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Effect of geometrical confinement on the interaction between charged colloidal suspensions
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The effective interaction between charged colloidal particles confined between two planar like-charged walls
is investigated using computer simulations of the primitive model describing asymmetric electrolytes. In detail,
we calculate the effective force acting onto a single macroion and onto a macroion pair in the presence of
slitike confinement. For moderate Coulomb coupling, we find that this force is repulsive. Under strong-
coupling conditions, however, the sign of the force depends on the distance to the plates and on the interpar-
ticle distance. In particular, the particle-plate interaction becomes strongly attractive for small distances which
may explain the occurrence of colloidal crystalline layers near the plates observed in recent experiments.
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[. INTRODUCTION responds to a finite system where the Poisson-Boltzmann
approach does not lead to attract[d2] and the second situ-
There is recent experimental evidence that the effectivation is a quasi-two-dimensional setup which is known to
interaction between like-charged colloidal partiqfésacro-  behave qualitatively differently from a three-dimensional
ions”) is sensitively affected by a confinement between twosituation [13]. A further complication arises from image
parallel charged glass platEs—3]. For aqueous polystyrene charges induced by the different dielectric constants of the
suspensions studied in experiment, the effective force beglass and the solvefii4-1§.
tween two colloidal macroions is found to be repulsive far A general problem of any theoretical descripti¢ike
away from the plates but becomes attractive when the likeDLVO or Poisson-Boltzmannis that close to the walls the
charge macroions are located close to an equally chargesbunterion concentration is high and any weak-coupling
plate. At first glance, these findings are surprising, as on¢heory failsa priori when applied to a situation of confined
would expect a purely repulsive interaction from the electro-macroions. For strong coupling, even in the bulk, it is un-
static part of the traditional Derjaguin-Landau-Verwey- clear whether an effective attraction of like-charged spherical
OverbeekDLVO) theory[4]. In fact a full theoretical expla- macroions is possible although there are hints from experi-
nation is still missing, but several steps were performed irments[17-19, theory [20—24, and computer simulations
different directions: the essential difference in a confining[25—-27. At this stage it is important to remark that a phase
geometry with respect to the bulk is that the counterion denseparation seen in experiment does not necessarily imply an
sity field is inhomogeneous for small coupling between theeffective attraction. The additional contribution from the
macroions and counterions. In a straightforward generalizaeounterions to the total free energy may induce such a phase
tion of the DLVO theory to such an inhomogeneous situatiorseparation, although the effective interaction between the
[5,6], the effective force between the macroions remains remacroions is purely repulsivi28,29. Bearing the difficul-
pulsive close to the charged plates but becomes weaker sinties in experimental interpretations and theory in mind, com-
the local concentration of counterions is higher, which re-puter simulations represent a helpful alternative tool to ex-
sults in a stronger screening of the Coulomb repulsion. It wagract “exact” results for certain model systems. The general
further realized that a charged wall induces significant effecaccepted theoretical model for the description of charged col-
tive triplet interactions[7] which are ignored in the usual loidal suspensions is the “primitive approach” where the
DLVO approach, resulting in a net attracti¢B] or in a  discrete structure of the solvent is disregarded and the inter-
repulsion[9] depending on the system parameters. An exaction between the macroions and counterions is modeled by
plicit calculation was done within density functional pertur- excluded volume and Coulomb forces. The problem with a
bation theory, which is justified, however, only for weak full computer simulation of the primitive model is the high
inhomogeneities. A complementary approach is to solve theharge asymmetry between macroions and counterions
nonlinear Poisson-Boltzmann equation with appropriatevhich restricts the full treatment to micelles rather than
boundary conditions in a finite geometry. This was done recharged colloidal suspensiof30].
cently for two charged spheres in a charged cylindrical pore In this paper, we use computer simulations to obtain “ex-
[10], as well as for two charged cylinders confined by twoact” results for the effective interaction between confined
parallel charged platdd 1]. However, the first situation cor- charged colloids based upon the primitive model. Instead of
solving the full many-body problem with many macroions,
we only simulate one or two macroions confined between
* Author to whom correspondence should be addressed. Electrontwvo parallel charged plates. This enables us to access high
address: allahyar@thphy.uni-duesseldorf.de charge numbers of the macroparticles. As a result we find
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that the wall-particle and the interparticle interaction is re-
pulsive for weak Coulomb coupling. For stronger coupling,
the behavior of the force changes from repulsive to attractive

and back to repulsive as the interparticle distance is varied.

In particular, the plate-particle interaction exhibits a short-
range attraction for a small distances. This may explain the
occurrence of crystalline colloidal layers on top of the glass
plates found in recent experimerit31-33. These crystal-
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lites are metastable but very long lived, and cannot be un-
derstood in terms of DLVO theory. The interaction between the particles and the wall is de-
The paper is organized as follows: the model and ouiqiineq by the potential energy

target quantities are defined in Sec. Il. Section Ill contains

details of our computer simulation procedure. Results for the 0
counterion density profiles are shown in Sec. IV. The case of
a single macroion is discussed in Sec. V, and a macroion pair Vii(2)=
is investigated in Sec. VI. Finally, we conclude in Sec. VILI. €

for z<d;/2 and z>2L—d;/2

2m(0,— 01)0;Z ©)
—  else,

where z is the altitude of the particle center, anetm,c.
Note that the interaction between the wall and the particles is
. . ) zero for equally charged plates.

