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ABSTRACT: Using small-angle neutron scattering and liquid integral equation theory, we relate the
structure factor of flexible dendrimers of fourth generation to their average shape. The shape is measured
as a radial density profile of monomers belonging to a single dendrimer. From that, we derive an effective
interaction of Gaussian form between pairs of dendrimers and compute the structure factor using the
hypernetted chain approximation. Excellent agreement with the corresponding experimental results is
obtained, without the use of adjustable parameters. The present analysis thus strongly supports the
previous finding that flexible dendrimers of low generation present fluctuating structures akin to star
polymers.

I. Introduction

Dendrimers are synthetic branched macromolecules
with defined structure.1 Starting from a trifunctional
flexible monomer (generation 0), subsequent shells of
trifunctional units are attached in a well-defined man-
ner. Figure 1 displays a dendrimer of fourth generation
with attached end groups at the ends of the units
constituting the last generation. Thus, a treelike struc-
ture is generated, which can be viewed as an interesting
intermediate between colloids and polymers: dendrim-
ers of low generations exhibit enough degrees of con-
formational freedom and will thus present fluctuating
structures in solution. Hence, these structures will
greatly resemble star polymers or lightly branched
polymers. If, on the other hand, the number of genera-
tions is increased, steric interactions between the groups
located at the periphery of the molecule must result. In
this case, significant back-folding of these groups must
occur, and these structures will exhibit a more homo-
geneous segmental density. Hence, dendrimers of higher
generation will resemble dense colloidal structures.

The average radial density distribution T(r) of den-
drimers is still a matter of debate. Here, the question
arises as to whether dissolved dendrimers exhibit their
maximum segment density in the center or at the
periphery of the molecule. The first theoretical analysis
of the radial density distribution by Hervet and de
Gennes came to the conclusion that dendrimers have a
dense shell and hence a minimum of T(r) at the center
of the molecule.2 Subsequent theoretical studies, how-
ever, showed that dendrimers exhibit their maximum
segment density at the center of the molecule.3-8 Only
if electrostatic repulsion operates between the segments
of the dendrimer is a dense shell structure to be
expected.7

Small-angle scattering methods, such as small-angle
X-ray scattering (SAXS)9 and small-angle neutron scat-

tering (SANS),10 are suitable to investigate the radial
structure of dissolved dendrimers. Up to now, however,
SANS and SAXS studies of dendrimers in solution did
not yet come to a final conclusion regarding the average
radial density distribution T(r). A survey of literature
may be found in a recent review.11 A recent study of a
dendrimer of seventh generation concluded that the
internal structure of the molecule is rather uniform,
with the end groups being preferably located at the
periphery of the molecule.14 This result is in contradic-
tion to the theoretical studies discussed above.3-8 SANS
studies of dendrimers of lower generation, however,
showed that the molecules under consideration have
approximately a Gaussian density distribution.15,16 The
chemical structure of the dendrimers investigated in
refs 14-16 differ with regard to the number of genera-
tions and the nature of the end groups. The results can
therefore only be compared with caution. In this respect,
we also mention the simulation results of ref 8 where
it was found that the conformation of dendritic mol-
ecules drastically depends on the generation number,
with a soft, Gaussian-like profile resulting for small
generations and a “collapsed core” with soft tails for
larger generations. Nevertheless, it must be concluded
that the question of the overall structure of dissolved
dendrimers has not yet found a generally accepted
answer (see the discussion of this point in ref 11.)

Small-angle scattering conducted at different particle
concentrations may be useful for further elucidation of
this problem. Neglecting incoherent contributions, the
measured scattering intensity I(q) (q: magnitude of
scattering vector q; q ) (4π/λ) sin(θ/2); λ: wavelength of
radiation; θ: scattering angle) may be rendered as9,10

In eq 1, Fd ) Nd/V is the number density of Nd dissolved

I(q) ) Fd(Fj - Fm)2IS(q) S(q) (1)
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dendrimers in the sample volume V. The difference Fj -
Fm is the contrast of the scatterer toward the solvent,
whereby Fj is the average scattering length density of
the scatterer and Fm that of the solvent. IS(q) is the form
factor of the object, a quantity directly related to the
mass distribution of scattering centers within the
macromolecular aggregate, as will explained below.
Finally, the structure factor S(q) accounts for all inter-
particle correlations arising from the interactions be-
tween those. It must be emphasized that eq 1 is valid
only when there are no overlaps between the particles,
so that a sharp distinction between inter- and intra-
particle scattering contributions can be made. Hence,
it is strictly valid below the overlap concentration c*,
but it can also be used above c* if a central core of the
considered scatterers is labeled. All results we present
in this work are for dilute solutions, where eq 1 is valid.
Moreover, below the overlap concentration no deforma-
tions of the dendrimers are expected, so that a single
shape function T(r) (or form factor IS(q)) can be used
for all concentrations.

