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Abstract
We implement a new solvent-bath computer simulation scheme to calculate
effective interactions between two charged colloidal spheres with their counter-
ions in a hard-sphere solvent in order to test the primitive model and a solvent-
averaged primitive model. We show that the presence of a granular solvent
significantly influences the effective colloidal interaction. For divalent counter-
ions, the total effective force can become attractive, generated by counterion
hydration, while for monovalent counterions the forces are repulsive and well
described by a solvent-induced colloidal charge renormalization. Neither effect
is contained in the traditional ‘primitive’ approaches but both can be accounted
for in a solvent-averaged primitive model.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

Supramolecular aggregates, such as colloids, polymers, or biological macromolecules, are
typically suspended in a molecular solvent which guarantees their stability and profoundly
influences their viscoelastic properties [1]: examples range from paints to dense DNA solutions
in biological cells. A full ab initio statistical description of supramolecular solutions should
start from a molecular scale including the solvent explicitly. Obviously this is a tremendous task
due to the large length scale separation between the microscopic solvent and the mesoscopic
solute and the enormous number of solvent particles which have to be considered explicitly.
Therefore, most of the common statistical approaches are based on so-called ‘primitive’ models
insofar as they disregard the molecular nature of the solvent completely such that solvent
properties only enter via a continuous background.

A particular example for such a separation of length scales is furnished by charged colloidal
suspensions [2] consisting of highly charged mesoscopic particles (so-called polyions)
suspended in water or any other organic solvent together with their oppositely charged
microscopic counterions. The key quantity for understanding the stability, structure, and
dynamics of such colloidal dispersions is the effective interaction between two polyions, as
a function of their mutual distance r . Neglecting the discrete solvent, this quantity has been
calculated using modelling on different descending levels:

(i) the ‘primitive model’ (PM) of strongly asymmetric electrolytes which takes the counter-
ions into account explicitly;

0953-8984/01/130277+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK L277



L278 Letter to the Editor

(ii) the nonlinear Poisson–Boltzmann approach which is inferior to the PM as it neglects
counterion correlations;

(iii) the linearized screening theory resulting in a Yukawa form for the effective interaction
potential as given by the electrostatic part of the celebrated Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory [3].

The main effects of nonlinear Poisson–Boltzmann theory can be encaptured by a similar
Yukawa potential but with ‘renormalized’ parameters leading to the concept of colloidal charge
renormalization [4]. This picture is consistent with experimental data on dilute bulk solutions
with monovalent counterions [5, 6]. Very strong correlations between divalent and trivalent
counterions, however, may lead to attractive effective forces between like-charge polyions as
shown in recent computer simulations of the PM [7–9].

In this letter, we investigate the influence of solvent granularity on the effective interactions
between charged colloids. We explicitly add to the PM a molecular solvent modelled by a
hard-sphere fluid. We study this model by direct computer simulation and use the concept of
effective interactions to bridge the gap between microscopic and mesoscopic length scales. Our
motivation for doing so is twofold. First, although the dipolar nature of the solvent [10] is not
included, the model provides a minimal framework for moving towards a statistical description
of hydration forces. Second, the solvent hard-sphere model was considered in earlier studies for
the effective interaction between charged plates using liquid integral equations [11], modified
Poisson–Boltzmann theory [12], or more sophisticated density functional approaches [13]. All
of these descriptions, however, suffer from additional uncontrolled approximations such that
‘exact’ computer simulation results are highly desirable. Such simulations were performed
for two parallel plates [14], which is a geometry different to that of two spheres, and for small
neutral particles [15], but have hitherto not been available for spherical charged colloids.

