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Effect of geometrical confinement on the interaction between charged colloidal suspensions
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The effective interaction between charged colloidal particles confined between two planar like-charged walls
is investigated using computer simulations of the primitive model describing asymmetric electrolytes. In detail,
we calculate the effective force acting onto a single macroion and onto a macroion pair in the presence of
slitlike confinement. For moderate Coulomb coupling, we find that this force is repulsive. Under strong-
coupling conditions, however, the sign of the force depends on the distance to the plates and on the interpar-
ticle distance. In particular, the particle-plate interaction becomes strongly attractive for small distances which
may explain the occurrence of colloidal crystalline layers near the plates observed in recent experiments.
@S1063-651X~99!12409-7#

PACS number~s!: 82.70.Dd, 61.20.Ja
tiv

w
e
b

fa
ike
rg
on
ro
y-

i
ing
en
th
iz
io
re
in

re
a

ec
l

ex
r-
k
th
at
re
or
o

-

ann
-
to
al
e
the

ing
d
n-
ical
eri-

se
y an
e
ase
the

m-
ex-
ral
col-
e
ter-

d by
a

h
ions
an

x-
ed

of
s,
en
high
find

on
I. INTRODUCTION

There is recent experimental evidence that the effec
interaction between like-charged colloidal particles~‘‘macro-
ions’’! is sensitively affected by a confinement between t
parallel charged glass plates@1–3#. For aqueous polystyren
suspensions studied in experiment, the effective force
tween two colloidal macroions is found to be repulsive
away from the plates but becomes attractive when the l
charge macroions are located close to an equally cha
plate. At first glance, these findings are surprising, as
would expect a purely repulsive interaction from the elect
static part of the traditional Derjaguin-Landau-Verwe
Overbeek~DLVO! theory@4#. In fact a full theoretical expla-
nation is still missing, but several steps were performed
different directions: the essential difference in a confin
geometry with respect to the bulk is that the counterion d
sity field is inhomogeneous for small coupling between
macroions and counterions. In a straightforward general
tion of the DLVO theory to such an inhomogeneous situat
@5,6#, the effective force between the macroions remains
pulsive close to the charged plates but becomes weaker s
the local concentration of counterions is higher, which
sults in a stronger screening of the Coulomb repulsion. It w
further realized that a charged wall induces significant eff
tive triplet interactions@7# which are ignored in the usua
DLVO approach, resulting in a net attraction@8# or in a
repulsion@9# depending on the system parameters. An
plicit calculation was done within density functional pertu
bation theory, which is justified, however, only for wea
inhomogeneities. A complementary approach is to solve
nonlinear Poisson-Boltzmann equation with appropri
boundary conditions in a finite geometry. This was done
cently for two charged spheres in a charged cylindrical p
@10#, as well as for two charged cylinders confined by tw
parallel charged plates@11#. However, the first situation cor

*Author to whom correspondence should be addressed. Electr
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responds to a finite system where the Poisson-Boltzm
approach does not lead to attraction@12# and the second situ
ation is a quasi-two-dimensional setup which is known
behave qualitatively differently from a three-dimension
situation @13#. A further complication arises from imag
charges induced by the different dielectric constants of
glass and the solvent@14–16#.

A general problem of any theoretical description~like
DLVO or Poisson-Boltzmann! is that close to the walls the
counterion concentration is high and any weak-coupl
theory failsa priori when applied to a situation of confine
macroions. For strong coupling, even in the bulk, it is u
clear whether an effective attraction of like-charged spher
macroions is possible although there are hints from exp
ments @17–19#, theory @20–24#, and computer simulations
@25–27#. At this stage it is important to remark that a pha
separation seen in experiment does not necessarily impl
effective attraction. The additional contribution from th
counterions to the total free energy may induce such a ph
separation, although the effective interaction between
macroions is purely repulsive@28,29#. Bearing the difficul-
ties in experimental interpretations and theory in mind, co
puter simulations represent a helpful alternative tool to
tract ‘‘exact’’ results for certain model systems. The gene
accepted theoretical model for the description of charged
loidal suspensions is the ‘‘primitive approach’’ where th
discrete structure of the solvent is disregarded and the in
action between the macroions and counterions is modele
excluded volume and Coulomb forces. The problem with
full computer simulation of the primitive model is the hig
charge asymmetry between macroions and counter
which restricts the full treatment to micelles rather th
charged colloidal suspensions@30#.

In this paper, we use computer simulations to obtain ‘‘e
act’’ results for the effective interaction between confin
charged colloids based upon the primitive model. Instead
solving the full many-body problem with many macroion
we only simulate one or two macroions confined betwe
two parallel charged plates. This enables us to access
charge numbers of the macroparticles. As a result we
ic
3199 © 1999 The American Physical Society
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that the wall-particle and the interparticle interaction is
pulsive for weak Coulomb coupling. For stronger couplin
the behavior of the force changes from repulsive to attrac
and back to repulsive as the interparticle distance is var
In particular, the plate-particle interaction exhibits a sho
range attraction for a small distances. This may explain
occurrence of crystalline colloidal layers on top of the gla
plates found in recent experiments@31–33#. These crystal-
lites are metastable but very long lived, and cannot be
derstood in terms of DLVO theory.

