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Melting of polydisperse colloidal crystals in nonequilibrium
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The influence of a time-dependent oscillatory external field on the melting transition of a polydisperse
colloidal crystal is examined by theory and computer simulation. In a monodisperse crystal the field just
induces an overall dynamical mode which does not affect the melting line. For a polydisperse sample, on the
other hand, the field shifts the melting line towards smaller temperatures. Combining a solid cell approach and
a Lindemann criterion in nonequilibrium, a simple theory is presented showing that the temperature shift scales
with the square of the relative polydispersity. The theory is in reasonable agreement with nonequilibrium
Brownian dynamics computer simulatiori§1063-651X%99)11908-1

PACS numbsd(s): 82.70.Dd, 64.70.Dv

[. INTRODUCTION shifts the solid melting line towards lower temperatures with
respect to the field-free equilibrium case. In order to do so,
While by now equilibrium melting and freezing transi- we have performed extensive nonequilibrium Brownian dy-
tions are microscopically well understood within theory, ex-namics (BD) computer simulations. We also propose a
periment, and computer simulatifh,2], much less is known Simple Lindemann rule of melting suitably generalized to
about these phase transformations away from equilibriumfonequilibrium which is confirmed by our simulations. Con-
Rapid temperature quenches, for instance, are known to pré&rete results for the melting line are obtained with the help of
duce metastable thermodynamic phaisd]. Another non- @ cell model for charge-polydisperse colloidal suspensions
equilibrium situation is induced by an external time- interacting via an effective Yukawa potential. The trends as
dependent oscillatory field. Soft matter materials such a§btained from the theory are in reasonable agreement with
colloidal Suspensions are excellent model Systems to Stu(ﬂ}]e BD simulations. One of our main results is that the shift
equilibrium phase transitiofb,2,6] and are also vulnerable of the solid melting line scales with the square of the relative
to small external perturbations. They thus represent ided?0lydispersity of the colloidal sample. Since melting curves
samples for which the influence of external time-dependeng@n be measured precisely by light scattering techniques
oscillatory fields can be studied quantitatively. [18], our result may facilitate a direct measurement of poly-
In this paper we study the influence of an external oscil-dispersity which is normally seen only indirectly in a
latory field on the melting transition of colloidal crystals. As Smeared structure factor.
a model, we describe the motion of the colloidal particles by ~This paper is organized as follows: In Sec. II, the model is
completely overdamped Brownian motion under the influ-introduced. Then we describe the generalized Lindemann
ence of an external time-dependent but space-independegfiterion for a nonequilibrium situation in Sec. lll. Our BD
force. Such a coupling can be realized in quite different exSimulation techniques are summarized in Sec. IV. Section V
perimental setup§6]: Both electric[7] or laser-optical8] is devoted to a discussion of the results and to a comparison
external fields can be superimposed to the colloidal sampl@f theory and simulation. We finally conclude and state some
They act as an external force since the material of the collnteresting open questions in Sec. VI.
loidal particles possesses another dielectric constant other
than the solvent. For magnetic colloids an alternating exter- Il. MODEL
nal homogeneous magnetic field results in the same external
coupling[9]. A third realization are colloids under shear. In
contrast to the typical case of linear shear flow where man)‘zI

experimenta[10], theoretical11], and computer simulation '’ : _
[12] studies are available, we focus here on oscillatory shedPICroscopic solvent particles of the same temperature. The

fields which were also investigated by experimefi8,14] coIIoidgl particles andj are interacti.ng vig an effegtive pair
and simulation$15]. Our model is identical to an oscillatory PotentialVi;(r)=2Z;Z;Vq(r), wherer is the interparticle dis-
shear situation in the limit of small shear rates. As we shalfance. Here we have introduced a polydispersity in the effec-
show, polydispersity becomes crucial for the shift of the non-t'Ye mtgracuon between the colloidal pgmcleg by the intrin-
equilibrium melting transition in this limit. Finally, the col- SIC particle property; (Z;>0).Infact, this particle property
loidal sedimentation problem in a constant gravitational field!S @ random variabl& which is distributed according to a
is recovered as a special case in our model by setting thgormalized distribution functiop(Z) with a mean value
frequency of the external field to zero. Regarding the latter .
situation, Batche_zlor and co_-wque[l’sG] already emphas_ized 7= f dZZp2) 1)
that polydispersity has a significant effect on the sedimenta- 0
tion velocity (see also Refl17]).

In this work, we show that an external oscillating field and a relative polydispersity

We considem colloidal particles in a volumé) with a
xed number density=N/Q. The colloidal suspension is
eld at fixed temperatur€ since it is embedded in a bath of
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= — The subscriptgr and 8 stand for the three Cartesian compo-
— 2172 _
Pz=\NZ/Z°~1. 2 nents ankgT is the thermal energy. The Langevin equations

Typical examples are charge- and size-polydisperse coIIoid@ can be rewritten in terms of new reduced trajectories

[19,20] where ri(t)=r;(t)—ro(t) such that the transformed equations have
the same form as the original ones in the field-free ¢ag¢

Z;=Q; exp(kail2)[(1+ koil2) (3)  This immediately implies that any structural correlations of

. ) ) . the colloidal particles are unaffected by the field. In particu-

is the effective chargéwith Q; and oy denoting the bare |ar the solid melting line does not depend on the external

charge and diameter of thgh particlo and Vo(r)*exp  fie|q strengthf. However, the situation is different if the size
(—«r)/r has a Yukawa formwith « denoting the inverse o oo pling polydispersity in nonvanishing. This will be ex-

Debye screening length plored theoretically in the next section.
The dynamics of the colloids is assumed to be Brownian.