As the primary focus, we implement a new ‘solvent-bath’ simulation scheme which allows
us to simulate many neutral spheres together with the charged species and obtain explicit results
for the effective force between nano-sized highly charged colloids. We use these data to test
a theory with solvent-averaged effective interactions between the charged particles similar
in spirit to the old McMillan–Mayer approach for electrolyte solutions [16]. This solvent-
averaged primitive model (SPM), which describes hydration forces in terms of depletion
interactions, yields good agreement with the simulation data and can thus be used to obtain
the effective interaction between larger colloidal particles. For monovalent counterions and
large distances r , our simulation data can be described perfectly within a Yukawa potential
with a solvent-induced polyion charge and screening length renormalization. For divalent
counterions and nano-sized colloids, we find an attractive force. Neither effect is contained in
the PM.

We consider two large spherical polyions with diameter σp and charge qp at distance r ,
together with their counterions of diameter σc and charge qc in a bath of a neutral solvent
(qs = 0) with diameter σs . In our model, the pair potential between the particles as a function
of the mutual distances r is a combination of excluded-volume and Coulomb terms:

Vij (r) =
{

∞ for r � (σi + σj )/2

qiqj /εr otherwise
(1)

where ε is the smeared background dielectric constant of the solvent and (ij) =
(pp), (pc), (ps), (cc), (cs), (ss). Further parameters are the thermal energy kBT and the
partial number densities ρi which can be expressed as partial volume fractions φi =
πρiσ

3
i /6 (i = p, c, s). Charge neutrality requires ρp|qp| = ρc|qc|. We fix the two polyions

along the body diagonal in a cubic simulation box of length L and use periodic boundary
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conditions; hence ρp = 2/L3. Henceforth, we fix φs to 0.3 corresponding to a dense fluid
solvent with many solvent spheres in the box, such that a direct simulation is impossible.
Thus we resort to the following ‘solvent-bath’ molecular dynamics method: the hard-sphere
solvent is confined to a rectangular cell around the colloidal pair which is smaller than the full
simulation box but still contains Ns = 25.000–30.000 solvent particles while the counterion
motion is unrestricted; see figure 1 for the set-up. Periodic boundary conditions for the solvent–
solvent interaction in the cell are applied: if a sphere centre is leaving the cell it is entering at the
opposite face of the cell while always being affected by its neighbours and their periodically
repeated images. The minimal distance h = 12σs from the colloidal surface to the cell
boundary is much larger than the hard-sphere bulk correlation length ξ = 2.5σs , such that the
local hard-sphere packing fraction is constant and very close to φs = 0.3 near the cell boundary.
Furthermore, the typical counterion–counterion separation outside the cell is much larger than
ξ , such that the effective counterion–counterion interaction there is very close to Vcc(r). As
an artifact of the solvent bath, the counterions experience an unphysical difference between
their chemical potentials inside and outside the cell, thus artificially preventing the counterions

L

σp

σc

σs

h

Figure 1. A view of the set-up as a projection of a simulation snapshot: two polyions (dark open
circles) in a bath of solvent particles (small hollow spheres) contained in a rectangular cell of width
h. The counterions shown as small dark spheres can move throughout the whole simulation box of
size L.
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from entering the solvent cell. This can be effectively suppressed by implementing a ‘smooth’
counterion crossing through the cell boundary. In detail, a counterion is by definition inside
the cell if its centre is at least a distance � = (σs +σc)/2 + δ (with a small δ = σs/10) from the
cell boundary—to ensure that it does not ‘feel’ periodic images of the solvent. If a counterion
approaches this distance � from inside, we instantaneously turn off the counterion–solvent
interaction. For the inverse process, i.e. for a counterion which is penetrating into the solvent
cell from outside, the solvent–counterion interaction is kept turned off until the counterion
centre has reached the penetration depth� from the cell boundary. Then the solvent–counterion
interaction is switched on. In the case where the counterion is overlapping with solvent
spheres, the positions of the solvent spheres are changed in that the separation vector between
the counterion and solvent centre is scaled until the solvent spheres do not overlap with the
counterion. If the moved hard spheres overlap with other ones (or with periodic images), their
positions are scaled again. This is repeated until an overlap-free configuration is obtained.
All velocities remain unchanged during this procedure. Of course, this procedure does not
reproduce the true microscopic dynamics of counterions, but it gives the correct statistical
sampling of their static equilibrium averages inside and outside the cell1. We have carefully
tested the solvent-bath scheme against a huge simulation where the whole simulation box was
filled with solvent particles (for the same parameters as in figure 2(a) but with a size ratio of
σp:σc:σs = 5:1:1 and φp = 4.4 × 10−3), and found perfect agreement for the effective forces
and the inhomogeneous counterion- and solvent-density profiles.