We considerN, macroions with bare charge,=2e Our target quantities are the equilibrium counterion pro-
>0 (e>0 denoting the elementary chajgend mesoscopic  fjjes and the effective forces exerted on the macroions. The

diameterdr, confined pgtween two parallel plates that Camy counterionic density profil@(co)(F) is defined as statistical
surface charge densities; and o,. We assume that the average via

plates and the macroions are likely charged. The separation
distance between plates i4. 2For convenience, we choose
the z axis to be perpendicular to the plate surface. The origin
of the coordinate system is located on the surface of one
plate. Image charges are neglected, i.e., we assume for sim-
plicity that the dielectric constants of the solvent, the plate,\/vhere{ﬂ-:(xj Yj:Z);j=1,...Nc} denote the counterion
and the colloidal material are the same. Typically we use gositions. The canonical averag€---). over an
periodically repeated square cell in theandy directions  fr'}_dependent quantityl is defined via the classical trace
which possesses an ar&. Hence the macroion number
density ispn=N/2LS,. We restrict our studies to a small
number of macroions in the cell. In particular we are consid-
ering the casebl,,=0,1, and 2 subsequently. Both the mac-
roions and the charged plates provide neutralizing counteri- A

ons which are dissolved in a solvent of dielectric constant Xex;{ - ﬁ) ) (7)
The counterions have a microscopic diameteand carry an B

opposite charge.= —qe, whereq>0 denotes the valency. herekgT is the thermal energykg denoting Boltzmann's
Typically, g=1 and 2. For simplicity, we assume that the constant and

counterions from the walls and from the macroions are not
distinguishable. The total counterion numbéy in the cell

(as well as the averaged counterion number dengijty
=N./2LS,) is fixed by the condition of global charge neu-
trality,

IIl. MODEL AND TARGET QUANTITIES

NC
pS”(F)=j§1<6<F—Fj>>c (6)

> 11 >
(AFDY=3 rpJ Erae [ At

Npm o Ne 1 N¢
chz 2 Vmc(|Rn_rj|)+§.42. .V00(|ri_ri|)
n=1j=1 ij=1i#]

NC
+J§l Vod(Z)) (8)
0'1+ 0'2 .

PmOmt pclct oL 0. (1)

is the total counterionic part of the potential energy provided
the macroions are at positions{ﬁjz(xj Yi.Z))5]
..Np}. Furthermore, the classical partition function

1 V
= e— 3 .« .. 3 — C
Z N fvd ry fvd rNcexp< KaT

guarantees the correct normalizatigh) .= 1. Note that the
counterionic density profile)go)(F) depends parametrically
on the macroion positionﬁij}.
z%? for 1>d 2 The total effective forcé; acting onto thejth macroion
€r m contains three different par{84,35,23

The interactions between the particles are described_l"
within the framework of the primitive model. We assume the
following pair interaction potential®/,,(r), Vm(r), and
V..(r) between macroions and counterionsjenoting the
corresponding interparticle distance:

) (©)

w for r=dg
Vim(F) =
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E = ED+ER4 £, (10

The first termlfl(l’ is the direct Coulomb repulsion stemming
from neighboring macroions and the plates:

Nm

2 Vil [R=RD+Vpn(Z))
i=1;]#i

Fit= _ﬁﬁj( (11

The second part-(?) involves the electric part of the
counterion-macroion interaction, and has the statistical def

nition
C

Finally, the third terrrifj(S) describes a depletiafor contact
force arising from the hard-sphere partMp,«(r), which can
be expressed as an integral over the surfdicef the jth
macroion

N
¢ . Zqgé
> va

— (12
=1 TelRy—r

Fi¥=keT f AT, (13
i

wheref is a surface vector pointing towards the macroion
center.
DLVO or Poisson-Boltzmann treatment but becomes actu
ally important for strong macroion-counterion coupling. We
define the strength of Coulomb coupling via the dimension
less coupling paramet¢25]

Z 2

ch—a drdy (14

where the Bjerrum length isg=q2%e?/ ekgT.

A further interesting quantity is the counterion-averagedsystem parameters are summarized in Table I. We take diva

total potential energy defined as
Nm

U({ﬁi}):i ;KJ me(“ii_ﬁj')"'(\/c)c (15)

In general the effective forc€l0) is different from the gra-
dient of U({R;}) [36], i.e.,

ﬁjqéﬁjz—v}juqfei}). (16)

In fact, as we shall show below these two quantities behav
qualitatively different for strong coupling. We emphasize
that it is the effective forcg10) that is probed in experi-
ments.