The effective interaction between dendrimer centers
is formally defined as follows:12,13 the centers of mass
of the dendrimers are kept fixed at prescribed positions,
and a canonical trace is carried out over all monomer
degrees of freedom. This procedure yields a constrained
free energy, depending on the instantaneous configu-
ration of the dendrimers’ centers of mass. Then, the
effective interaction energy between the dendrimers is
-kBT times the logarithm of this partition function,
where kB is Boltzmann’s constant and T is the absolute
temperature. When averaging over the dendrimers’
positions by employing the so-defined effective Hamil-
tonian, the thermodynamics of the system remains

invariant. In general, this procedure generates two-,
three-, and higher-order interactions between the cen-
ters of mass of the dendrimers. However, we will follow
usual practice and limit our considerations to two-body
potentials only; that is, we will make the usual pair-
potential approximation, introducing an effective pair
interaction Veff(R) between the centers of mass of two
dendrimers separated by the distance R. We comment
on the accuracy of the pair potential approximation in
section III. Since we are dealing with particles which
have an overall spherical shape, this effective inter-
action is spherically symmetric and depends only on the
magnitude of the vector connecting the two centers.

The structure factor S(q) is directly related to the pair
correlation function g(R) and hence to the total inter-
action potential of the solute molecules.17 Once Veff(R)
is known, the calculation of g(R) and S(q) follows from
the solution of any of the rich variety of so-called liquid
integral equation theories.17 For infinite dilution S(q)
) 1. Hence, from an experimental point of view, eq 1
shows that IS(q) may be obtained from SANS or SAXS
data which have been suitably extrapolated to vanishing
concentration.10

The structure factor S(q) gives direct information on
the steepness of the repulsion of the dissolved par-
ticles: in the case of hard spheres, a pronounced
structuring of the solution will occur, which leads to a
marked maximum of S(q).17 If the dissolved particles
interact via soft repulsion, the maximum of S(q) is
decreased. Recently, the problem of S(q) of star polymers
has been addressed.18,19 Here, it could be shown that
star polymers may be looked upon as ultrasoft colloidal
particles. The predictions of theory have met with
gratifying success when compared to SANS data mea-

Figure 1. Structure of dendrimer G4.
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sured for concentrated solutions of star polymers.20,21

Up to now, only a few experimental studies have
addressed the problem of the structure factor of dis-
solved dendrimers. Ramzi et al. studied concentrated
solutions of dendrimers by SANS.22 In the case of
uncharged dendrimers, these workers found a marked
depression of the peak of S(q) despite the strong
decrease of the structure factor at low q. They concluded
that the absence of a peak of S(q) is related to the
softness of interaction, which results from the high
internal flexibility of the dendritic structures. If charges
are added to the segments of the dissolved dendrimers,
a strong peak of S(q) is generated which is clearly traced
back to the screened Coulombic interactions of the now
charged species (cf. also ref 23.) A SANS study by Topp
et al. showed that the dendrimers under consideration
exhibited only a weak maximum of S(q), in particular
at lower generation.24 At high concentrations the evalu-
ation of data according to eq 1 did not lead to meaningful
results, which indicates a considerable change of the
conformation of the dendrimers in this regime. In the
dilute regime, no change of the intrinsic structure of the
dendrimers has been observed. This regime has been
studied in refs 15 and 16. The data of S(q) have been
interpreted in terms of a simplified model, treating the
dendrimers as effective hard spheres. It is hence evident
that the problem of S(q) of dissolved dendrimers is not
yet understood quantitatively.

