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Fluid of penetrable spheres: Testing the universality of the bridge functional

Yaakov Rosenfeld
Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190, Israel

Matthias Schmidt, Martin Watzlawekand Hartmut Leven
Institut fir Theoretische Physik I, Heinrich-Heine Univergitausseldorf, Universittsstrasse 1, 40225 Bseldorf, Germany

(Received 23 May 2000

Penetrable spheres have been the object of recent extensive investigations as a prototype for intermicellar
interactions in a solvent, and as representing a class of bounded potentials allowing complete interpenetrability
of the particles. Here we compare density-functional and simulation results for the pair-correlation functions in
a bulk fluid of penetrable spheres, as a stringent test for the approximation of “universality” of the bridge
functional. Considering either a fundamental-measure functional for penetrable spheres or a perturbative treat-
ment using a fundamental-measure hard-sphere functional, we conclude that hard-sphere-type bridge function-
als are applicable also for bounded potentials with high penetrability.

PACS numbgs): 61.20.Gy, 05.70.Ce, 82.70.Dd, 61.25.Hq

[. INTRODUCTION Yevick pair correlations as obtained with the FMT for hard
spheres are an exception which proves the case. The reason
There has been continuous progress in the theory of norfer such failures is that even generally accurate free-energy
uniform classical fluids in recent years, bringing new ap-functionals will develop certain errors when functionally dif-
proximations and models within density-functional theoryferentiated, especially to second and higher orders. Neverthe-
[1,2]. The central quantity is the Helmholtz free-energy func-1€ss, any approximate excess free-energy functional can be
tional, F[p(r)], of the inhomogeneous density distribution, Self-consistently corrected up to second order by employing
p(r). The geometrical character of the hard-sphere interacthe corresponding bridge functional in the test-particle limit
tions, which has been a major reason for their long-standingl4—18. Moreover, the approximation of “universality of
central role in the microscopic theory of classical fluids, alsofhe bridge functional'{14—19 enables us to use the accurate
simplifies the construction of model functionals, and eventuFMT hard-sphere functionaléwith optimized hard-sphere
ally led to the geometrically based so-called fundamentalfadii when applicablein order to obtain free-energy func-
measure theory(FMT) [3]. Several very recent analyses tionals for arbitrary pair interactions. Of particular impor-
[4—6] revealed the important role played by the dimensionafance is the possibility to solve accurately the inverse scat-
crossover properties of the fundamental-measure functionaléring problem(i.e., obtain the pair potential from a known
and in particular their zero-dimensionédD) limit corre-  Structure factor[17,18. However, we should not forget the
sponding to a cavity with at most one particle. Recent studie§eometrical nature of the hard-sphere interaction, which
showed5,6] that the correct 0D crossover can be systematineans that, e.g., systems with a tendency to form pairs and
cally imposed, and the exact OD limit plays the role of ahigher-order clusters due to their attractions or peculiar re-
generating functional foD-dimensional hard-sphere FMT Pulsion are not expected to be well treated with the hard
functionals. The original FMT3] together with its exten- Spheres as reference. In particular, the pairing in electrolytes
sions and modificationgl—6] proved very successful for de- [22] cannot be addressed by invoking the hard-sphere bridge
scribing the inhomogeneous hard-sphere fluid, and sophistfunctional. In this paper we focus attention on the system of
cated algorithms for implementing the hard-sphere FMT inP€netrable spheres, i.e., particles that can sit on top of each
complex geometries have been developed recgdflyFMT  other with a finite energy cog20]. We employ both the
has also been app“ed Successfu”y to para||e| hard C[Bjes hard—sphere and the penetrable-sphere FMT functionals in
and a possible extension of FMT to general hard converder to obtain a stringent test of the approximation of uni-
bodies was offere@d]. Very recently, the FMT was gener- Versality of the bridge functional.
alized to penetrable spherg9] and to soft interactiongl 1], The system under consideration is a fluid of penetrable
with particular extensions to star polymer soluti¢ag] and ~ spheresPS interacting via the following pair potential:
colloid-polymer mixtureg13].