We have also considered a simpler description on the primitive level with solvent-averaged
interactions between the charged particles. The statistical recipe for getting these interactions
from the full solvent model is to integrate out the solvent degrees of freedom [17]. In our
case, the solvent-averaged interactions become hard-sphere depletion interactions which have
been well studied theoretically [18] and by means of simulation [19]. The solvent-averaged
primitive model (SPM) is defined by decomposing the depletion interactions approximately
into pairwise parts. The corresponding interactions in the SPM are Ṽij (r) = Vij (r) + V

(d)
ij (r)

with (ij) = (pp), (pc), (cc), and where Vij (r) is the primitive model interaction taken from
equation (1) and V

(d)
ij (r) is the depletion potential between two spheres of diameters σi and

σj at distance r embedded in a hard-sphere solvent of bulk packing fraction φs [18]. We
determine the set of input potentials for the SPM, V

(d)
ij (r), in a reference computer simulation

following reference [19]. They exhibit an attraction near contact of the order of several kBT and
oscillations on the scale of the molecular solvent diameter σs decaying on the scale of the bulk
hard-sphere solvent correlation length ξ . The counterion–counterion depletion is masked by
the Coulomb part as typically V (d)

cc (r) � Vcc(r). The polyion–counterion depletion interaction
V (d)

pc (r), on the other hand, adds to the Coulombic attraction and is essential. Counterion
hydration is thus described as solvent depletion attraction which pushes counterions towards
the colloidal surface.

In our solvent-bath simulations, we fixed T = 298 K and ε = 81 (water at room
temperature) with σs = 3 Å and σc = 6 Å. We varied the polyion size σp and charge qp

and calculated the solvent- and counterion-averaged total force acting on a polyion for a given
colloidal distance r . The force is projected onto the separation vector of the two colloidal
spheres such that a positive sign means repulsion. This effective force F(r) is the sum of four
different contributions [7]; two of them are of pure electrostatic origin and two are entropic:
the direct Coulomb repulsion as embodied in Vpp(r), the counterion screening resulting from

1 Details of the counterion motion across the cell boundary cause only small relative corrections to the solvent bulk
properties, of the order of the local number-density ratio between counterions and solvent at the cell boundary, which
is smaller than 5 × 10−3.
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Figure 2. Reduced force F(r)σp/kBT versus reduced distance r/σp . The inset shows the
same for nearly touching polyions at molecular distances (a) for monovalent counterions and
σp :σc:σs = 10:2:1; (b) for divalent counterions and σp :σc:σs = 14:2:1. The further parameters are
|qp/qc| = 32 and φp = 5.8 × 10−3. Solid line with error bars: full solvent-bath simulation; long-
dashed line: SPM; short-dashed line: PM; open circles: DLVO theory; dot–dashed line in inset:
solvent depletion force. The dotted line in (a) represents the solvent-renormalized Yukawa model.
The triangles in (b) show the electrostatic part of the total force in full solvent-bath simulations.

the averaged Coulomb force of counterions acting on the polyions, the counterion depletion
(or contact) term arising from the hard-sphere part of Vpc(r), and the solvent depletion force.