In this work, we wish to apply a simple theory which
allows us to calculate the effective interaction between
dendrimer centers using the measured density profile
of an isolated dendrimer as a starting point. It turns
out that the interaction has a Gaussian form. Subse-
quently, we employ it to calculate theoretically the
structure factor S(q) of dissolved dendrimers at various
concentrations using the hypernetted chain (HNC)
approximation. The consequences of the internal flex-
ibility on the measured structure factor S(q) will be
discussed explicitly. Moreover, a quantitative compari-
son with the experimental data presented in ref 16 will
be given, showing excellent agreement. It will be
demonstrated that the radial density distribution T(r)
derived from scattering experiments may directly be
used to calculate S(q).

II. Theory

The starting point for the theory is the monomer
density profile F(r) around the center of mass of an
isolated dendrimer. The experiments of refs 15 and 16
offer a direct access to this quantity, through the so-
called shape function T(r). The scattering intensity IS(q)
from a solution of dendrimers at infinite dilution has
been written as (see eq 18 in ref 15)

meaning that T2(q) is the form factor of the dendrimer
and hence T(q) the Fourier transform of T(r). Hence, as
already pointed out in ref 15, T(r) is a “shape function”
that describes the way in which F(r) varies in space. This
shape function is dimensionless; hence, we may write

where F0 is a constant having dimensions of density
(length-3) and which will be specified now. Equation 3

together with eq 2 of ref 15 implies

where Vp is the measured partial volume of the solute
molecule. On the other hand, the integral of F(r) has to
yield the total number of monomers N within the
dendrimer, and this fact together with eq 4 implies

The shape function T(r) is determined by an inverse
Fourier transform of T(q), the latter being given by eq
20 of ref 15. Ignoring the “tail” (aq2 + bq) exp(-dq2)
there, which only has a minor effect on the profile in
the neighborhood r = 0, we have

From eq 6 and after an inverse Fourier transformation,
we readily obtain

It can be easily seen that ∫dr T(r) ) Vp, in agreement
with eq 2 of ref 15.

From eqs 5 and 7 we obtain the monomer density as

We now assume that two such dendrimers are kept
with their centers of mass at a separation R apart and
wish to calculate the ensuing interaction potential. Let
us assume that the monomer-monomer interaction
potential is given by some function v(r1 - r2) where r1
and r2 are the positions of the two monomers. In the
mean-field approximation, i.e., ignoring the correlations
and possible deformations of the dendrimers, the total
interaction potential Veff(R) can be approximated by a
double integral over the unperturbed density profiles
times the monomer-monomer interaction kernel.25 This
approximation should hold when the dendrimers are not
too deeply interpenetrating and reads as

We now make the simplest possible assumption and
model the monomer-monomer interaction by a delta
function (contact repulsion):

introducing the excluded-volume parameter v0. Equa-
tions 9 and 10 then yield

In this approximation, the interaction is proportional
to the convolution of the monomer density of a single
dendrimer with itself. But each density profile has the
form N(R/π)3/2 exp(-Rr2), i.e., N times a normalized
Gaussian with width parameter R. It is known that the
convolution of a normalized Gaussian having width R

IS(q) ) T2(q) (2)

F(r) ) F0T(r) (3)

∫dr F(r) ) F0Vp (4)

F(r) ) N
Vp

T(r) (5)

T2(q) ) Vp
2 exp(-q2Rg

2/3) (6)

T(r) ) Vp( 3

2πRg
2)3/2

exp(- 3r2

2Rg
2) (7)

F(r) ) N( 3

2πRg
2)3/2

exp(- 3r2

2Rg
2) (8)

Veff(R) ) ∫∫dr1 dr2 F(r1) F(r2 - R) v(r1 - r2) (9)

v(r1 - r2) ) v0kBTδ(r1 - r2) (10)

Veff(R) ) v0kBT ∫dr F(r) F(r - R) (11)
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with itself is again a normalized Gaussian, but with
width R/2. Hence, eqs 8 and 11 yield the final result:

The effective potential depends only on the magnitude
R ) |R| of the center-to-center separation, because of
rotational symmetry. Note that the interaction potential
of eq 12 is identical to the Flory-Krigbaum effective
interaction potential between the centers of mass of two
polymer chains.26 The fact that we are dealing with
dendrimers enters into the relation between N and Rg.
For long, self-avoiding chains, Rg ∝ N3/5 holds; in the
present study this is not the case, and we determine
both quantities from experiment.

The important feature is that the resulting interaction
has a Gaussian form:

with

and

The task is now to calculate ε from the experimental
data. The number of monomers per dendrimer is N )
94 (see Figure 1) where the aromatic end groups are
also included in the counting as “single monomers”.