It should be noted, however, that the Ornstein-Zernike d(r)=0 if r>2R,
equations using the second functional derivativies., the D
direct correlation functionsof the generally accurate FMT Pp(r)y=e if r<2R,

free-energy functionals do not always yield positive definite
and physically acceptable bulk pair correlations. The Percusand characterized by the reduced temperatilifes kgT/ €,
and reduced densityy=4mpR%/3. For e= (i.e., for T*
=0), this system corresponds to the hard sphé#s, and
*Present address: Central Research, Building E 41, Bayer AGhen » is the standard hard-sphere packing fraction. This
D-51368 Leverkusen, Germany. system is of interest as a prototype for the interaction be-
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tween micelles in a solverf23], and was investigated re- bridge functional vanishes, and the density profile equation
cently by several method&0]. It is the simplest of the class (2) then has the hypernetted-chain-approximati¢iNC)

of bounded interactions which allow penetrability, anotherform.

example being the Gaussian core mod&!,21] which was An elementary test of the accuracy of a model free-energy
recently shown to arise between the centers of star polymeffginctional for a given pair potentiab(r), and of the corre-

if the polymeric arms are treated in the harmonic approximasponding bridge functional, is performed by considering the
tion [25]. Although diverging at the origin, an ultrasoft pair density profile equation for the same potential in the special
potential between star polymel26] was validated by simu- C@se when the external potential is generated bysépar-
lations [27]. The glass transition for the penetrable spheredicle at the origin of coordinatesi(r)= ¢(r). The resulting
was investigated by simulationg28]. Standard integral- density profiles correspond to the bulk pair-correlation func-
equation theories for the bulk pair structure employ closuredions, g(r) =p(r)/po. The test-particle limit of the density
which are biased towards the concept of a hard core in thBrofile equations takes the forfi4—16

pair correlation, and thus are less accurate for penetrable S(r)
sphereqd20]. A very recent work{29] demonstrated a suc- g(r)=ex;< - F—b(r)

cessful approximate closure relation for penetrable spheres B

which employs, however, three free parameters which are _ ..

determined from thermodynamic self-consistency require- +poJ dr’'c@FP)(pg;[r—r'Hh(r") |, 4
ments, in particular the zero-separation theorem. As will be

shown below, comparable accuracy can be obtained from th@hereh(r)=g(r)—1, and the bridge functior(r), is de-
penetrable-sphere FMT bridge functional without any freeryed from the bridge functional Bpg;p(r);r] by using
parameters, or from the hard-sphere FMT functional by op-p(r*):p g(r)
timizing the effective radius. RN

b(r)=B[po;pog(r);r]. ®)

ll. FREE-ENERGY FUNCTIONALS, BRIDGE The exact free-energy functional must obey thetest-
FUNCTIONALS, AND THE TEST-PARTICLE LIMIT particle self-consistenty the exactg(r) as obtained from
The starting point for the application of the density- the solution of the exact coupled density profile equati@ns

functional method for both uniform and nonuniform fluids is 21d (5) is identical to that obtained from the Ornstein-
the density-profile equation, i.e., the Euler-Lagrange equ Zernike relation using the direct correlation function from
tion for minimizing the grand potentidil]. The equations the second functional derivative of the functional

determining the density profile(r) for the fluid subject to _ (2FD), . . f S, (2FDY, . 7o )
an external potentiali(r) can be written in the modified h(r)=c (poi")Fpo | dr'c (po:|r=r"Dh(r").
hypernetted-chaifMHNC) form [30,14—16 involving the (6)

bridge functional whlch is related to the sum of all terms siven a model free energy based on an approximate bridge
beyond second order in thia functional Taylor expansion O?unctional, it can beoptimized up to second ordéy impos-
the excess free ener@y,{ p(r)] around some reference den- ing the test-particleself-consistencySC) [14—16 which is
sity. For a fluid in contact with a reservoir bulk fluid, of achieved bycoupling the density-profile equation&) and
average density,, the density profile equations can be writ- (5) with the Ornstein-Zernike relatiof6). A measure of the
ten in the following form: accuracy of an approximate excess free-energy functional for
the potentiakp(r) is given by the degree of test-particle self-
R u(r) o consistency obtained by comparisoft©®)(p,;r) with the
Ing(r)=—1— ~Blpo;p(r);r] self-consistent result®S9(py:r).
B This method can be used also for potentials for which the
R . R free-energy functional is not available. The assumption one
+Pof dr'c P (po;lr—r'D[g(r')—1]. (20  makes leading to the “universality” hypothesis is that the
bridge functional iSapproximately independent of the pre-
cise form of the pair interaction, hence it is regarded as being
a universal quantity that can be obtained from any appropri-
@2FD)( 7 = 5 - - - ate givenreferencepotential. When the potential and the
C="(r1,ra)=—0"Fefp(r)/kgTop(r1) 6p(rz), and the reference potential are different, then it is possibleopi-
“Bridge” functional is given by[14-1§ mize the reference-system parameteysfree-energy mini-
mization that leads to an equation of the fofiba—16