[ll. DETAILS OF THE COMPUTER SIMULATION

The Coulomb interactions involved in the primitive model

are long ranged, but the periodically repeated system is fi-
nite, which poses a computational problem. This can be
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odically repeated image®RI) of neighbor cells inx andy
directions. Also, the limit\— o can be treated by a suitable
generalization of the traditional Ewald summation technique
[37-39 to a two-dimensional system. A straightforward
generalization, however, leads to quite massive computa-
tional effort[40]. A much more effective alternative is the
so-called Lekner summation methpdll,42, which has re-
cently been applied successfully to the problem of effective
interactions between rodlike polyelectrolytes and like-
charged planar surfac¢43].

I= A completely different way out of the problem is to study
the system on a surface of a four-dimensio@D) hyper-
sphere which itself is a compact closed geometry with
spherical boundary conditiorig4]. Then one has to express
the Coulomb forces in terms of the appropriate 4D spherical
coordinates which can be done analytically; see Appendix A.
Such spherical boundary conditions were effectively utilized
in computer simulations of two-dimension&D) classical
electrons[45,46 and other 2D fluid§47-49. Simulations

of the 3D system located on the surface of a 4D hypersphere
were carried out for Lennard-Jongs0], hard spherd51]

and charged52] systems. The hypersphere geoméetigG)

was also tested against Ewald summations to investigate the
stability of charged interfacd$3], and good agreement was
found, even for strongly coupled interfaces. Simulations in

This depletion term is usually neglected in am)—|SG are much faster than that for Lekner sums or PRI, as

there is no sum over images.
In most of our investigations we have used HSG simula-
tions but tested them against MIC, PRI, and Lekner summa-

tions. Good agreement was found except for the MIC, which
suffers from the early truncation of the Coulomb tail. We
have performed molecular dynami¢®D) simulations at
room temperaturd =293 °K. A more detailed description of
the MD procedure in HSG is given in Appendix B. The
width of planar slit is fixed to be 2=5d,,. Different sets of

lent counterions throughout our investigations. The dielectric
constant is that for water at room temperature-78.3), but

we have also investigated cases wherg smaller in order to
enhance the Coulomb coupling formally. The charge asym-
metry Z/g ranges from 16 to 100. The time stépt of the
simulation was typically chosen to be 10/m afn/ e’ (with m
denoting the mass of the counteripnsuch that the reflec-
tion of counterions following the collision with the surface of
macroions and walls is calculated with high precision. For
every run the equilibrium state of the system was checked
guring the simulation time. This was done by monitoring the
temperature, average velocity, and the distribution function
of velocities and total potential energy of the system. On
average it took about fOMD steps to reach equilibrium.
Then during 5< 10°~5x 10° time steps, we gathered statis-
tics to perform the canonical averages for calculated quanti-
ties.

IV. COUNTERION DENSITY PROFILES BETWEEN
CHARGED PLATES

solved in different ways. The simplest way to solve the prob-

lem is to cut off the range of the Coulomb interaction by half

First, as a reference case, let us discuss the situation with-

of the system size which is the minimum image conventionout any macroion. This setup is well studied in the literature

(MIC). The MIC is easy to implement, but serious cutoff
errors can be introduced. A better way is to includeperi-

[54,55. We consider equally charged surfaces= o
=0y, . The imbalance in the interaction with neighbors will
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TABLE |. Set of parameters used in our calculations.

Run N, Z q op(elcm?) € pm(1icn?) d, (cm) d. (cm) e
A 0 - 2 1.24<10*  78.3 1.1% 10 - 5.32x10°8 -
B 1 200 2 0.6x10* 783 1.1%10° 532x10°% 532108 11
C 1 200 2 1.2410% 783 varied 53%10°% 5.32<10°8 11
D 1 100 2 1.4% 10"  varied 1.1%10"% 532x10°°% 5.32x10°% varied
E 1 100 2 2.9& 10" 3.9 1.17x 10 532x10% 5.32x10°8 110
G 1 100 2 varied 783  9.3610% 2.66x107 2.66x10° 8 100
K 1 32 2 1.56<10%  77.3 1.%10®  256x107 2.56x10°° 37
L 2 200 2 124101 783 23410 5.32x10°% 532x10°° 11
M 2 100 2 varied 3.9 2.3410° 53210 % 5.32x10°8 110
N 2 100 2 varied 783  1.87107 2.66xX107 2.66x10°8 100

push the counterions toward the plates. Consequently, a greahere y, is defined via the solution of the implicit equation
majority of neutralizing counterions reside within a thin sur-

face layer. For strong coupling, the width of this layer can be (L/Np)?
approximately expressed f56] 2% —tany,=0. (20)
N :E 17 For parameters of moderate Coulomb couplingn A), the
T PB result is shown as a solid line in Fig. 1. The correspond-
ing MD simulation data were obtained with 600 counterions
where\p is the bulk Debye screening length in the cell using various boundary conditions. As expected,
the PB theory coincides with the Lekner summation method
ekgT which treats best the long-range nature of the Coulomb in-
)\E,=—22, (18  teractions. In HSG the counterionic profiles are also very
4mpoq-e similar to the Lekner summation, while the MIC deviates