Next we need an estimate for the excluded-volume
parameter v0. For this, we set v0 ) l0

3, where l0 is the
monomer length. Taking the realistic value l0 ) 0.4 nm
for the latter quantity, we obtain

The above values together with the experimentally
determined gyration radius Rg ) 1.85 nm yield

The corresponding value for linear chains is about
2kBT.28 Hence, the energy barrier for the dendrimers
at hand is about 5 times higher as that for linear chains,
a result that is physically reasonable as dendrimers are
more compact objects than chains. A general study of
the structural and thermodynamic properties of a
system of particles interacting by a Gaussian potential
(the “Gaussian core model”, GCM) has been presented
recently.27 The GCM shows no freezing for ε j 100 (see
ref 27); hence, we conclude that the system of dendri-
mers at hand will remain fluid at all concentrations.

Next, we express the density of dendrimers in units
that are more convenient. Since there are Nd dendrimers
in the volume V, the density Fd of dendrimers is Nd/V.
In ref 15, the volume fraction φ was used which is

related to Fd by

To suppress the dependence on Vp, it is natural to use
as the unit of length the parameter σ of the pair
potential and to introduce a dimensionless measure of
the density, namely

which may be regarded as an effective volume fraction
of the dissolved dendrimers. From eqs 15, 18, and 19
we obtain

where the known values Rg ) 1.85 nm and Vp ) 15.1
nm3 have been used.15

For every value of η, the hypernetted chain (HNC)
equation17 for a system interacting via âv(r) ) 10.42 ×
exp(-r2/σ2) was solved, and the structure factor S(q) was
obtained as a function of qσ. Using eq 15, we obtain σ
) 2.136 nm. This is in close agreement with the effective
radius of 2.4 nm estimated in ref 15 by a simple model
valid only for dilute solutions. In what is to follow the
q-scale was reexpressed in nm-1 units.

III. Results and Discussion
As can be seen from Figure 2, the Gaussian interac-

tion potential yields excellent agreement between theory
and experiment at all three concentrations measured.
Moreover, this is achieved without the use of free fit
parameters, and it is physically reasonable that soft,
interpenetrable objects such as dendrimers interact by
means of a correspondingly soft interaction. The bound-
edness of the effective interaction at zero separations
between the dendrimer centers is also physically cor-

Veff(R) ) N2( 3

4πRg
2)3/2

v0kBT exp(- 3R2

4Rg
2) (12)

Veff(R) ) ε exp(- R2

σ2) (13)

ε ) N2( 3

4πRg
2)3/2

v0kBT (14)

σ ) x4
3
Rg (15)

v0 ) 0.064 nm3 (16)

ε ) 10.42kBT (17)

Figure 2. Experimentally measured (points) and theoretically
calculated (curves) structure factors S(q) for solutions of
dendrimers at three different concentrations. The theoretical
curves have been obtained by employing a Gaussian effective
interaction between the dendrimers.

φ ) FdVp (18)

η ) π
6

Fdσ3 (19)

η ) π
6(43)3/2Rg

3

Vp
φ ) 0.338φ (20)
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rect: configurations where the centers of mass of two
dendrimers coincide are possible, without violation of
excluded-volume conditions; hence, the effective poten-
tial does not diverge at the origin. This is quite
analogous to the case of polymer chains, where the
effective interaction is known to be Gaussian.13,28

The precise numerical value ε ) 10.42kBT of the
energy barrier, eq 17, yields an optimal agreement with
the experimental data. However, small deviations from
this value can also be tolerated, and by comparing with
the SANS data, we have established the limits in which
this parameter can vary as 8.0 j ε j 12.0, yielding a
corresponding tolerance interval 0.370 nm j l0 j 0.425
nm for the “effective monomer length” l0.