Here g(r) = p(r)/po, is the bulk limit of the direct correla-
tion function given by the second functional derivative

Lo e F);F e
B[po;p(r);r]=M X[lfB(T ]—Mki?]

J drg(r) —g""*"¢r)] ab(r) 0. (7)

+p0j dr’c@FP)(po:|r—r'D[g(r’)—1], As the hard-sphere FMT is an especially successful theory, it
is expected that it gives a reasonable approximation for the
(3)  bridge functional, and the method is, in principle, applicable
o . . to any pair potential. The penetrable-sphere system, how-
whereugl p(r);r]=—06Fglp(r)]/dp(r). By truncating the ever, is a stringent test case, as iaipriori unclear whether
expansion of the excess free energy after second order, thiee universality extends to systems without hard core. The
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hard-sphere FMT functional realizes the nonoverlap crite- 3 T
rion, whereas the penetrable-sphere FMT takes into account . MC
the effect of potential energy of overlapping particles. —  HNC
------------ SC-HS, 1'=0.32
2 ——- SC-PS T
lll. RESULTS AND DISCUSSION —-— OZ-PS

a(r)

In this paper we compare simulation results for the pair- ]
correlation functions in the bulk fluid of penetrable spheres, 1
with the following four approximationgi) The hypernetted-
chain approximatioriobtained by ignoring the bridge func-
tions altogether denoted HNC(ii) The bulk pair correla-
tions as obtained via the Ornstein-Zernike relation from the 0
direct correlation functions as given by the second functional r'c
derivatives of the penetrable-spheres FMT free-energy func-
tional, denoted by OZ-PSiii) The bulk pair correlations as
obtained from the solution of the test-particle self- b
consistency equations using the penetrable-spheres FMT ( )

functional, denoted SC-PS. This is equivalent to using the 18
bridge function in Eq.(4) as obtained from the penetrable- -
spheres FMT bridge functional through E§), without any K=
adjustment of parameter6v) The bulk pair correlations as ”w

obtained from the hard-spheres FMT bridge functional, with - MC

an optimal value for the reference hard-sphere packing frac- 05 | s 032
tion, denoted SC-HS. The comparison of OZ-PS and SC-PS 4 . SC-PS

and both with the simulations reveals the accuracy of the i —-— 0Z-PS
penetrable-sphere FMT and its level of self-consistency. The % 5 10 15 20 25
comparison of SC-PS and SC-HS and both with the simula- qo

tions enables us to test the “universality” hypothesis.

We compared an extensive set of Monte Cafi\éC) ' ' '
simulation results with many solutions of density-profile 7 \\ (C) — HS bridge, HNC 7
equations, for bulk pair correlations, of which we display N e HS bridge, DFT
graphically only two extreme representative cagas:sub- 5 o, ——- PSbridge, HNC _
stantial but relatively low penetrabilition average less than a0\ ~ -~ PShbridge, DFT

two particles with interpenetrating cojesT*=0.2, 7
=0.35; and(b) high penetrability, mean field31] cases: 4
<T*=y=<12. In the context of this paper, we must first
consider the behavior of the HNC approximation, which ig-
nores the bridge functions altogether. Recall that for hard
spheres the HNC overestimates the first pealg@f) just
outside the core. With increasing penetrability, the HNC re- 0 0.5 1
sults outside the core become almost indistinguishable from ric

. . I for T*=0.2, =0.35. The lines and symbols represent the MC
estimation of the penetrability, namely g{r) close to zero simulations(open circley HNC (full line), method OZ-PSshort-
separation[Fig. 1(a)]. With increasing penetrability, the !