o _significantly. The MIC can already be improved significantly
wherepo=p.. Due to symmetry, the equilibrium counterion jt x/=2 periodic repeated images are included. In conclu-
density profile only depends an The analytical solution of = gjon  the agreement between Lekner summation and HSG
the Poisson-Boltzman(PB) equation for this profile i$57]  justifies the HSGa posteriori and gives evidence that the

b HSG produces reliable results also for stronger couplings.
2YoMb

PB
p(2)=p,

L Let us now consider a single macroion in the inter-

lamellar area. We put the macroion on thexis, such that

z\\’ (19) V. SINGLE MACROION BETWEEN CHARGED PLATES
L2co| yo| 1— —

its position is atR;=(0,0Z,). A corresponding schematic
picture is given in Fig. 2. The total force acting on the mac-
roion only depends o#;, and points along the axis. Ob-
viously, for the caser,=o,= 0, of symmetric plates con-
Gp ! Gp s
% -
- \
1 -
- -
o -
; -
FIG. 1. Reduced counterion density profile$’(z)/p, vs re- oL | %
duced distance/L. Solid line—PB prediction and simulation result : \
incorporating the Lekner summation method. Both data coincide on \ : N

the same curve. Long-dashed line—result of simulation in HSG.
Dashed line—result of PRI simulation witN'=2. Dotted line— FIG. 2. Schematic picture for a single macroion between likely
result of MIC simulation. charged planes of charge density, separated by a distancé 2
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FIG. 3. ForceF;=F,-¢, acting on a single macroion vs re-  FIG. 4. Same as in Fig. 3 but now for rud. Symbols are
duced macroion distancg, /L. The force is scaled by therbi- simulation results in HSG for various macroion number densities:

trary) unit Fo=Zqe? ed?,. The system parameters are from @in  Circles, p,=1.17x 10" cm % squarespy,=2.0x 10" cm?; tri-

The solid line is the prediction from PB theory. The open circles areangles,pp=1.0x10" cm3.

simulation results in HSG. The statistical error corresponds to the

symbol size. accordance with theory only for largebut the force changes
its sign for e<10. Hence, as expected, the theory breaks

sidered here, the direct part of the total forgé"), vanishes. down for large Coulomb coupling, where correlation be-

For the secondelectrostatit part, simple PB theory applied tween the counterions become significant.

to the case of small macroion charge and small macroion For the same rub, the distance-resolved macroion force

diameter yields the following analytical expression for theF, is shown in Fig. 6 for a strongly reduced dielectric con-

effective macroion forc¢57,5]: stante=3.9. The simulation data were obtained in HSG but
confirmed by PRI calculations with/=4. The electrostatic
- 2ZkgT - (2)_F(2). a i B_g®d). a
FPB= B yotan(yo(l—z/L))eZ, 1) part Fy*'=F}"-e, a?g t.he depletion palif1 =F3 ‘e, are
qL shown separatelyF;”’ is always repulsive, and increases

R with decreasing 4, at least if the macroion is not too close to
wheree, is the unit vector in the direction, andy, is given  the surface when the counterion depletion between the mac-
by Eq.(20). Note that only the counterion density stemmingroion and the wall induced by the finite counterion core is
from the charged plates has to be inserted into(20), i.e.,  negligible. This is an expected behavior, since in general
po=0p/L|qe|. This force pushes the macroion towards thethere are more counterions close to the walls. The pure elec-
midplane, i.e., the wall-particle interaction is repulsive. trostatic contributionF{?), on the other hand, exhibits a

Expression(21) will break down, however, for a large more subtle behavior. If the macroion is close to the mid-
macroion diameted,, and for strong macroion-counterion plane, it is repulsive, then it becomes attractive as the mac-

coupling parameted’ .. We have tested the PB theory roion is getting closer to the plates. As a function of macro-
against “exact” computer simulation data. For moderate

couplings(runs B and C) the results for the total forcg,

=Ifl~éz are shown in Figs. 3 and 4. In Fig. 3, a surprising 45 ¢
agreement between theory and simulation is obtained despite
the fact that the macroion charge is large. This justifies the 35 |

theoretical conclusions drawn in Ref&,6] based on PB

theory. The deviation between theory and simulation are o
larger in Fig. 4, where the surface charge density was S
doubled. Here the system size depende(nespectively the &

dependence on the macroion densityas studied in the 151 x X X
simulation. As expected the agreement becomes better for a
larger system sizérespectively for a smaller macroion den- S510%
sity) since the theory is constructed formally for vanishing X
macroion density. In addition, we repeated the calculations -5
for pp,=1.17X 10" cm 3 (corresponding to the circles in

Fig. 4) using the PRI method wittN=4 and obtained the

same results as in HSG. We now enhance the Coulomb cou- fiG, 5. ForceF,=F, -6, acting on a single macroion vs dielec-
pling by formally reducing the dielectric constaat For a  tric constante for a fixed position aZ,=d,,. The force is scaled
fixed macroion position aZ;=d,, the forceF; is shown in by the(arbitrary unit F,=0.01(Zqe?/ ed?). The parameters of the
Fig. 5 for the parameters of rud. While the PB theory system are from rub. The solid line is the prediction of PB theory.
always predicts a repulsive force, the simulation data are ifThe crosses are simulation results in HSG.