The paper is organized as follows: the model and
target quantities are defined in Sec. II. Section III conta
details of our computer simulation procedure. Results for
counterion density profiles are shown in Sec. IV. The cas
a single macroion is discussed in Sec. V, and a macroion
is investigated in Sec. VI. Finally, we conclude in Sec. V

II. MODEL AND TARGET QUANTITIES

We considerNm macroions with bare chargeqm5Ze
.0 (e.0 denoting the elementary charge! and mesoscopic
diameterdm confined between two parallel plates that ca
surface charge densitiess1 and s2. We assume that the
plates and the macroions are likely charged. The separa
distance between plates is 2L. For convenience, we choos
thez axis to be perpendicular to the plate surface. The ori
of the coordinate system is located on the surface of
plate. Image charges are neglected, i.e., we assume for
plicity that the dielectric constants of the solvent, the pla
and the colloidal material are the same. Typically we us
periodically repeated square cell in thex and y directions
which possesses an areaSp . Hence the macroion numbe
density isrm5Nm/2LSp . We restrict our studies to a sma
number of macroions in the cell. In particular we are cons
ering the casesNm50,1, and 2 subsequently. Both the ma
roions and the charged plates provide neutralizing coun
ons which are dissolved in a solvent of dielectric constane.
The counterions have a microscopic diameterdc and carry an
opposite chargeqc52qe, whereq.0 denotes the valency
Typically, q51 and 2. For simplicity, we assume that th
counterions from the walls and from the macroions are
distinguishable. The total counterion numberNc in the cell
~as well as the averaged counterion number densityrc
5Nc/2LSp) is fixed by the condition of global charge ne
trality,

rmqm1rcqc1
s11s2

2L
50. ~1!

The interactions between the particles are descri
within the framework of the primitive model. We assume t
following pair interaction potentialsVmm(r ), Vmc(r ), and
Vcc(r ) between macroions and counterions,r denoting the
corresponding interparticle distance:

Vmm~r !5H ` for r<dm

Z2e2

er
for r .dm ,

~2!
-
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Vmc~r !5H ` for r<~dm1dc!/2

2
Zqe2

er
for r .~dm1dc!/2,

~3!

Vcc~r !5H ` for r<dc

q2e2

er
for r .dc

~4!

The interaction between the particles and the wall is
scribed by the potential energy

Vpi~z!5H ` for z,di /2 and z.2L2di /2

2p~s22s1!qiz

e
else,

~5!

where z is the altitude of the particle center, andi 5m,c.
Note that the interaction between the wall and the particle
zero for equally charged plates.

Our target quantities are the equilibrium counterion p
files and the effective forces exerted on the macroions.
counterionic density profilerc

(0)(rW) is defined as statistica
average via

rc
(0)~rW !5(

j 51

Nc

^d~rW2rW j !&c ~6!

where $rW j5(xj ,yj ,zj ); j 51, . . .Nc% denote the counterion
positions. The canonical averagê •••&c over an

$rW j%-dependent quantityA is defined via the classical trace

^A~$rWk%!&c5
1

Z
1

Nc!
E

V
d3r 1•••E

V
d3r Nc

A~$rWk%!

3expS 2
Vc

kBTD , ~7!

wherekBT is the thermal energy (kB denoting Boltzmann’s
constant! and

Vc5 (
n51

Nm

(
j 51

Nc

Vmc~ uRW n2rW j u!1
1

2 (
i , j 51;i 5” j

Nc

Vcc~ urW i2rW j u!

1(
j 51

Nc

Vpc~zj ! ~8!

is the total counterionic part of the potential energy provid
the macroions are at positions$RW j5(Xj ,Yj ,Zj ); j
51, . . .Nm%. Furthermore, the classical partition function

Z5
1

Nc!
E

V
d3r 1•••E

V
d3r Nc

expS 2
Vc

kBTD ~9!

guarantees the correct normalization^1&c51. Note that the
counterionic density profilerc

(0)(rW) depends parametrically

on the macroion positions$RW j%.
The total effective forceFW j acting onto thej th macroion

contains three different parts@34,35,25#
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FW j5FW j
(1)1FW j

(2)1FW j
(3). ~10!

The first termFW j
(1) is the direct Coulomb repulsion stemmin

from neighboring macroions and the plates:

FW j
(1)52¹W RW jS (

i 51; j 5” i

Nm

Vmm~ uRW i2RW j u!1Vpm~Zj !D ~11!

The second partFW j
(2) involves the electric part of the

counterion-macroion interaction, and has the statistical d
nition

FW j
(2)5K (

i 51

Nc

¹W RW j

Zqe2

euRW j2rW i u
L

c

~12!

Finally, the third termFW j
(3) describes a depletion~or contact!

force arising from the hard-sphere part inVmc(r ), which can
be expressed as an integral over the surfaceSj of the j th
macroion

FW j
(3)5kBTE

Sj

d fWrc
(0)~rW !, ~13!

where fW is a surface vector pointing towards the macroi
center. This depletion term is usually neglected in a
DLVO or Poisson-Boltzmann treatment but becomes ac
ally important for strong macroion-counterion coupling. W
define the strength of Coulomb coupling via the dimensi
less coupling parameter@25#

Gmc5
Z

q

2lB

dm1dc
, ~14!

where the Bjerrum length islB5q2e2/ekBT.
A further interesting quantity is the counterion-averag

total potential energy defined as

U~$RW j%!5 (
i , j ; i , j

Nm

Vmm~ uRW i2RW j u!1^Vc&c ~15!

