlap with other particles, as well as calculation of the
+Nlfo+(N—1+m7)0?]. (27 change in the hull potential energyy,. For N>4, the
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10 11 12 13 14 15 16 17

A/c
TRy —
11,5188 ~mrmm b
FIG. 3. Different conformations(a) Spherelike(clustey, (b) 00 | 1298 e ( ) ]
platelike (pizza), (c) rodlike (sausage cluster pigza P —
quick hull algorithm[28] is used to identify the convex hull 15 | |
of the position coordinates. Using umbrella sampling, we =< /
obtain the microcanonical entropy as a function of volume # | /
and surface. This is a delicate task that we only do for small
N=4. Typically, between 10(N=4) and 5<10° (N=55) ;
MC moves per particle were done. 514
V. RESULTS 0 : . :
8 3.6 3.8 4 4.2
A. Entropy landscape V/63

As an illustration, let us first show snapshots of typical . :
configurations including cluster, sausage, and pizza in Fig. 3. FIG' 5. One-dimensional C%ts of the entropy Iandsc@élkB
For N=4, we have calculated the complete entropy Iand-at fixed values of volume/lo. (as indicatefl as a fqncpon of
' i ) surface ared\/o?. (b) S/kg at fixed values ofd/o? (as indicateyl
scape as a function of voluméand surface areA (see Fig. ; 3
. - . . as a function oV/o”.
4). There are three maxima in the entropy, which are indi-
cated by the dark color. These are separated by “forbidden _ _ _
regions” (white), which do not contain any allowed configu- cluster states. Figure(® shows intersections of the entropy
rations. The gap between the sausage and the pizza statelagdscape with Iénes of constant volume. One observes that
considerably bigger than the gap between the pizza and tHer V fixed to 307, there are three separate regions of finite

entropy, representing the three classes of configurations. For

4.2 this fixed volume, it is thus not possible to switch continu-
ously from one class to the other. Fé=3.20%, on the other
4 hand, there is a connection between the cluster and the pizza
region, while the sausage configurations still appear in a
33- 8 separate peak. Only faf=3.60" is there a continuous con-
V/G3 6 nection between all these states. In Fi¢b)5intersections
: with lines of constant surface area are shown. For
3.4 =11.012%2, only the cluster state has a finite entropy. For
intermediate value®\=11.518%2,12.02% the pizza also
3.2 appears and is separated by a pronounced minimum from the
cluster. ForA=13.37%?2, this minimum becomes shallower
3 and shifts towards largéf. An additional maximum appears
for small V due to the sausage conformations.
10 11 12 13 14 15 16 17
62 B. Canonical averages
FIG. 4. Contour plot of the entropB(V,A)—\yV with Ay For largeN, it becomes increasingly hard to perform a

=15 as a function of the container volurweand surface areafor ~ sampling of the complete configuration space using simula-
N=4. tions. The computation of the container properties slows
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down the speed of the simulation. In addition, for many par- 4
ticles the system has a large number of stable and metastable (a)
states, making the sampling with correct statistical weights 38
much more difficult.
However, it is possible to study specific structures of the S 86
system. This is similar to the treatment in CT. We will com- -
pare results from CT and MC for systems with small (3 34|
=4), medium N=13), and large l=55) particle num-
bers. Remember thal=>55 is a boundary case, where the 321 L Mc:sausage S
sausage is still denser than any cluster. e gliﬁgtaer o &
. L : +
We compute canonical averag@s) and(A), for volume 8 —— CT: sausage
and surface area, respectively, as a function of the coupling oo Slipizza
parameteir, . See Fig. 6a) for a comparison of simulation 28 10 20 30 2 50 o
and cell theory foN=4. The three structures occurring for My
this system—the sausage, the pizza, and the cluster—are
studied separately.
First, note that the CT gives the correct succession of the *
structures. The volume of the sausage system is smaller than 135 | (b)
that of a cluster system, which in turn is less than the volume
of pizza configurations. On the other hand, the surface area 8
(see the insetis largest for sausages, then comes the pizza, %, 125 |
and finally the cluster configurations. Upon increasing, N
both volume and area decrease, as expected, and the conforv 2
mations become more compressed. 15 -
Apparently the CT results give larger values for volume + MC:sausage S~ O &
and surface area than the computer simulation. However, the ~ ''[ % MC:pizza
general dependence of the volume coupling looks very simi- 105 | —— CT:sausage
. o T Bl CT: pizza
lar, especially the limiting behavior faxy,—0 and forAy o GT: cluster . . .
—oo. The latter even gives the correct value, since the CT 10 10 20 30 40 50 60

becomes exact for zero temperature.
Remember that the CT neglects configurations where par-

ticles are located outside their cells. These have larger con- 75
tainers than those taken into account in CT. Hence one might
be misled to conclude that CT should give too sni&lj and
(A). The fact that both quantities are overestimated is merely ¢
due to the construction of the approximate contailér. .
This object is a superset of all possible containers where °
particles are inside cells. %
Next, we study the case dof=13 particle§Fig. 6(b)] as 5%
an example of a system with an intermediate number of par-
ticles. In order to apply CT to that system, we have to
specify the configurations under examination. This is clear 45
for the sausage, and we choose an exemplary pizza. For the