25

0 20 40 60 80 100 120
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FIG. 6. Same as Fig. 3 but now for rid, e=3.9, and for a FIG. 7. Same as Fig. 6 but now for run G and for a force unit of

force unit of Fy=0.1(Zq€’/ed2). The crosses are simulation data Fo=0.1(Zqe? ed}). The squares are simulation results for the total
in HSG for the total forcem,, the squarescircles are simulation  force in HSG fora,=1.19x 10"%e/cn?, while the circles are for
data the electrostatic paf{?) (the depletion parE(®)). The line is ~ op=2.38X 10"e/cn?. The lines are a guide to the eye. The inset
a guide to the eye for the total force. The inset shows the effectivéhows the effective potential in units kT vs reduced macroion
potential in units ofksT vs reduced macroion distand /L to-  distanceZ; /L. The dashed line is for,=1.19x 10*%/cn?, and
gether with the energy barriexVo. The solid line is for runD  the solid line is foro,=2.38X 10%e/cn?.
with €=3.9, and the dashed line is for rin

nar slit of width &d,,,, with one charged and one neutral wall.
ion distance, the total forcE, is repulsive, attractive and Results are given in Fig. 8. We conclude that the forces
becomes repulsive again. For small separatigvisich are  behave even qualitatively different. The average férgés a
still larger than the microscopic counterionic cotiee force  short-range attractive force which becomes repulsive only
is dominated by the repulsive depletion force. Hence thdor touching macroion configurations. Contrary to that, the

macroion has three equilibrium positions, two of them areforceF, is repulsive up to distance abod/2 from the wall
stable, namely, the midplane and a position in the vicinity ofgrface. Note that our data actually differ from those of Ref.

the plate. In order to extract more information, we have cal{gq] due to the early truncation of the Coulomb interaction
culated the effective wall-particle potential defined by performed there.

z
Ve(Z1)= —J "F.(hydh (22) VI. TWO MACROIONS BETWEEN PLATES
0

We finally consider two equally charged macroions at the
by integrating our data with respect to the macroion altitudepositions R;=(X;,Y;,Z;) and R,=(X,,Y,,Z,) confined
h. This quantity is shown as an inset in Fig. 6. One first seedetween plates. A schematic picture is given in Fig. 9.
that the global minimum is in the vicinity of the walls. Fur-  In order to reduce the parameter space, we assume for

thermore the barrier heighkV¢; to escape from there is simplicity that both macroions have the same altitufie
about &gT. This implies that the time for a colloidal particle

to escape from the position close to the surface is roughly 25 :
70 €XP(AVeg/ kg T) = €87,~3000r, [58,59, where 7, is a 20 & !
Brownian time scale governing the decay of dynamical cor- 5 ¢ :
relations of the macroion. It can also be seen that, for a l
doubled surface chargeun E), the height of barrier in- 10 |
creases. o Of
A similar behavior occurs for another parameter combi- = o @ S0
nations(run G) (see Fig. 7, corresponding to aqueous sus- = _s | 'n //
pensions of micelle-sized macroions. For this parameter set, o /
we have increased the dielectric constang 030, but at the Vo
same time we have decreased the macroion diandgien 15 " /
order to keed',,,c high. The attraction hence seems to be a -20 | ‘,/
generic feature of the primitive model for strong Coulomb -25 ’ :
coupling. We note that the barrier heightVe; is about 0 05 1

70kgT, which implies a very large escape time. Finally we Z/L

show for a cer.tam parameter combinatitnin K)’ VYh'Ch FIG. 8. Effective forceFlzlfl-éZ (circles and gradient of the
was also used in Ref60], that the averaged forde, differs . - = - .
potential energy,=F- e, (squaresvs reduced macroion distance

from the gradient of the averaged potential endfgyAs in  z,/L for run K. The unit of the force is,=0.1Zq€e*/ ed?. The
Ref. [60], the system consists of a single macroion in a pladines are a guide to the eye. The dashed line are data fron 62&f.
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FIG. 10. Parallel part of the effective force acting onto a mac-

o _ _ roion pair, Fi=F|.R;,/R;,, vs reduced interparticle distance
FIG. 9. Schematic picture for the macroion pair near a charge(hlzldm The unit of the force iF o= (22€? ed2) X 10~2. The pa-
. 2 .

wall of surface charge density, . For the sake of clarity, the po- 5 meters of system are from rupand for an altitude of macroions
sition of the second wall is omitted. The different forces are shown Z,=0.6d,,. The solid line is the bulk DLVO theory, the dashed

for the case of a mutual attraction. line is the Poisson-Boltzmann thedg. (25)], and the points are

) ) ) simulation results in HSG. The statistical error corresponds to the
=Z,. The distance between the macroion centerRis  sympol size.