A prominent characteristic of the Gaussian potential
at the reduced temperatures considered here (and also
at higher ones) is its property to yield structure factors
which do not show any pronounced peak with increasing
density, in direct contradistinction with hard, diverging
interactions such as the hard-sphere (HS) potential.27

To demonstrate this point, we have also attempted to
fit the experimental data using a hypothetical HS
interaction between the dendrimers, with the HS di-
ameter σHS as a fit parameter. The results are shown
in Figure 3. The best fit at the lowest concentration is
obtained by the choice σHS ) 1.95Rg, which is thereafter
kept constant. The reason for keeping σHS unchanged
in the dilute regime is that the shape and size of the
dendrimers themselves remain unchanged. This also
makes the comparison between the GCM and the HS
models fair, as the parameters of both potentials are
held density-indepenedent. Besides, a putative better
fit with a density-dependent effective hard-sphere di-
ameter σHS would only be another way of saying that
the true effective interaction is not a hard-sphere one.
It can be seen that the fit quality worsens with increas-
ing density, as the HS interaction yields a too high peak
as well as a structure factor at low q values which lies
below the experimental data. However, as we are in the
very dilute regime, the strong differences between the
structure factors produced by these two interactions

(Gaussian and HS) are not very pronounced. These
differences become evident only if one looks at higher
densities. The result found here is therefore in agree-
ment with the findings of ref 15. There it has been found
that modeling the structure factor in terms of a simple
hard-sphere ansatz leads to a satisfactory description
of the data in the region of lowest volume fractions.

It is therefore evident that a more stringent test of
theory can only be achieved by SANS studies conducted
at much higher concentrations. Experiments using the
G4 and G5 dendrimer used in refs 15 and 16 are under
way. Here we present further evidence for the validity
of the proposed interaction by comparing with and by
offering a theoretical explanation for data already
existing in the literature.22,24

In Figure 5 of ref 22, Ramzi et al. display the
experimentally determined structure factor for a very
wide concentration range of dendrimers, ranging from
dilute to above the overlap concentration. It is seen that
S(q) is deprived of any significant structure; it has a
weak peak of height ∼1.1 at intermediate concentra-
tions, and thereafter the peak disappears and S(q)
becomes a monotonic function of q. At the same time,
this phenomenon is accompanied by a monotonic reduc-
tion of the osmotic compressibility of the solution, the
latter being proportional to the q f 0 limit of S(q). This
is precisely the behavior of S(q) of the Gaussian core
model.27 The latter has a freezing and reentrant melting
transition with increasing density at energies ε g
100kBT, meaning that the liquid S(q) has an anomalous
dependence on the density: the height of its principal
maximum grows up to a certain density, and then it
diminishes again. As the temperature is increased, the
anomaly in S(q) remains, but the height of the principal
peak becomes smaller. In order to provide a semiquan-
titative comparison with the data of ref 22, we show in
Figure 4 the evolution of S(q) of the GCM with density
for an energy barrier ε ) 10kBT and packing fractions
η ) 0.01-2.00, corresponding to φ j 0.67. A striking
similarity with the results of ref 22 can be easily seen.

Similar conclusions hold when we compare our pre-
dictions with the scattering data of Topp et al., Figures

Figure 3. Same as Figure 2, but now the theoretical curves
have been obtained by employing a hypothetical hard-sphere
(HS) interaction between the dendrimers, with a HS diameter
σHS ) 1.95Rg.

Figure 4. Structure factor of the Gaussian core model at
energy ε ) 10kBT as a function of the “packing fraction” η given
in eq 19. From left to right: η ) 0.01, 0.02, 0.05, 0.10, 0.20,
0.40, 1.00, and 2.00.
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7 and 8 in ref 24. There, the S(q)’s from samples of two
different dendrimers are displayed; the same anomalous
dependence of S(q) on the concentration is seen, with
the additional feature that the S(q)’s from the dendri-
mers with the larger generation number have higher
peaks than their counterparts from the smaller den-
drimers at the same concentration. In our language, a
larger generation number, which implies a larger mono-
mer number N, corresponds to a higher energy barrier
ε; see eq 14. This automatically causes S(q) to develop
stronger peaks for larger generation numbers.

Of particular interest is the shape of S(q) for very high
concentrations which, as can be seen in refs 22 and 24,
is a monotonic function of q. This behavior can be fully
understood in the framework of the Gaussian inter-
action potential. It has been recently shown that
bounded potentials in general show at high densities a
particular “mean-field behavior”.27,29,30 The direct cor-
relation function c(r) in this limit becomes equal to
-âv(r), where v(r) is the interaction potential at hand
and â ) (kBT)-1. For the case of the Gaussian potential,
this implies that the structure factor at the high density
limit takes the form27,30

or, more generally, for any bounded potential v(r)29,30

where ṽ(q) is the Fourier transform of v(r). Equation
21 shows that, for the GCM, S(q) has the form of a
“smoothed out” step function. It is small at low q’s and
approaches unity at high q’s, as ṽ(q) f 0 there. The
same conclusion holds, actually, for any bounded po-
tential whose Fourier transform is a monotonically
decaying, nonnegative function of q,29 as can be seen
from eq 22.

