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Star polymers are hybrids between polymerlike enti-
ties and colloidal particles, establishing an important
link between these different systems; for recent reviews
see refs 1 and 2. The interpenetrability of two stars is
governed by the number of arms (or functionality), f,
i.e., the number of linear polymer chains attached to a
central microscopic core. For f ) 1,2 one recovers a
system composed only of linear chains while in the limit
f f ∞ one gets sterically stabilized spherical colloidal
particles which behave like effective hard spheres.3,4

Recent research5-8 has mainly focussed on polymer
conformations of a single star. The only relevant length
scale of a single star is embodied in the spatial extension
of the monomers around the core as given by the so-
called corona diameter σ.

In order to predict macroscopic properties of a con-
centrated solution of many stars, one has, however, to
proceed one step further: In any statistical theory, the
effective interaction between the stars is a necessary
input. This interaction, in general, comprises many-body
terms. For concentrations which are not too high, i.e.,
smaller than or comparable to the overlap concentration
F* ≡ 1/σ3, triplet and higher-order terms are small and
the system is dominated by effective pairwise interac-
tions. Recently, on the basis of scaling theory,9 an
explicit analytical expression for the effective pair
potential V(r) was proposed in ref 10. This potential
combines a logarithmic form of the interaction potential
for core-core separations r smaller than σ with an
exponentially decaying interaction of Yukawa-form for
distances r larger than σ:

Note that the potential strength simply scales with the
thermal energy kBT since the repulsion between the
stars is of purely entropic origin having a good solvent
in mind. Both the potential in eq 1 and its associated
force F(r) ) -dV(r)/dr are continuous at r ) σ, but F(r)
has an artificial cusp at r ) σ. The prefactor of the
logarithm is fixed by scaling theory9 while the expo-
nential decay length 2σ/xf is the diameter of the
outermost blob within the Daoud-Cotton model for one
star polymer.5

For an arm number of f ) 18, this potential was tested
against neutron scattering data, and reasonable agree-

ment was found.10 Further experimental support comes
from shear moduli measurements in the crystalline
phase of many-arm micelles.11 Still, the scaling theory
assumptions are strictly speaking only justified for
core-core distances r much smaller than σ, and the
exponential decay length of the outermost blob size is
an heuristic assumption. Hence the validity of the
potential for arbitrary arm numbers can be questioned.
In this paper, we test the pair potential against a
microscopic model, resolving the monomers of the
chains, by extensive molecular dynamics computer
simulations. To be specific, we use a simulation model
for star polymers developed by Grest et al.,6 which was
applied in previous studies for single stars, and general-
ize it to a situation with two stars, which is the minimal
setup to extract information about the effective interac-
tion between two stars. The distance-resolved interac-
tion force F(r) is calculated for arm numbers f ranging
from f ) 5 to f ) 50. Each arm contains N monomers
where N is varied from 50 to 200. As a result, we
confirm the phenomenological interaction potential in
eq 1; our simulation results are in perfect quantitative
agreement with the theoretical prediction. This impor-
tant result enables a mapping of a star polymer solution
onto a classical one-component fluid12 interacting via
the effective ultrasoft pair potential of eq 1, provided
the star concentration does not exceed F*. This picture
was anticipated in recent work, calculating the anoma-
lous structure factor of star polymer solutions13 and the
unusual phase diagram including re-entrant melting9,14

and anisotropic crystal structures.14 So, our present
work provides a theoretical justification of all these
previous studies.

Let us first describe the simulation model:6 Each
polymer arm consists of N effective monomers or “beads”
interacting via a purely repulsive Lennard-Jones-like
potential V0(r), where r is the separation of the beads.
V0(r) is obtained from the usual Lennard-Jones potential
VLJ(r) by cutting VLJ(r) at the position of the potential
minimum rm ) 21/6σLJ and by shifting it by the constant
value VLJ(rm) in order to obtain V0(rm) ) 0:

Here, ε sets the energy scale and σLJ the length scale of
the beads. The pure repulsion implies that we are
dealing with a good solvent. For neighbouring beads
along the chains, the attractive FENE-potential6 Vch(r)
is added to the interaction

This interaction diverges at r ) R0, which determines
the maximum relative displacement of two neighbouring
beads. Henceforth, we fix R0 to be 1.5σLJ. Then the total
potential V0(r) + Vch(r) between neighbouring monomers
has a minimum at r ≈ 0.97σLJ. Furthermore, the central
core particles of the two stars have a finite hard core
radius Rc, and all monomers are interacting with the
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core particles via a modified repulsive interaction
potential V0

c(r). The introduction of a small hard core of
the central particles of the stars is necessary to accom-
modate the large number of arms at small distances
from the core.6 Thus we take explicitly for the potential

In addition, the innermost monomers of each arm are
interacting with their core via an attractive potential
which is given by

We note that exactly this simulation model was already
used by Grest et al. in their simulations of single star
polymers.6 In our simulations, the centers of the two
stars are fixed at positions RB1 and RB2 with a given
distance r ) |RB1 - RB2|. The total number of mobile
monomers is 2fN, which limits our studies to small f
and small N. In all simulations, the system is held at
fixed temperature T ) 1.2ε/kB. Under these circum-
stances, the effective force FBi acting on the i th star
center is given as a canonical average

where in the first sum the repulsive interactions of the
core with all 2fN monomers in the system are consid-
ered, whereas the second sum only accounts for the
attractive interactions with the f innermost monomers
of the chains attached to the i th center. Obviously, due
to symmetry, FB1 ) -FB2. We use standard molecular
dynamics simulations15 to equilibrate the monomers and
perform the statistical average 〈...〉 over the monomers
for the forces on the star centers. The timestep is

typically δt ) 0.002τ (with τ ) xmσLJ
2/ε being the

associated time unit and m the monomer mass) and
typically 120 000 steps are used for equilibration and
up to tmax/δt ) 500 000 steps were simulated to gather
statistics. It was carefully checked by monitoring the
internal energy that the system had equilibrated. A
typical snapshot of two stars after equilibration is shown
in Figure 1. As can be seen, the monomers of one star
do not penetrate much into the central region of the
other star.