=|R;—R,|, where the difference vectd;,=R;—R, is in

the xy plane. We assume that only one of the walls is 7262 \n(Z) V3 ta 1—-7./L
charged and that the second wall is neutral. This gives us the (F7B)*=F75— of 31) 7o tanlyo(1-2,/L)) e,.
possibility to simulate higher surface charge densities. Also € L coS(yo(1—2Z,/L))

for strong coupling, the counterions of the two different (26)

walls are practically decoupled such that the setup with ar
single charged wall is not expected to differ much from the
symmetrical set-up. The total force acting on the two mac- 7 ~1/2

roions can be split into a part pointing in thelirection and )‘D(Zl):(477‘8(_Pm+p§3(21))) 27)
another contribution pointing alonélz. Hence we write g

oy = e R Lo ) _
Fj=F)+F{, definingF|=(F-Ryy)-Ri,/R}, and F{ = (F, Here p~®(z) andF{® are given by Eqs(19) and(21). Con-

he space dependent Debye screening length is

-e,)-e, for j=1 and 2. ClearlyF;=F5 andF}=—FJ. trary to the bulk DLVO force, the PB force has an additional
It is instructive to compare these force to the DLVO bulk perpendicular part for a pair of particlethe second term in
theory, which yields Eqg. (26)]. This additional force is attractive. Still the total
perpendicular forc¢Eq. (26)] is always repulsive.
ﬁDLVO_ZZeZexp((dm— Ri)/Np) [ 1 1)\ Ry, For the parameters of run L corresponding to weak cou-
Fi= eR(1+d, /21 )2 Ry, Mp) Ry pling, simulation results foF|=F|.R,,/R;, are shown in

(23) Fig. 10. The solid line corresponds to the bulk DLVO force,
and the dashed line is the Poisson-Boltzmann result. The

Here the Debye screening lengkly is given by Eq.(18),  force is repulsive both in theory and simulation, but the theo-
wherep, corresponds to the counterion number density com#ies overestimate the force significantly. As expected, the
ing only from the macroionsp,=(Z/q)p,. One can also Poisson-Boltzmann approach yields better agreement than
modify the DLVO theory by also admitting screening from DLVO bulk theory.
the counterions stemming from the wall assuming they fol- Results forF”l for stronger couplindrunsM andN) are
low a Poisson-Boltzmann density profile. This yields the PBdisplayed in Figs. 11 and 12. For a neutral wall, the interac-

force[5,6] tion force between macroions is already attractive. With in-
creasing surface charge the attraction between macroions be-
FPB=(FPB)I+ (FTB)*, (24)  comes stronger. Clearly this attraction is neither contained in
DLVO theory nor in the Poisson-Boltzmann approdéty.
where, for the parallel part of the force, we obtain (25)].
In Fig. 13 we fixed the macroion distance and calculated
£PB H_Zzez exp(—Rip/Ap(Zy)) [ 1 N 1 \Re Fl and the force perpendicular to the platés=F; - €, ver-
(F1)'= €Ry, Ry, Ap(Z1)) Ry sus altitudez, for run N. There is attraction. Both the inter-

(25)  particle attraction and the wall-particle attraction become
stronger in the vicinity of the plate. The effective wall-
The perpendicular part of the force is particle interaction potential for the perpendicular part is
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0 A 0 p—
-5 = —H £l
-10 |
(=]
&
R -15
-20 ‘
1 2
Z,/d,
-25 : : : ‘ : : :
12 1.4 1.6 0.5 1 15 2 25

R,/d, z,1d,

FIG. 11. Same as Fig. 10 but now for run M ark
=(Z%e?/ed?)x 10 3. Simulation results are shown for three differ-
ent surface charges: squaras,,,:Oe/cmz; triangles, 0,=2.98
X 10*e/cn?; circles, o,=5.95x< 10Me/cn?. The lines are a guide
to the eye.

FIG. 13. ParalleF| =F!.R,,/R;, ( squaresand perpendicular
Fi=F1-e, (circles parts of the effective force vs reduced altitude
Z,1d,, for fixed interparticle spacin®,,=1.2d,,,. The unit of the
force Fl is Fo=(Z%?/ed2)x 1073, and for the forceF} is F}
=(Z%?ed%)x 10 2. The surface charge density is,=2.38

' o o x 10M%e/cn?. The inset shows the effective potential in unitkgT
shown as an inset in Fig. 13. Note that the minimunVet s reduced macroion distangs /d,, .

is much more than twice as large as in the single macroion

case(compare to the inset in Fig. 7, solid lindhus, a pair tential of a single macroion confined between two parallel

of macroions near a planar surface is more stable than -
) . g . charged plates was found to have two stable minima where
single macroion. This is also evident from the results for run : X Lo :
i . . . the total force vanishes: the first is in the midplane, the sec-
N shown in Fig. 14. Again there is attraction toward the plate

for variedR.- and fixedZ. The attraction becomes stronaer ond close to the walls. This result was confirmed for two
12 1 Y€ macroions. In this case the attraction toward the walls was

if the ir_1terparticle distance is decregsing. This S.hOWS. that thgven stronger than for a single macroion. Our most important
attraction between the wall and a single macroion dlscusseg '

in Sec. V is stable and even enhanced if more macroions ar onclusion is that the attractive force will result in two-
' . ) . dimensional colloidal layers on top of the plates. As the
close to the wall. This leads us to the final conclusion that the