In general the effective force~10! is different from the gra-
dient of U($RW j%) @36#, i.e.,

FW j5” F̄W j[2¹W RW j
U~$RW i%!. ~16!

In fact, as we shall show below these two quantities beh
qualitatively different for strong coupling. We emphasi
that it is the effective force~10! that is probed in experi-
ments.

III. DETAILS OF THE COMPUTER SIMULATION

The Coulomb interactions involved in the primitive mod
are long ranged, but the periodically repeated system is
nite, which poses a computational problem. This can
solved in different ways. The simplest way to solve the pro
lem is to cut off the range of the Coulomb interaction by h
of the system size which is the minimum image convent
~MIC!. The MIC is easy to implement, but serious cuto
errors can be introduced. A better way is to includeN peri-
fi-

y
-

-

d

e

fi-
e
-
f
n

odically repeated images~PRI! of neighbor cells inx andy
directions. Also, the limitN→` can be treated by a suitabl
generalization of the traditional Ewald summation techniq
@37–39# to a two-dimensional system. A straightforwa
generalization, however, leads to quite massive comp
tional effort @40#. A much more effective alternative is th
so-called Lekner summation method@41,42#, which has re-
cently been applied successfully to the problem of effect
interactions between rodlike polyelectrolytes and lik
charged planar surfaces@43#.

A completely different way out of the problem is to stud
the system on a surface of a four-dimensional~4D! hyper-
sphere which itself is a compact closed geometry w
spherical boundary conditions@44#. Then one has to expres
the Coulomb forces in terms of the appropriate 4D spher
coordinates which can be done analytically; see Appendix
Such spherical boundary conditions were effectively utiliz
in computer simulations of two-dimensional~2D! classical
electrons@45,46# and other 2D fluids@47–49#. Simulations
of the 3D system located on the surface of a 4D hypersph
were carried out for Lennard-Jones@50#, hard sphere@51#
and charged@52# systems. The hypersphere geometry~HSG!
was also tested against Ewald summations to investigate
stability of charged interfaces@53#, and good agreement wa
found, even for strongly coupled interfaces. Simulations
HSG are much faster than that for Lekner sums or PRI,
there is no sum over images.

In most of our investigations we have used HSG simu
tions but tested them against MIC, PRI, and Lekner summ
tions. Good agreement was found except for the MIC, wh
suffers from the early truncation of the Coulomb tail. W
have performed molecular dynamics~MD! simulations at
room temperatureT5293 °K. A more detailed description o
the MD procedure in HSG is given in Appendix B. Th
width of planar slit is fixed to be 2L55dm . Different sets of
system parameters are summarized in Table I. We take d
lent counterions throughout our investigations. The dielec
constant is that for water at room temperature (e578.3), but
we have also investigated cases wheree is smaller in order to
enhance the Coulomb coupling formally. The charge asy
metry Z/q ranges from 16 to 100. The time stepnt of the
simulation was typically chosen to be 1023Amdm

3 /e2 ~with m
denoting the mass of the counterions!, such that the reflec-
tion of counterions following the collision with the surface
macroions and walls is calculated with high precision. F
every run the equilibrium state of the system was chec
during the simulation time. This was done by monitoring t
temperature, average velocity, and the distribution funct
of velocities and total potential energy of the system.
average it took about 104 MD steps to reach equilibrium
Then during 53104–53105 time steps, we gathered stati
tics to perform the canonical averages for calculated qua
ties.

IV. COUNTERION DENSITY PROFILES BETWEEN
CHARGED PLATES

First, as a reference case, let us discuss the situation w
out any macroion. This setup is well studied in the literatu
@54,55#. We consider equally charged surfacess15s2
5sp . The imbalance in the interaction with neighbors w
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TABLE I. Set of parameters used in our calculations.

Run Nm Z q sp(e/cm2) e rm(1/cm3) dm (cm) dc (cm) Gmc

A 0 - 2 1.2431011 78.3 1.1731013 - 5.3231028 -
B 1 200 2 0.6231011 78.3 1.1731013 5.3231026 5.3231028 11
C 1 200 2 1.2431011 78.3 varied 5.3231026 5.3231028 11
D 1 100 2 1.4931011 varied 1.1731013 5.3231026 5.3231028 varied
E 1 100 2 2.9831011 3.9 1.1731013 5.3231026 5.3231028 110
G 1 100 2 varied 78.3 9.3631016 2.6631027 2.6631028 100
K 1 32 2 1.5631014 77.3 1.931018 2.5631027 2.5631029 37
L 2 200 2 1.2431011 78.3 2.3431013 5.3231026 5.3231028 11
M 2 100 2 varied 3.9 2.3431013 5.3231026 5.3231028 110
N 2 100 2 varied 78.3 1.8731017 2.6631027 2.6631028 100
r
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push the counterions toward the plates. Consequently, a g
majority of neutralizing counterions reside within a thin su
face layer. For strong coupling, the width of this layer can
approximately expressed as@56#

lz5
lD

2

2L
, ~17!

wherelD is the bulk Debye screening length

lD
2 5

ekBT

4pr0q2e2
, ~18!

wherer0[rc . Due to symmetry, the equilibrium counterio
density profile only depends onz. The analytical solution of
the Poisson-Boltzmann~PB! equation for this profile is@57#

rc
(PB)~z!5rc

2g0
2lD

2

L2cos2Xg0S 12
z

L
D C , ~19!