For nano-sized colloids, results for F(r) are presented in figures 2(a) and 2(b). For
nearly touching polyions (full curves in the insets of figures 2(a) and 2(b)) the force exhibits
oscillations on the scale of the solvent diameter due to solvent layering leading to attraction for
touching polyions, as the attractive solvent depletion part exceeds the bare Coulomb repulsion.
For larger distances and monovalent counterions, the force is repulsive. Simulation data for
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the PM using parameters identical to those of the solvent simulations are also included, which
overestimate the force. The repulsion is even stronger in DLVO theory as derived from the
Yukawa pair potential

V (r) = q2
p exp(−κ(r − σp))

(1 + κσp/2)2εr
(2)

with κ = √
4πρcq2

c /εkBT . For divalent counterions, on the other hand, there is attraction
within a range of several polyion diameters. While the counterion depletion is repulsive, the
attraction originates from the pure electrostatic parts of the force also shown in figure 2(b). It is
thus qualitatively different from other mechanisms for attraction proposed recently [7,9]. As a
result of solvent depletion, all counterions are pushed towards the colloidal surface, resulting in
a strong counterion accumulation which strongly screens the colloidal charge. The attraction
is then obtained via counterionic correlations in this electric double layer. We emphasize that
the presence of the solvent is crucial for the attraction: simulation data for the pure PM with
the same input parameters but without solvent yield repulsive forces as the counterion layer
around the polyion is much more diffuse. Furthermore, the SPM describes the solvent-bath
data extremely well, yielding results that lie within the statistical error of the full simulation
over the whole range of distances. This can be understood from the fact that—except for nearly
touching polyions with ‘squeezed’ counterions—typical distances between triplets of charged
particles are larger than ξ . Consequently solvent-induced triplet and higher-order many-body
forces between the charged particles are small, such that the SPM is justified.

We finally use the SPM to investigate solvent effects for polyion sizes in the colloidal
domain. Distance-resolved colloidal forces F(r) for monovalent counterions are presented in
figure 3. These forces are repulsive but again much smaller than those from PM simulations or
DLVO theory. They can, however, be quantitatively described by a Yukawa cell model [4]. In
fact, we have performed additional solvent-bath simulations for a single polyion in a spherical
cell of radius R = (4πρp/3)−1/3, calculating the counterion density ρ̃c at the cell boundary.
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Figure 3. As figure 2(a), but now for larger polyions: σp :σc:σs = 370:2:1, |qp/qc| = 280,
φp = 2.3 × 10−3.
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The corresponding effective Yukawa potential [4] has the same form as in equation (2) but with
a solvent-renormalized screening length κ∗ = κ

√
ρ̃c/ρc and a solvent-renormalized charge

q∗
p = qpρ̃c/ρc which is considerably smaller than the bare charge. The actual value of q∗

p,
however, differs strongly from the charge renormalization according to the PM or Poisson–
Boltzmann theory [4]. The force resulting from the solvent-renormalized Yukawa model fits
our full simulation data for nano-sized colloids for large distances and monovalent counterions
(see figure 2(a)) and perfectly describes the SPM data for larger colloids except for molecular
distances (see figure 3).

In conclusion, on the basis of a unified statistical description of counterion hydration and
screening, we have shown that hydration forces profoundly influence the colloidal interaction.
For divalent counterions, there is solvent-induced attraction which is not contained in the
traditional primitive model but can be encaptured within a solvent-averaged primitive model.
For monovalent counterions, the forces can be described by a charge renormalization induced
by counterion hydration forces. This picture is in agreement with experiments on strongly
deionized samples where a Yukawa picture can still be employed, provided that the colloidal
charge is renormalized towards a value smaller than the bare charge [5, 20]. The general
concept of charge renormalization should be transferable to other situations where screening
by a few remaining ‘free’ counterions dominates the interaction as, e.g., for a polar solvent,
for different polyionic surface charge patterns, and for explicit surface chemistry.

We thank R Roth, C N Likos and T Palberg for helpful remarks.
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