HNC | h imulati . inalv b dash—long-dash linge method SC-PSdashed ling and method
results represent the simulations increasingly etterSC-HS(dotted ling, with the value of the reference packing frac-

both inside f_:md 0l_JtS|de the core. In the high penetrability;y,, 7+ =0.32.(b) Structure factorsS(k) corresponding tda). (c)
region, the simulations are reproduced very W8ll| by the  gyjqge functions,b(r), as calculated by the bridge functionals:
mean field(mean spherical approximation, denoted MSA penetrable-sphere functional with the Hil6ng dash ling and the
for the direct correlation function, i.eg(r)=—¢(r)/kgT,  method SC-PSshort-dash—long-dash ling(r) results as input;
and even better results are obtained with the HNC. hard-sphere functional, with indicated reference packing fraction
For cases of typéa), both SC-PS and SC-HS significantly »=0.32, with the HNC(full line), and the method SC-H@&lotted
improve on the HNJFig. 1(a)], and the overall picture is line) g(r) results as input.
better seen in Fig.(b) for the structure factor. With respect
to SC-HS, it should be emphasized that according to theable. Instead, in order to see to what extent the approxima-
standard criterion usually applied for optimizing the refer-tion of “universality” holds even when the hard-sphere ref-
ence hard-sphere radius, an integral of a weighted differencerence is no longer expectedpriori to be good, we have
between the reference hard-sphere and the penetrable-spheegied the value of the reference packing fraction in the hard-
pair correlations has to vanish. However, when the penetrasphere bridge functional in order to see how it affects the
bility is non-negligible, and the pair correlations manifestly bridge functions. The comparison with simulations shows
belong to different classes, this criterion is no longer appli-that the reference parameter can be chosen by imposing any

b(r)
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single thermodynamic consistency criterion. Indeed, with an 14
appropriately chosen value of the packing fraction for the
reference hard-sphere systesnf,, the bridge functions from
method SC-HS are comparable to those from method SC-PS 1.2
[Fig. 1(c)]. The accuracy of OZ-PS for penetrable spheres is
comparable to that of the same method, namely the Percus-
Yevick result, when applied via the FMT functional for the
case of hard spheres. As for hard spheres, the test-particle

limit results for the penetrable-sphere functional improve on 0.8

the corresponding Ornstein-Zernike results, i.e., SC-PS is 08

more accurate than OZ-PS. However, the difference between

the SC-PS and OZ-PS results is relatively small, demonstrat- 07, 1 2

ing that the new penetrable-sphere functional obeys quite r'c

well (to about the same extent as the corresponding FMT

theory for hard sphergshe “test-particle self-consistency” FIG. 2. Pair-correlation functiog(r) for penetrable spheres for

between the density-profile and the Ornstein-Zernike equal” = 7=4.6.8,10,12. Method OZ-P8lashed ling compared with
tions. Thus, by comparison with the simulations boththe MC simulation resultéhin line). On the scale of the figure, the

density-functional treatments are quite successful. We furtiNC and MSA results are almost indistinguishable from the simu-

thermore conclude that the hard-sphere bridge functional itions. and therefore are not shown.

applicable even for bounded potentials with substantial penspheres, considering either a fundamental-measure func-
etrability. tional for penetrable spheres or a perturbative treatment us-
With increasing penetrability and the increase of the acing a fundamental-measure hard-sphere functional in com-
curacy of the HNC, then the method SC-HS based on thgarison with simulations, we conclude that hard-sphere-type
hard-sphere bridge functional with a judicious choicenf  bridge functionals are applicable also for bounded potentials
will automatically work well since thermodynamic consis- with high penetrability. In particular, the penetrable-sphere
tency will naturally imposen* <1 (i.e., the HNQ. This, bridge functional, as a generalization of the hard-sphere
however, represents a favorable feature of the method whichMT functional, is applicable without any adjustable param-
automatically resorts to the HNC when the HNC becomesters for arbitrary penetrability including the special case of
thermodynamically consistef80], but it does not mean that hard spheres. Moreover, the PS bridge functional can be em-
the bridge functional itself is accurate. In turn, the ployed for the treatment of bounded potentials other than PS

penetrable-sphere bridge functional does not contain any fré@emselves. Then the penetrable spheres act as a reference
ystem with adjustable parametersand R, and the same

parameters when applied to penetrable spheres, so that r‘% , ) . :
performance in the test-particle limit checks its intrinsic ac-tneoretical framework can be used as in the case of diverging

curacy. Considering cases of tyjg), the pair-correlation interactions and the hard-sphere bridge functional with ad-

function g(r) in the regime of high penetrabilityT* = » JustableR
=4,6,8,10,12, is shown in Fig. 2. We see that OZ-PS de-
ST ACKNOWLEDGMENT
scribes the behavior quite well, while SC-PS essentially co-
incides with the HNC and the simulations. Y.R. thanks the Humboldt Foundation for generous

In summary, by investigating the bulk fluid of penetrable support.