FIG. 1. Reduced counterion density profilesrc
(0)(z)/r0 vs re-

duced distancez/L. Solid line—PB prediction and simulation resu
incorporating the Lekner summation method. Both data coincide
the same curve. Long-dashed line—result of simulation in HS
Dashed line—result of PRI simulation withN52. Dotted line—
result of MIC simulation.
eat

e

whereg0 is defined via the solution of the implicit equatio

~L/lD!2

2g0
2tang050. ~20!

For parameters of moderate Coulomb coupling~run A), the
PB result is shown as a solid line in Fig. 1. The correspo
ing MD simulation data were obtained with 600 counterio
in the cell using various boundary conditions. As expect
the PB theory coincides with the Lekner summation meth
which treats best the long-range nature of the Coulomb
teractions. In HSG the counterionic profiles are also v
similar to the Lekner summation, while the MIC deviat
significantly. The MIC can already be improved significan
if N52 periodic repeated images are included. In conc
sion, the agreement between Lekner summation and H
justifies the HSGa posteriori, and gives evidence that th
HSG produces reliable results also for stronger coupling

V. SINGLE MACROION BETWEEN CHARGED PLATES

Let us now consider a single macroion in the inte
lamellar area. We put the macroion on thez axis, such that
its position is atRW 15(0,0,Z1). A corresponding schemati
picture is given in Fig. 2. The total force acting on the ma
roion only depends onZ1, and points along thez axis. Ob-
viously, for the cases15s25sp of symmetric plates con-

n
.

FIG. 2. Schematic picture for a single macroion between lik
charged planes of charge densitysp , separated by a distance 2L.
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sidered here, the direct part of the total force,FW j
(1) , vanishes.

For the second~electrostatic! part, simple PB theory applied
to the case of small macroion charge and small macro
diameter yields the following analytical expression for t
effective macroion force@57,5#:

FW 1
PB5

2ZkBTg0

qL
tan„g0~12z/L !…eW z , ~21!

whereeW z is the unit vector in thez direction, andg0 is given
by Eq. ~20!. Note that only the counterion density stemmi
from the charged plates has to be inserted into Eq.~20!, i.e.,
ro5sp /Luqeu. This force pushes the macroion towards t
midplane, i.e., the wall-particle interaction is repulsive.

Expression~21! will break down, however, for a large
macroion diameterdm and for strong macroion-counterio
coupling parameterGmc. We have tested the PB theor
against ‘‘exact’’ computer simulation data. For modera
couplings~runs B and C! the results for the total forceF1

5FW 1•eW z are shown in Figs. 3 and 4. In Fig. 3, a surprisi
agreement between theory and simulation is obtained de
the fact that the macroion charge is large. This justifies
theoretical conclusions drawn in Refs.@5,6# based on PB
theory. The deviation between theory and simulation
larger in Fig. 4, where the surface charge density w
doubled. Here the system size dependence~respectively the
dependence on the macroion density! was studied in the
simulation. As expected the agreement becomes better
larger system size~respectively for a smaller macroion de
sity! since the theory is constructed formally for vanishi
macroion density. In addition, we repeated the calculati
for rm51.1731013 cm23 ~corresponding to the circles i
Fig. 4! using the PRI method withN54 and obtained the
same results as in HSG. We now enhance the Coulomb
pling by formally reducing the dielectric constante. For a
fixed macroion position atZ15dm , the forceF1 is shown in
Fig. 5 for the parameters of runD. While the PB theory
always predicts a repulsive force, the simulation data ar

FIG. 3. ForceF15FW 1•eW z acting on a single macroion vs re
duced macroion distanceZ1 /L. The force is scaled by the~arbi-
trary! unit F05Zqe2/edm

2 . The system parameters are from runB.
The solid line is the prediction from PB theory. The open circles
simulation results in HSG. The statistical error corresponds to
symbol size.
n

ite
e

e
s

r a

s

u-

in

accordance with theory only for largee but the force changes
its sign for e,10. Hence, as expected, the theory brea
down for large Coulomb coupling, where correlation b
tween the counterions become significant.

For the same runD, the distance-resolved macroion forc
F1 is shown in Fig. 6 for a strongly reduced dielectric co
stante53.9. The simulation data were obtained in HSG b
confirmed by PRI calculations withN54. The electrostatic
part F1

(2)5FW 1
(2)
•eW z and the depletion partF1

(3)5FW 1
(3)
•eW z are

shown separately.F1
(3) is always repulsive, and increase

with decreasingZ1, at least if the macroion is not too close
the surface when the counterion depletion between the m
roion and the wall induced by the finite counterion core
negligible. This is an expected behavior, since in gene
there are more counterions close to the walls. The pure e
trostatic contributionF1

(2) , on the other hand, exhibits
more subtle behavior. If the macroion is close to the m
plane, it is repulsive, then it becomes attractive as the m
roion is getting closer to the plates. As a function of mac

e
e

FIG. 4. Same as in Fig. 3 but now for runC. Symbols are
simulation results in HSG for various macroion number densit
circles,rm51.1731013 cm23; squares,rm52.031012 cm23; tri-
angles,rm51.031012 cm23.