In order to check the code, we performed simulations
of single stars changing the arm numbers between f )
5 and f ) 50 and the monomer numbers from N ) 50 to
N ) 200. The corresponding results for the radius of
gyration RG

2 ) 1/fN〈∑i)1
fN (rbi - rbCM)2〉 (where rbCM is the

center of mass of the whole star) and the density pro-
file of the monomers are in very good agreement with
the results given in ref 6 and are well described by
the scaling theory of Daoud and Cotton.5 For a detailed
list of the simulation parameters and the results for
RG, obtained from these single star simulations, see
Table 1.

It should be noted that the effective forces on the star
centers are the gradient of the effective star-star poten-
tial. This effective potential, however, differs in general
from the monomer averaged potential energy of the star
centers.16 We therefore had to calculate the averaged

forces FBi (i ) 1, 2 ) from our two star simulations to
compare with the theoretical force as calculated from
eq 1. In doing this, two difficulties arise: (i) The corona
diameter σ, which is the relevant length scale in the
potential of eq 1, is not known a priori. (ii) In contrast
to the theory, there is a finite core size Rc in our
simulation model.

As regards the first difficulty, σ is usually defined as
the typical maximum range where a scaling behaviour
of the monomer density around a single star center
holds.5,9 A statistical definition of σ, however, is missing.
On the other hand, the radius of gyration RG has a clear
definition as a canonical average, which can be calcu-
lated directly in simulations. We therefore use RG, which
was calculated in the single star simulations, as basic
length scale for our simulation data and fit these data
for F ) |FBi| (i ) 1, 2) to the theoretical prediction for
F(r) using the least-square method and treating σ as
the single fit parameter. Afterward, we check how the
optimal value for σ scales with RG as obtained from the
single star simulations. The procedure is consistent if
the ratio λ ) σ/2RG is independent of f. The second
difficulty is resolved as follows: A logarithmic potential
for r < σ implies that the data should fall on a straight

Figure 1. Typical configuration for two stars with f ) 10 and
N ) 50. The distance between the central core particles, which
are shown as big black spheres, is r ) 5.2σLJ. The gray and
light gray monomers belong to the first and second star
respectively.

Table 1. List of the Simulation Parameters and the
Corresponding Results for RG and λ ) σ/2RG

f N δt/τ tmax/δt RG/σLJ (Rc/σLJ) + 1/2 Rd/σLJ λ

5 100 0.004 500 000 13.53 0.65 1.39 0.61
10 50 0.003 400 000 10.37 1.1 1.21 0.66
10 100 0.003 400 000 16.18 1.1 0.89 0.64
10 150 0.003 400 000 19.71 1.1 1.31 0.60
10 200 0.003 400 000 24.52 1.1 1.42 0.67
18 50 0.002 350 000 11.19 1.25 1.38 0.68
18 100 0.002 350 000 17.10 1.25 1.64 0.65
30 50 0.002 350 000 12.22 1.6 1.89 0.66
50 50 0.002 350 000 13.35 1.8 2.40 0.69
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line crossing the origin if one plots the inverse force, 1/F,
vs r inside the corona diameter. A typical plot is given
in Figure 2. In fact, the data fall on a straight line.
Extrapolating the data, however, one does not hit the
origin. The divergence of the force occurs already at a
finite distance 2Rd ≈ 2Rc + σLJ, which clearly has to be
attributed to the presence of the finite core in the
simulations. We note that both Rc and Rd have micro-
scopic length scales and are of the same order of
magnitude (see Table 1), thus being irrelevant for the
macroscopic length σ in the scaling regime. We therefore
normalize our distances by subtracting 2Rd, thus match-

ing the divergence of the force properly. We emphasize
that the slope of the straight line is in very good
agreement with the theoretical prediction; see again
Figure 2. This implies that the theoretical prefactor
5/18f 3/2kBT in eq 1 is confirmed by the computer simula-
tions. In Figure 3, we show the effective force vs distance
for five different arm numbers f and two monomer
numbers N. The agreement with the theory is convinc-
ing for all f and N. The consistency of our fitting
procedure of the corona diameter σ is documented in
Table 1, where the ratio λ ) σ/2RG is given for different
f and N. We find λ ≈ 0.65 independent of f. This value
also coincides with the value used in ref 10 to fit
experimental data for f ) 18. We further note that λ is
independent of N, consistent with scaling theory. Fi-
nally, we prove the exponential decay of the force for
distances larger than σ by plotting the logarithm of the
force vs distance in Figure 4 for one typical example.
One clearly sees the crossover of the inner-core data to
a straight line outside the core. The slope is consistent
with the theoretical one as determined by the outermost
blob size.

In conclusion, we have verified the ultrasoft pair
interaction for star polymers by direct molecular simu-
lations. It is straightforward to generalize the method
to two stars confined in a periodically repeated cubic
cell in order to estimate the shrinking of the corona
diameter due to a finite star density. Also, similar to
charged colloids,17 triplets of stars should be considered
to investigate the importance of triplet interactions. Our
future work lies along these directions.
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