[1] R. Evans in,Fundamentals of Inhomogeneous Flyidslited [9] Y. Rosenfeld, Phys. Rev. &0, R3318(1994; Mol. Phys.86,

by D. HendersoriDekker, New York, 199 H. Lowen, Phys. 637 (1995.
Rep.237, 249 (1994. [10] M. Schmidt, J. Phys.: Condens. Mattet, 10 163(1999.
[2] New Approaches to Old and New Problems in Liquid State[11] M. Schmidt, Phys. Rev. B0, R6291(1999; 62, 3799(2000);
Theory edited by C. Caccamo, J.P. Hansen, and G. 8t&ll- 62, 4976(2000.
wer, Dordrecht, 1999 [12] B. Groh and M. Schmidfunpublishedl
[3] Y. Rosenfeld, Phys. Rev. Let3, 980 (1989; see also the [13] M. Schmidt, H. Laven, J.M. Brader, and R. Evans, Phys. Rev.
short review Y. Rosenfeld, J. Phys.: Condens. Ma#te9289 Lett. 85, 1934(2000.
(1996 [14] Y. Rosenfeld, J. Chem. Phya8, 8126(1993.
[4] Y. Rosenfeld, M. Schmidt, H. lwen, and P. Tarazona, J. [15] Y. Rosenfeld, Phys. Rev. Let72, 3831 (1994; J. Chem.
Phys.: Condens. Matt& L577 (1996; Phys. Rev. 55, 4245 Phys.99, 2857(1995.
(1997. [16] Y. Rosenfeld, Phys. Rev. B4, 2827(1996.
[5] P. Tarazona and Y. Rosenfeld, Phys. Re®5=R4873(1997). [17] G. Kahl, B. Bildstein, and Y. Rosenfeld, Phys. Rev64& 5391
[6] P. Tarazona, Phys. Rev. Le@4, 694 (2000. (1996.
[7] LJ.D. Frink and A.G. Salinger, J. Comput. Phyi&9 407  [18] Y. Rosenfeld and G. Kahl, J. Phys.: Condens. Ma®et89
(2000; 159, 425(2000. (1997.

[8] J.A. Cuesta, Phys. Rev. Le#t6, 3742(1996; J.A. Cuesta and [19] Y. Rosenfeld, Mol. Phys94, 929 (1998.
Y. Martinez-Ratonjbid. 78, 3681(1997; J. Chem. Physl107, [20] C.N. Likos, M. Watzlawek, and H. lwen, Phys. Rev. 58,
6379(1997). 3135(1998.



5010

[21] A. Lang, C.N. Likos, M. Watzlawek, and H. en, J. Phys.:
Condens. Mattei 2, 5087 (2000.

[22] D.M. Zuckerman, M.E. Fisher, and B.P. Lee, Phys. Re&6E
6569(1997).

[23] C. Marquest and T.A. Witten, J. Phy¢France 50, 1267
(1989.

[24] F.H. Stilinger and T.A. Weber, J. Chem. Phy88, 3837
(1978; F.H. Stillinger and D.K. Stillinger, Physica 244, 358
(1997.

[25] H. Graf and H. Laven, Phys. Rev. 57, 5744(1998.

ROSENFELD, SCHMIDT, WATZLAWEK, AND LONVEN

PRE 62

[26] C.N. Likoset al, Phys. Rev. Lett80, 4450(1998.

[27] A. Jusufi, M. Watzlawek, and H. lveen, Macromolecule82,
4470(1999.

[28] W. Klein et al, Physica A205 738(1994.

[29] M.J. Fernaud, E. Lomba, and L.L. Lee, J. Chem. PAgs810
(2000.

[30] Y. Rosenfeld and N.W. Ashcroft, Phys. Rev. 20, 1208
(1979.

[31] C. N. Likos, A. Lang, M. Watzlawek, and H. hgen (unpub-
lished.