FIG. 5. ForceF15FW 1•eW z acting on a single macroion vs dielec
tric constante for a fixed position atZ15dm . The force is scaled
by the~arbitrary! unit F050.01(Zqe2/edm

2 ). The parameters of the
system are from runD. The solid line is the prediction of PB theory
The crosses are simulation results in HSG.
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ion distance, the total forceF1 is repulsive, attractive and
becomes repulsive again. For small separations~which are
still larger than the microscopic counterionic core! the force
is dominated by the repulsive depletion force. Hence
macroion has three equilibrium positions, two of them a
stable, namely, the midplane and a position in the vicinity
the plate. In order to extract more information, we have c
culated the effective wall-particle potential defined by

Veff~Z1!52E
0

Z1
F1~h!dh ~22!

by integrating our data with respect to the macroion altitu
h. This quantity is shown as an inset in Fig. 6. One first s
that the global minimum is in the vicinity of the walls. Fu
thermore the barrier heightDVeff to escape from there i
about 8kBT. This implies that the time for a colloidal particl
to escape from the position close to the surface is roug
t0 exp(DVeff /kBT)5e8t0'3000t0 @58,59#, where t0 is a
Brownian time scale governing the decay of dynamical c
relations of the macroion. It can also be seen that, fo
doubled surface charge~run E), the height of barrier in-
creases.

A similar behavior occurs for another parameter com
nations~run G) ~see Fig. 7!, corresponding to aqueous su
pensions of micelle-sized macroions. For this parameter
we have increased the dielectric constant toe580, but at the
same time we have decreased the macroion diameterdm in
order to keepGmc high. The attraction hence seems to be
generic feature of the primitive model for strong Coulom
coupling. We note that the barrier heightDVeff is about
70kBT, which implies a very large escape time. Finally w
show for a certain parameter combination~run K), which
was also used in Ref.@60#, that the averaged forceFW 1 differs

from the gradient of the averaged potential energyF̄W 1. As in
Ref. @60#, the system consists of a single macroion in a p

FIG. 6. Same as Fig. 3 but now for runD, e53.9, and for a
force unit ofF050.1(Zqe2/edm

2 ). The crosses are simulation da
in HSG for the total forceF1, the squares~circles! are simulation
data the electrostatic partF1

(2) ~the depletion partF1
(3)). The line is

a guide to the eye for the total force. The inset shows the effec
potential in units ofkBT vs reduced macroion distanceZ1 /L to-
gether with the energy barrierDVeff . The solid line is for runD
with e53.9, and the dashed line is for runE.
e
e
f
l-

e
s

ly

-
a

-

et,

a

-

nar slit of width 5dm , with one charged and one neutral wa
Results are given in Fig. 8. We conclude that the forc
behave even qualitatively different. The average forceFW 1 is a
short-range attractive force which becomes repulsive o
for touching macroion configurations. Contrary to that, t

force F̄W 1 is repulsive up to distance aboutdm/2 from the wall
surface. Note that our data actually differ from those of R
@60# due to the early truncation of the Coulomb interacti
performed there.

VI. TWO MACROIONS BETWEEN PLATES

We finally consider two equally charged macroions at
positions RW 15(X1 ,Y1 ,Z1) and RW 25(X2 ,Y2 ,Z2) confined
between plates. A schematic picture is given in Fig. 9.

In order to reduce the parameter space, we assume
simplicity that both macroions have the same altitudeZ1

e

FIG. 7. Same as Fig. 6 but now for run G and for a force unit
F050.1(Zqe2/edm

2 ). The squares are simulation results for the to
force in HSG forsp51.1931014e/cm2, while the circles are for
sp52.3831014e/cm2. The lines are a guide to the eye. The ins
shows the effective potential in units ofkBT vs reduced macroion
distanceZ1 /L. The dashed line is forsp51.1931014e/cm2, and
the solid line is forsp52.3831014e/cm2.

FIG. 8. Effective forceF15FW 1•eW z ~circles! and gradient of the

potential energyF̄15F̄W 1•eW z ~squares! vs reduced macroion distanc
Z1 /L for run K. The unit of the force isF050.1Zqe2/edm

2 . The
lines are a guide to the eye. The dashed line are data from Ref.@60#.



is
t

ls
n
h
he
ac

lk

m

m
fo
PB

al

l

ou-

e,
The
o-

the
than

ac-
in-
s be-
d in

ted

-
me
l-
is

ge
-
w

c-

e

d

the

PRE 60 3205EFFECT OF GEOMETRICAL CONFINEMENT ON THE . . .
5Z2. The distance between the macroion centers isR12

5uRW 12RW 2u, where the difference vectorRW 125RW 12RW 2 is in
the xy plane. We assume that only one of the walls
charged and that the second wall is neutral. This gives us
possibility to simulate higher surface charge densities. A
for strong coupling, the counterions of the two differe
walls are practically decoupled such that the setup wit
single charged wall is not expected to differ much from t
symmetrical set-up. The total force acting on the two m
roions can be split into a part pointing in thez direction and
another contribution pointing alongRW 12. Hence we write
FW j5FW j

i1FW j
', defining FW j

i5(FW j•RW 12)•RW 12/R12
2 and FW j

'5(FW j

•eW z)•eW z for j 51 and 2. Clearly,FW 1
'5FW 2

' andFW 1
i 52FW 2

i .
It is instructive to compare these force to the DLVO bu

theory, which yields

FW 1
DLVO5

Z2e2exp„~dm2R12!/lD…

eR12~11dm/2lD!2 S 1

R12
1

1

lD
D RW 12

R12
.