I —— CT: sausage

Ak

0 No-mEg-—o-m-0
0 10 20 30 40 50 60

MC: cluster

CT: pizza
CT: cluster

cluster, we pick a regular icosahedron, with an extra particle 40
at its center. We chose this configuration because it was
found frequently during simulation runs. However, this

10 20 30 40 50 60
Ay

structure has some special properties. First, it is not the dens- FIG. 6. Average voluméV)/a® as a function of volume cou-
est possible cluster fdd=13. One with smaller volume can pling Ay from simulation(MC) and cell theory(CT). Shown are the

be obtained by cutting a spherical region out of a closevalues for sausage, pizza, and cluster configurations. The inset

packed fcc lattice. Second, in this configuration all particlesshows the average surface arg®)/o? as a function of\ for
in the outer shell have enough space to move around freelgifferent particle numbersl. (a) N=4; (b) N=13; (c) N=>55.

on the surface of the central sphere. Therefore, the assump-

tion made in CT that all particles are confined to separatéiere the discrepancy is smaller for sausage and pizza struc-
tures. Note, however, that the order of the lines is shifted.
which shows the same quantities as before. For the surfaddere, the CT gives a higher volume for the cluster than for
area(inse), we now see very good agreement between simuthe pizza configurations. We attribute this failure of CT to
lation and CT results. At first sight, the plot of the containerthe special properties of the icosahedron cluster. The par-
ticles do not stay in the cells as assumed in the theory, so it

regions might be critical. The results are plotted in Figp) 6

volume shows the same tendencies ad\fer4. The general

behavior is correct, but the CT overestimates the volumecannot give accurate results.
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FIG. 7. Excessover ground-stajeinternal energye (in units of FIG. 8. Phase diagram fd&=55 confined colloids as a function
kgT) per particle as a function of temperature. Shown are the simuef the ratio between surface and volume coupling/\,, and
lation (MC) and cell theory(CT) results for sausage, pizza, and inverse volume coupling i{,. The solid lines separates stable
cluster configurations foN=4,13,55, together with the exact solu- states(uppercasg the dashed lines separate metastable stitas
tion for N=2. ercase

For N=55, we cut out a portion of a hexagonal lattice for ] )
a representative pizza configuration. Similarly, we construcParameters. We define a stable phase as the structure with the

a cluster of 55 particles by cutting a spherical portion out ofsmallest free energy, which has the largest statistical weight.
an fcc lattice. In Fig. &), results for average volume and However, as the system is not in the thermodynamical limit,
surface area are given. Excellent agreement between theotlye probability for conformation with larger free energy does
and simulation is found. not vanish. We find that either the sausage or the cluster is
Summarizing these results, we find that CT gives the cormost stable, see Fig. 8. The horizontal axis is the ratio be-
rect behavior of equilibrium properties of the system. It over-tween volume and surface couplinga/\y,. The vertical
estimates the mean volume, but this deviation decreases fakis is the inverse volume coupling\l/. Remember that
larger particle numbers. One exception is the icosahedral, =J o°/kgT, so that 1X, can be regarded as a tempera-
structure of theN=13 cluster, which causes a special diffi- tyre, whereaa /\y=Jx/(Jyo) is independent of tempera-
culty due to its geometric properties. As the complete packyyre. For fixed temperature, we follow a horizontal path in
ing problem is a complicated one, we expect that more sucfq phase diagram by changing the ratig/\,. The con-
exceptional cases can be found by varyMgThe fact thal  giner is in either the sausage or the cluster state. For small
cCaTnptzgd;(;ttSbﬂ?(erg fgxt:rt:éail;(taif/gltjgg:er;ggegfaﬁretlﬂﬁrgggberﬁ al\y the sausage is stable, as this is the most dense struc-
: . : P&iire in terms of occupied volume. Increasing/\ leads to
ticles at the boundary. We believe that the high accuracy fort bilizati fthe cluster. b thi t obiect
N=55 is preserved whel is increased, even far beyond stabilization ot the ciuster, because this more compact objec
possesses smaller surface area. The location of the crossover

this value. Remember that in the thermodynamical limit, ) )
—oo, CT gives a fair description of the bulk crys{&0,31]. _(phase boundajyshifts toyvards. Igrge\A/)\v upon increas-
We next consider the question of how much each particld"d temperature. I\ 5/\y is sufficiently large, the cluster is