. . . depth of the attractive potential is larger th&pT, these
macroions will assemble on top of the surface forming two- L .
. : ; layers possess a large lifetime with respect to thermal fluc-
dimensional colloidal layers.

tuations. The layers should be crystalline as the interparticle
interaction is also attractive. This can explain at least quali-

VII. CONCLUSIONS tatively the long-lived metastable crystalline layers found in
We have simulated the effective force between macroions
confined in a slit geometry. An effective attraction was found 0
for strong Coulomb coupling. In particular, the effective po-
=10 +
0 ' o] /AN
20
° -30
=
=5r —E—
- -40
&
R -50
—-10 +
-60 : : : : : :
0 1 2 3 4 5 6 7
R, /d,
g 12 14 16 18 FIG. 14. Perpendicular part of the effective force acting on a
R,/d, macroion pair,F; =Fj - €, in units of Fo=(Z%e% ed?)x 10", vs

dimensionless interparticle distané®,/d,,. The parameters of
FIG. 12. Same as Fig. 11, but now for ri and for Z,; system are from rul, and the altitude of the macroions is fixed to
=0.7d,,. Results are shown for three different surface chargeszZ,=0.7d,,. Simulation results are shown for two different surface
squaresg,=0e/cn?; triangles,o,= 1.19< 10*%e/cn?; circles, o, ~ charges: squares, o,=1.19x 10"%/cn?;  circles, 0,=2.38
=2.38x 10"e/cn. X 104/ cn?.
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recent experiments on confined samples of charge colloidal North pole
suspension§31,37.

We want to add some remarks: First, our parameters are
actually different from those describing the experiments. The
main difference is the high surface charge of the glass plates
within an area spanned by a typical macroion separation dis-
tance. Such a system cannot be simulated, since it requires a

huge number of counterions in the simulation box. We have R
mimicked the high surface charge by dealing with a small
dielectric constant, but strictly speaking this corresponds to a equator

different system, as, unfortunately, there is no scaling in the
asymmetric primitive model by which one could translate
low dielectric constants into higher surface charges. Never-
theless, also an aqueous suspension of micelle-sized macro- South pole
ions gives rise to an effective attraction, provided the coun-
terions are divalent. Second, the mechanism of our attractiogi
is similar to that proposed recently by us in the bulk case
[25]. However, it is also strongly affected by the distortion of . . .

the macroion screening cloud induced by the presence of tHgSsociation O_f ‘? point chargg located at the point say,
walls. A general simple physical picture explaining the at-2nd @ neutralizing background of total charge; . The po-
traction is still missing. It only occurs for strong coupling Sition of pseudocharge is specified by the 4D spherical coor-
with divalent counterions, and is short ranged. In this re-dinates &, 6,¢) (see Fig. 15 Then the Cartesian compo-
spect, it behaves differently than in experiment, where theaents of the unit vecton(M)=0OM/R reads

attraction was long ranged. Unfortunately we cannot clearly

FIG. 15. Schematic view of the hypersphépeojected to three
mensiong illustrating the angular coordinate.

relate the range of the attraction to the different microscopic u;=sinasinfcose, U,=sinasinfsineg,
length scales(Bjerrum length, macroion diameter, Debye
screening length, plate separation distarshee to the finite Uz=sina cosd, Uu,=cosa. (A1)

set of our data. We emphazise again that the depletion force

is crucial in the strong coupling parameter regime. Third, outHere R is the hypersphere radiu® is the center of the
computer simulation data were tested against simple DLVOhypersphere, and the angie determines the distand@a

or PB-type theories. It would be interesting to use them a$rom north pole, see Fig. 15. The distance between two
benchmark data for more sophisticated theoretical appseudocharges; (at pointM) and g; (at pointN) is mea-

proaches which predict attraction as, e.g., the density funcsyred along the geodesic line joining these points:
tional perturbation theory recently proposed by Goulding and

Hansen[8]. Finally, in our simulations, we neglected any run=RY (A2)
impurity or added salt ions. Their inclusion increases sub-

stantially the number of microscopic particles and would . —— —
lead to more extensive simulation. A further challenge wouIdWhere7’ is the angle between vectofsM andON,
be to incorporate image charges properly into the model

which requires a nontrivial extension of our approach. OM-ON
v= arccosR—z. (A3)
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APPENDIX A: DEFINITION OF FORCES IN at pointN:
HYPERSPHERE GEOMETRY

- 1 . -
Here we briefly present some technical details in HSG e,=— Wu(MHcot«yu(N). (A5)
within the primitive model. For more details, we refer to Ref. Y
[53].