~23!

Here the Debye screening lengthlD is given by Eq.~18!,
wherer0 corresponds to the counterion number density co
ing only from the macroions,r05(Z/q)rm . One can also
modify the DLVO theory by also admitting screening fro
the counterions stemming from the wall assuming they
low a Poisson-Boltzmann density profile. This yields the
force @5,6#

FW 1
PB5~FW 1

PB! i1~FW 1
PB!', ~24!

where, for the parallel part of the force, we obtain

~FW 1
PB! i5

Z2e2 exp„2R12/lD~Z1!…

eR12
S 1

R12
1

1

lD~Z1! D RW 12

R12
.

~25!

The perpendicular part of the force is

FIG. 9. Schematic picture for the macroion pair near a char
wall of surface charge densitysp . For the sake of clarity, the po
sition of the second wall is omitted. The different forces are sho
for the case of a mutual attraction.
he
o
t
a

-

-

l-

~FW 1
PB!'5FW 1

PB2
Z2e2

e

lD~Z1!g0
3

L3

tan„g0~12Z1 /L !…

cos2„g0~12Z1 /L !…
eW z .

~26!

The space dependent Debye screening length is

lD~Z1!5X4plBS Z

q
rm1rc

PB~Z1! D C21/2

~27!

Hererc
PB(z) andFW 1

PB are given by Eqs.~19! and ~21!. Con-
trary to the bulk DLVO force, the PB force has an addition
perpendicular part for a pair of particles@the second term in
Eq. ~26!#. This additional force is attractive. Still the tota
perpendicular force@Eq. ~26!# is always repulsive.

For the parameters of run L corresponding to weak c
pling, simulation results forF1

i 5FW 1
i
•RW 12/R12 are shown in

Fig. 10. The solid line corresponds to the bulk DLVO forc
and the dashed line is the Poisson-Boltzmann result.
force is repulsive both in theory and simulation, but the the
ries overestimate the force significantly. As expected,
Poisson-Boltzmann approach yields better agreement
DLVO bulk theory.

Results forF1
i for stronger coupling~runsM andN) are

displayed in Figs. 11 and 12. For a neutral wall, the inter
tion force between macroions is already attractive. With
creasing surface charge the attraction between macroion
comes stronger. Clearly this attraction is neither containe
DLVO theory nor in the Poisson-Boltzmann approach@Eq.
~25!#.

In Fig. 13 we fixed the macroion distance and calcula
F1

i and the force perpendicular to the plates,F1
'5FW 1

'
•eW z ver-

sus altitudeZ1 for run N. There is attraction. Both the inter
particle attraction and the wall-particle attraction beco
stronger in the vicinity of the plate. The effective wal
particle interaction potential for the perpendicular part

d

n

FIG. 10. Parallel part of the effective force acting onto a ma

roion pair, F1
i 5FW 1

i
•RW 12/R12, vs reduced interparticle distanc

R12/dm . The unit of the force isF05(Z2e2/edm
2 )31022. The pa-

rameters of system are from runL, and for an altitude of macroions
of Z150.6dm . The solid line is the bulk DLVO theory, the dashe
line is the Poisson-Boltzmann theory@Eq. ~25!#, and the points are
simulation results in HSG. The statistical error corresponds to
symbol size.
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shown as an inset in Fig. 13. Note that the minimum ofVeff
is much more than twice as large as in the single macro
case~compare to the inset in Fig. 7, solid line!. Thus, a pair
of macroions near a planar surface is more stable tha
single macroion. This is also evident from the results for r
N shown in Fig. 14. Again there is attraction toward the pl
for variedR12 and fixedZ1. The attraction becomes strong
if the interparticle distance is decreasing. This shows that
attraction between the wall and a single macroion discus
in Sec. V is stable and even enhanced if more macroions
close to the wall. This leads us to the final conclusion that
macroions will assemble on top of the surface forming tw
dimensional colloidal layers.

VII. CONCLUSIONS

We have simulated the effective force between macroi
confined in a slit geometry. An effective attraction was fou
for strong Coulomb coupling. In particular, the effective p

FIG. 11. Same as Fig. 10 but now for run M andF0

5(Z2e2/edm
2 )31023. Simulation results are shown for three diffe

ent surface charges: squares,sp50e/cm2; triangles, sp52.98
31011e/cm2; circles,sp55.9531011e/cm2. The lines are a guide
to the eye.