contributes to the total internal energy of the system. If thgdh€ ground state af=0 and remains stable for small
temperature of the system is increased, the container swell§lcreasingT leads to a transition to the sausage. In both
which results in an excess volume compared to its closet€gions of the phase diagram, there are two metastable states.
packed volumeVp at zero temperature. This increase in The free energies of those can also be compared in order to
container volume leads to a gain in internal energy per parconclude which of both is relatively more stable. The result-
ticle, which is given ag=Jy((V)—V¢p)/N. We plote/kgT  ing boundaries show that close to the sausage-cluster transi-
in Fig. 7 as a function of scaled temperature. Shown are th#&on, the pizza is least stable, but at extrexmg it will be
results from both simulation and CT fd&f=4,13,55 and for more stable than the other metastable state. However, the
sausage, pizza, and cluster configurations. For comparisopizza structure never has the lowest free energy of all three
the exact solution foN=2 is also shown. The dependence conformations. For higf, it is expected that the container
on the scaled temperatukgT/J, o is weak. The simulation does not exert enough pressure on the particles to confine
data show a global shift to higher valueshsncreases, but  them to well-defined lattice sites, and melting will occur. In
only a minor dependence on the conformation. CT fails tdnfinite bulk systems, this phenomenon depends crucially on
describe the behavior for small, but gives the correct re- dimensionality. It is abser(for short-ranged interactionin

sults forN=55. 1D, and the location and even the scenario are different in
- . 2D and 3D. In order to estimate where melting occurs in the
C. Transitions between different shapes present system, we use the following rough criterion. The

As the CT permits direct access to the free energy, we caparticles will be fluidlike if the nearest-neighbor distance ex-
calculate a “phase diagram” as a function of the couplingceeds the value in the corresponding bulk system, which is
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d=1.086 in 2D andd=1.11 in 3D. Within CT, the nearest- Within the current model, there are still many open ques-
neighbor distance is directly accessible and the correspondions. One could investigate the effect of nonvanishing cou-
ing state point can be obtained. The fluid regions obtained iRling to the integral mean curvature, i.&y# 0. This might

fluid appear for large M, (large temperatuje only metastable in the current investigation. Furthermore,

one could consider insertion and escape of particle, i.e., use
the grand-canonical ensemble with respechNtA straight-
forward generalization is towards a collection of more than
We have investigated a system of spherical particles corPneé container. The coupling to the Euler characteriktjc
fined within a fluctuating container. Our model is a hybrid of Plays the role of a chemical potential of the containers. As
colloidal cluster physics and membrane theory and couple§1® Simplest model, one could neglect the steric interaction
the degrees of freedom of the particles and the membrarféetween the container hulls themselves, and only take into
resulting in new vesicle shapes as rodlike, platelike, andccount the hard_ cores of partlcles o_f different containers.
spherelike forms. The container may be physically realized 'Furt.hermore, it WOUld .be mtergstl,ng to ”.”Od?' the con-
by a membrane that constitutes a vesicle or by an oil dropletla!ner In more detail. Using Helirich’s Hamlltoman gnd a
in an emulsion. We allow this object to change its shape, anffrieroscopic model for Fhe membrar_1e constitutes an interest-
take into account an external pressure and a surface tensi as WF.“” as der_nandmg per_spectlve. It is n prln_C|pIe pos-
towards the surrounding. Our theoretical model uses a de le to find a suitable experimental setup in which one is

scription of the droplet shape on a coarse-grained level bas@cple tf ot;.[)s?;vedthe prgdmt(—;‘?htran&uons. 1;her]: tc;ne com;ld also
on integral geometrical methods. The particles are modele vestigate the dynamics of Ine rare events ol the conforma-

as a finite number of hard spheres, ranging from 2 to 55. lonal changes, which is also interesting from a more theo-

For this system, we have demonstrated that a zoo of dif[etical point Of vigw. We also mention the_interes_ting p_rob-
ferent particle conformations arises. These fall into diﬁeren{e.m of crystalllzauon of many of thesg flexible Ob].eCtS f|||(_ed
classes, namely three-dimensiof@D), planar(2D), and lin- with colloidal spheres. Furthermore, it would be interesting

ear (1D) ones, called clusters, pizzas, and sausages, respég_lnvestlgate tangent hard spheres inside a flexible container

tively in order to study a polymer chain confined to a vesicle. In

The breaking of rotational symmetry is especially strik- this ﬁafe’ onte \tI)VIOUISV(E]XFtJﬁCt that the plztz_a conformﬁnon 'Sb
ing, asa priori the model does not contain any anisotropicmufj ¢ ests g ah ed heb'eE 35” geotTet fe a;)p;(r)]ac_ tcan e
interactions. The driving force of these transitions is merely/S€d 0 study hydrophobic{ty4] constitutes a further inter-

the highly nontrivial close-packed structure of a finite num-©sting point.

ber of spheres. Here, this purely geometric packing problem

is cast into a physical one through the consideration of the

entropy of the system. It allows us to investigate the behavior We thank David Chandler, Pieter Rein ten Wolde, Mauro

away from close-packing as a function of container volumeMerolle, Jog M. Wills, Brad Barber, Bela Mulder, Daan

and surface area. Frenkel, Alice Gast, Gerhard Gompper, Christos N. Likos,
As an outlook, we comment on possible future work.and Joachim Dzubiella for valuable discussions.

VI. CONCLUSIONS
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