: For short distancesy , there is hard core repulsion. A hard
The charged hard spheres are confined on the suSace sphere of diametet, (i=c.m) centered around poind on

of a 4D hypersphere. Without confinement, in the bulk, the>*"" . .
whole surface of the hypersphere is accessible to the par3 'S defmij) as_)the set of poinfd, such thatRyyw,
ticles. SinceS; is compact, the total charge in a closed space=R arccosQM-OM,/R?)<d;/2. Thus the hard sphere po-
must be equal to zero. We define a pseudocharge as thential between two pseudocharge is defined by
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North pole Q _
di T &
Fip=—2—| cota;+ (A11)
® esz( I Sinzai>
for the upper lamella and
QpUi a;
D = cota;— ———— (A12)
P emR? l sirfa;

for the second lamella. The direction of the forces is always
along the geodesic line. The lamellar-ion hard core repulsion
becomes

South pole o for o<antdi/2R, i=c,m
(A13)

Uip: .
FIG. 16. Schematic view of the hypersphépeojected to three 0 otherwise.
dimensiongillustrating a situation with two parallel charged inter-
faces. APPENDIX B: EQUATION OF MOTION FOR SINGLE

COUNTERION IN HYPERSPHERICAL GEOMETRY

. d; +d; ; ; , . .
o if y< L ij=c,m In this section we translate Newton’s equation of motion
Uj= 2R (AB) onto HSG for a counterion in an external electrical field cre-
0 otherwise. ated by charged planes, other counterions and fixed macro-

ions. First of all, let us define the displacement of counterion

Let us now consider the mixed hard sphere system to bat pointM on S;. The differentiald OM of vectorOM (M
confined between two charged walls. Gg geometry this remaining on the surface of the hypersphese
corresponds to two charged lamellae, parallel to each other, L . . .
localized symmetrically on opposite side of the equésere dOM=Rdae,+Rsinadfe,+ Rsina singdye,,

Fig. 16. They result from a conical section of the hyper- (BY)
sphere, with angular apertures equal dg for the north i . e -

lamellar andas=m— ay, for the south lamellar. The area of Where the unit vectorge, ,e,,e,] given by

each lamellae i§,=47R?sirfay, and the volume confined

between lamellae is given by e,=(cosa sin # cosg,CoSsa Sin # sin g, CoSa COSH,

. —sing),
V(ay)=7R3(2ay—sin2ay). (A7)
o _ e,=(cosf cose,cosd sing, —sin 6,0), (B2)
Then the separation distance between lamelleD isR(
—2ay). For the symmetrical case considered in this paper, e = (—sing,cose,0,0)
when both lamellae are charged equally with surface charge ¢
density o,, the charge electroneutrality of simulation cell constitute an orthogonal frame at poikt For the kinetic

together with Eq(1) requires energy in terms of the variables {6, ¢), we obtain
=2
N,ge+2Q,=0. (A8) mvZ m[dOM\" m . L
pHc p — - e (P2.21R2 2
T 5 CART: 2( @’ +R?sir af
Here Q,=0,S, is the net charge of one lamellar, aNg is
the number of counterions coming from planes. +R? sirfasin 0¢?).
Finally, we give the definition of interaction forces. The (B3)

lamellar-lamellar repulsion force is . )
For the potential energy we have relations

2

U U
Foo=—r0—| —cotay+ . (A9) _E _ %" _Rsi
PP 67TR2< N SinzaN) da RFq. a6 RsinaFy,
. _. . . — . . . . . [?U
The ion-ion repulsioni(=j) and attractioni(#j) force is B ﬁstinasin oF .. (B4)
d;ai T\, : ;
Fij= coty+ : (A10) Now let us put Egs(B3) and (B4) into Lagrange equations
emR? sirfy N N 5
d T &T_ZC dUj; Em AUy > AUy
herey is given by Eq.(A3), and the particles andj are at dtav, ax, =1 ox +k:1 ax, =4 ax
pointsM andN, i,j=m,c. The ion-lamellar repulsioni (

=m) and attractioni(=c) force is (i=a,0,¢ and x=i), (B5)
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where on the right hand side the first term arises from all We note that k,,F,,F,) are the components of total
counterions, the second term is the macroionic attractiorforce arising from all other counterions, planes, and macro-
and the last term is due to plane attraction. The Newtonons. The equations of motiofB6)—(B8) have been solved
equations of counterion motion reads as follows: in a way similar to that described in R¢61]. The spherical

1 componentsk . ,F,,F ) of vectorF are connected with the
a=sina cosa (?+sirf0¢?) + —F,,, (B6) 4D force Eq.(A4) by the relations

mR
F.=F1cosasinfcose+F,cosasingdsing
d . . ) ‘y sina _
a(3|n2a0)=sm2a sinf costg® +——Fy, (B7) +F3cosa cosf—F,sing,
d 2 sirP0: sinasinﬁF o Fy=Fcosfcosp+F;cosfsing—Fssing, (B9
— (sirfa si =————F,. .
i e ¢ mR ¢ (68) F,=—Fising+F;,cose.
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