FIG. 12. Same as Fig. 11, but now for runN and for Z1

50.7dm . Results are shown for three different surface charg
squares,sp50e/cm2; triangles,sp51.1931014e/cm2; circles,sp

52.3831014e/cm2.
n

a
n
e

e
ed
re
e
-

s

tential of a single macroion confined between two para
charged plates was found to have two stable minima wh
the total force vanishes: the first is in the midplane, the s
ond close to the walls. This result was confirmed for tw
macroions. In this case the attraction toward the walls w
even stronger than for a single macroion. Our most import
conclusion is that the attractive force will result in two
dimensional colloidal layers on top of the plates. As t
depth of the attractive potential is larger thankBT, these
layers possess a large lifetime with respect to thermal fl
tuations. The layers should be crystalline as the interpart
interaction is also attractive. This can explain at least qu
tatively the long-lived metastable crystalline layers found

s:

FIG. 13. ParallelF1
i 5FW 1

i
•RW 12/R12 ~ squares! and perpendicular

F1
'5FW 1

'
•eW z ~circles! parts of the effective force vs reduced altitud

Z1 /dm for fixed interparticle spacingR1251.2dm . The unit of the
force F1

i is F05(Z2e2/edm
2 )31023, and for the forceF1

' is F0*
5(Z2e2/edm

2 )31022. The surface charge density issp52.38
31014e/cm2. The inset shows the effective potential in units ofkBT
vs reduced macroion distanceZ1 /dm .

FIG. 14. Perpendicular part of the effective force acting on

macroion pair,F1
'5FW 1

'
•eW z in units of F05(Z2e2/edm

2 )31023, vs
dimensionless interparticle distanceR12/dm . The parameters of
system are from runN, and the altitude of the macroions is fixed
Z150.7dm . Simulation results are shown for two different surfa
charges: squares, sp51.1931014e/cm2; circles, sp52.38
31014e/cm2.
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recent experiments on confined samples of charge collo
suspensions@31,32#.

We want to add some remarks: First, our parameters
actually different from those describing the experiments. T
main difference is the high surface charge of the glass pl
within an area spanned by a typical macroion separation
tance. Such a system cannot be simulated, since it requi
huge number of counterions in the simulation box. We ha
mimicked the high surface charge by dealing with a sm
dielectric constant, but strictly speaking this corresponds
different system, as, unfortunately, there is no scaling in
asymmetric primitive model by which one could transla
low dielectric constants into higher surface charges. Nev
theless, also an aqueous suspension of micelle-sized m
ions gives rise to an effective attraction, provided the co
terions are divalent. Second, the mechanism of our attrac
is similar to that proposed recently by us in the bulk ca
@25#. However, it is also strongly affected by the distortion
the macroion screening cloud induced by the presence o
walls. A general simple physical picture explaining the
traction is still missing. It only occurs for strong couplin
with divalent counterions, and is short ranged. In this
spect, it behaves differently than in experiment, where
attraction was long ranged. Unfortunately we cannot clea
relate the range of the attraction to the different microsco
length scales~Bjerrum length, macroion diameter, Deby
screening length, plate separation distance! due to the finite
set of our data. We emphazise again that the depletion f
is crucial in the strong coupling parameter regime. Third,
computer simulation data were tested against simple DLV
or PB-type theories. It would be interesting to use them
benchmark data for more sophisticated theoretical
proaches which predict attraction as, e.g., the density fu
tional perturbation theory recently proposed by Goulding a
Hansen@8#. Finally, in our simulations, we neglected an
impurity or added salt ions. Their inclusion increases s
stantially the number of microscopic particles and wou
lead to more extensive simulation. A further challenge wo
be to incorporate image charges properly into the mo
which requires a nontrivial extension of our approach.
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APPENDIX A: DEFINITION OF FORCES IN
HYPERSPHERE GEOMETRY

Here we briefly present some technical details in H
within the primitive model. For more details, we refer to Re
@53#.

The charged hard spheres are confined on the surfacS3
of a 4D hypersphere. Without confinement, in the bulk,
whole surface of the hypersphere is accessible to the
ticles. SinceS3 is compact, the total charge in a closed spa
must be equal to zero. We define a pseudocharge as
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association of a point chargeqi located at the point sayM,
and a neutralizing background of total charge2qi . The po-
sition of pseudocharge is specified by the 4D spherical co
dinates (a,u,w) ~see Fig. 15!. Then the Cartesian compo
nents of the unit vectoruW (M )5OMW /R reads

u15sina sinu cosw, u25sina sinu sinw,

u35sina cosu, u45cosa. ~A1!

Here R is the hypersphere radius,O is the center of the
hypersphere, and the anglea determines the distanceRa
from north pole, see Fig. 15. The distance between t
pseudochargesqi ~at point M ) and qj ~at point N) is mea-
sured along the geodesic line joining these points:

r MN5Rg, ~A2!

whereg is the angle between vectorsOMW andONW ,

g5arccos
OMW •ONW

R2
. ~A3!

The Coulomb forceFW i j between pseudochargeqi and
pseudochargeqj is

FW i j 5
qjqi

epR2 S cotg1
p2g

sin2g
D eWg~N!. ~A4!

HereeWg(N) denotes the unit vector tangent to geodesicMN
at pointN:

eWg52
1

sing
uW ~M !1cotguW ~N!. ~A5!