The anomalous behavior of the peak heights of the
structure factor would be impossible if the assumed
interaction between dendrimers were diverging at the
origin as any power law. Indeed, power-law systems are
known to undergo a freezing transition, this implying
that the corresponding S(q) develops stronger and
stronger peaks with increasing density until, ultimately,
freezing occurs when the principal peak reaches the
quasi-universal Hansen-Verlet value 2.85.31 Hence,
effective dendrimer-dendrimer interactions with such
kinds of divergence at the origin can be immediately
ruled out. This argument, however, does not rule out
all diverging interactions. Indeed, the peak-height
anomaly has also been observed in the framework of a
theoretical treatment of star polymers,19 whose effective
interaction is diverging logarithmically at the origin.
This behavior, which has also been experimentally
seen,32 is again intimately related to the reentrant
melting behavior of these systems.33,34 In fact, it has
already been suggested24 that dendrimers may resemble
star polymers below the critical arm number fc ) 34 at
which crystallization is marginally possible.33-35 How-
ever, at variance with the Gaussian interaction, the
star-star effective potential20 does not have a mean-
field high-density limit, and the structure factor of stars
never becomes a monotonic function of q, even at
extremely high densities,19 a feature which appears for
bounded interactions only. In this respect, there is a

difference between the effective interaction between the
central monomers of two dendrites or two stars (which
diverges) and that between their centers of mass (which
does not).

On purely theoretical grounds, the underlying as-
sumptions leading to the derivation of the logarithmic
interaction between star polymers do not hold for
dendrimers. Unlike stars, dendrimers do not obey a
power-law dependence of the density profile around the
center; they show no self-similarity, captured in the
Daoud-Cotton blob model of the stars,36 and they are
at least 1 order of magnitude smaller than star poly-
mers, with the implication that many of the notions of
polymer physics based on long chains and universality
cannot be automatically carried over to dendrimers.

We conclude this section with a remark on the
accuracy of the pair potential approximation. Though
many-body forces between the dendrimers are neces-
sarily present in the solution, there are good reasons to
believe that their effect can be neglected to a very good
approximation. This belief is based on one hand on the
corresponding findings on star polymers.37 By a direct
measurement of the triplet forces, it was established
there that these have a very small effect on the total
force on a star center, and this only shows up at
concentrations considerably beyond the overlap value.
On the other hand, a recent simulational work by Louis
et al.28 reached a similar conclusion for single chains.
There, it was found that the pair potential yielding the
correct thermodynamics of the system remains density-
independent up to the overlap concentration and dis-
plays only a very weak density dependence above the
latter. This density dependence is, of course, just
another way to formulate the many-body effects. Once
more, they were found to be of minor significance.
Barring any dramatic alterations in the conformations
of single dendrimers upon increasing density (such as
collapsing), we expect the Gaussian pair potential
picture to capture the salient characteristics of the
behavior of this system at all concentrations.

IV. Summary and Conclusions
By using the density profile of an isolated dendrimer

and the experimentally determined characteristics of
the macromolecules as input, we derived an effective
interaction between the dendrimers’ centers of mass
which is Gaussian in form. By direct comparison with
experimental data at dilute solutions, we show that this
interaction provides an excellent description of the
measured structure factor. Moreover, it reproduces
correctly the as of now unexplained trends and features
of experimental structure factors at higher densities. A
direct comparison with SANS data at high concentra-
tions is, evidently, of crucial importance for further
putting the proposed theory into a strong test. Work
along these lines is currently in progress.
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82, 5289.

(34) Watzlawek, M. Phase Behavior of Star Polymers; Shaker
Verlag: Aachen, 2000.

(35) Witten, T. A.; Pincus, P. A.; Cates, M. E. Europhys. Lett. 1986,
2, 137.

(36) Daoud, M.; Cotton, J. P. J. Phys. (Paris) 1982, 43, 531.
(37) von Ferber, C.; Jusufi, A.; Likos, C. N.; Löwen, H.; Watzlawek,
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