For short distancesr MN , there is hard core repulsion. A har
sphere of diameterdi ( i 5c,m) centered around pointM on
S3 is defined as the set of pointsM0 such thatRgMM0

5R arccos(OMW •OMW 0 /R2),di /2. Thus the hard sphere po
tential between two pseudocharge is defined by

FIG. 15. Schematic view of the hypersphere~projected to three
dimensions! illustrating the angular coordinatea.
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Ui j 5H ` if g,
di1dj

2R
, i , j 5c,m

0 otherwise.

~A6!

Let us now consider the mixed hard sphere system to
confined between two charged walls. OnS3 geometry this
corresponds to two charged lamellae, parallel to each ot
localized symmetrically on opposite side of the equator~see
Fig. 16!. They result from a conical section of the hype
sphere, with angular apertures equal toaN for the north
lamellar andaS5p2aN for the south lamellar. The area o
each lamellae isSp54pR2sin2aN , and the volume confined
between lamellae is given by

V~aN!5pR3~2aN2sin2aN!. ~A7!

Then the separation distance between lameller isD5R(p
22aN). For the symmetrical case considered in this pap
when both lamellae are charged equally with surface cha
density sp , the charge electroneutrality of simulation ce
together with Eq.~1! requires

Npqc12Qp50. ~A8!

HereQp5spSp is the net charge of one lamellar, andNp is
the number of counterions coming from planes.

Finally, we give the definition of interaction forces. Th
lamellar-lamellar repulsion force is

Fpp5
Qp

2

epR2 S 2cotaN1
aN

sin2aN
D . ~A9!

The ion-ion repulsion (i 5 j ) and attraction (iÞ j ) force is

Fi j 5
qjqi

epR2 S cotg1
p2g

sin2g
D ; ~A10!

hereg is given by Eq.~A3!, and the particlesi and j are at
points M and N, i , j 5m,c. The ion-lamellar repulsion (i
5m) and attraction (i 5c) force is

FIG. 16. Schematic view of the hypersphere~projected to three
dimensions! illustrating a situation with two parallel charged inte
faces.
e

r,

r,
e

Fip5
Qpqi

epR2 S cota i1
p2a i

sin2a i
D ~A11!

for the upper lamella and

Fip5
Qpqi

epR2 S cota i2
a i

sin2a i
D ~A12!

for the second lamella. The direction of the forces is alwa
along the geodesic line. The lamellar-ion hard core repuls
becomes

Uip5H ` for a i,aN1di /2R, i 5c,m

0 otherwise.
~A13!

APPENDIX B: EQUATION OF MOTION FOR SINGLE
COUNTERION IN HYPERSPHERICAL GEOMETRY

In this section we translate Newton’s equation of moti
onto HSG for a counterion in an external electrical field c
ated by charged planes, other counterions and fixed ma
ions. First of all, let us define the displacement of counter
at pointM on S3. The differentialdOMW of vectorOMW (M
remaining on the surface of the hypersphere! is

dOMW 5RdaeWa1R sinadueW u1Rsina sinudceWw ,
~B1!

where the unit vectors@eWa ,eW u ,eWw# given by

eWa5~cosa sinu cosw,cosa sinu sinw,cosa cosu,

2sinu!,

eW u5~cosu cosw,cosu sinw,2sinu,0!, ~B2!

eWw5~2sinw,cosw,0,0!

constitute an orthogonal frame at pointM. For the kinetic
energy in terms of the variables (a,u,w), we obtain

T5
mv2

2
5

m

2
S dOW M

dt
D 2

5
m

2
~R2ȧ21R2 sin2 au̇2

1R2 sin2asin2uẇ2).
~B3!

For the potential energy we have relations

2
]U

]a
5RFa , 2

]U

]u
5R sina Fu ,

2
]U

]w
5R sina sinuFa . ~B4!

Now let us put Eqs.~B3! and ~B4! into Lagrange equations

d

dt

]T

]v i
2

]T

]xi
5(

j 51

Nc ]Ui j

]xi
1 (

k51

Nm ]Uki

]xi
1(

l 51

2
]Uli

]xi

~ i 5a,u,w and xi5 i !, ~B5!
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where on the right hand side the first term arises from
counterions, the second term is the macroionic attract
and the last term is due to plane attraction. The New
equations of counterion motion reads as follows:

ä5sina cosa ~u̇21sin2uẇ2!1
1

mR
Fa , ~B6!

d

dt
~sin2au̇!5sin2a sinu cosuẇ21

sina

mR
Fu , ~B7!

d

dt
~sin2a sin2uẇ!5

sina sinu

mR
Fw . ~B8!
ry
ple
re

ar

-

em

y
.

sh
ll
n,
n

We note that (Fa ,Fu ,Fw) are the components of tota
force arising from all other counterions, planes, and mac
ions. The equations of motion~B6!–~B8! have been solved
in a way similar to that described in Ref.@61#. The spherical
components (Fa ,Fu ,Fw) of vectorFW are connected with the
4D force Eq.~A4! by the relations

Fa5F1 cosa sinu cosw1F2 cosa sinu sinw

1F3 cosa cosu2F4 sinu,

Fu5F1 cosu cosw1F2 cosu sinw2F3 sinu, ~B9!

Fw52F1 sinw1F2 cosw.
sica
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@34# H. Löwen, J. P. Hansen, and P. A. Madden, J. Chem. Phys.98,

3275 ~1993!.
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