Hydrodynamics interactions are neglected which is a safe

agproxi%ation if the colloidal vqumegfraction is small. un- !l LINDEMANN CRITERION IN NONEQUILIBRIUM
der these conditions any energy transferred onto the colloidal A. General outline of the theory
particles via the external field is immediately damped by the
solvent friction. The friction constant; = 37 no; with 7 de-
noting the shear viscosity of the solvei directly propor-

Let us assume that all polydispersities are small. We fur-
ther adopt the picture of a harmonic solid using a solid cell

tional to the polydispersity in size, which can be extracteomOdel with fixed neighbors located at the lattice positions
from a normalized size-distribution functiop(s) with a {R;}. On average, these particles constitute a cage potential

) — : . . for which we assume no occupation correlations, i.e., we
first moment and a relative olydispersit . .
7 polydisp YPo approximate in Eq(6)

= \/;/EZ— 1. Strictly speaking, the distribution functign
and the bar have a different meaning here than in EDs. ORY,
and (2). We nevertheless keep the same notation since it is 1

(IFi= i~ ZZVo(IR =FiD)
clear from the argument which kind of polydispersity and

which kind of average is meant. ~V+31ZK(ri—R)Z2 (8)
The external oscillatory force acting on the particle is )

pointing in thez direction and modeled as Here we assumed cubic crystal symmetry such that the har-
. monic picture becomes isotropi¥. is an irrelevant additive
Fi(t)=¢,f; cog wt) (4) constant. The effective “spring constant”

wherew is the external frequency, is the unit vector along

the z direction, andf; is the coupling parameter of théh K= 2 —[V (R)—2Vo(R)/R)] 9)

particle to the external field. The variab|é;} describe a R, 203

third kind of polydispersity which we call coupling polydis- . . . .
persity. It is characterized by a normalized distribution func-dePendsvia the lattice constanin the colloidal density.
tion p(f) with mean f and relative rootvariancep, Equation(9) assumes that one lattice point is in the origin;
V{(r) andVg(r) denote the first and second derivativevef
— V12— 1. For charged suspensions in an electric fleld,W|th respect ta. Within these approximations the stochastic
=QiEo, whereE, is the amplitude of the effective electric Langevin equations describe a driven Brownian harmonic
field [21]. oscillator. As a side step we remark that this picture of the
Our first important consideration concerns samples whicltolloidal crystal has been directly proved by dynamic light
are monodisperse in size and coupling, pg=p;=0. Since  scattering experiments in equilibriurf23]. Transforming
all particles feel the same external force, the net effect of the,g4in onto reduced trajectoneﬁt)—r (t)—Fo(t) and onto

coupling is a trivial dynamical mode
ping Y reduced lattice posmonst(t)—Rj(t)—ro(t), one can

Fo(t):ézf_sin( wt)3Tywo. (5) readily calculate the polydispersity average of the reduced
mean-square displacement. If the frequendg comparable
In fact, the stochastic Langevin equations for the colloidalto a typical inverse time scale of the colloidal motion, it

trajectoriesr;(t) (i=1, ... N) read as makes sense to also perform a time average. The result for
the full averaged mean-square displacement is
df, - L e _
Yige =~ Vi Vilfi—rih+Fm+FR1) (@) 3KaT 2
j#Fi

(F)=—= (14p2)+s ——
) okz 227124 2
where the random forces{® describe the kicks of the sol-
vent molecules acting onto thiéh colloidal particle. These

- pi+ps—2(fi/f-1)(oi/o=1)| (10
kicks are Gaussian random numbers with zero mé&4R),

=0, and variance with T =KZ/3m 5. The right-hand-side of EG10) consists

e Zym of five terms. For the equilibrium cagge., zero external
(FIR) J(O(FR) p(t')=2KeT¥i 8,58, 8(t—t'). (1) field, f=0), only the first two terms are relevant: The aver-
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aged mean-square displacement is increasing with increasing

polydispersity and the leading correction is quadratipjn 030fF a) °

Furthermore, if there is no correlation between the two dis- /i

tributions inf and o, the last term vanishes. Size and cou- %25} 2

pling polydispersity both enhance the mean-square displace- ;54 F ,/f :

ment and the leading order scales again with the squape of [ i’___,(__.ﬁi

andp, . o15F - pemetem T

To access the melting curve we now use the Lindemann E e

rule [24] in a generalized sense. It states that a solid melts if ~ 010F -

its root-mean-square displacement is roughly 15% of the 005 E

mean distanca=p~*® between the particld®5]. We pos- '

tulate that this rule is also valid in our nonequilibrium situ- 0.00 Lot i, . SOOI N

ation. In fact, a high-frequency rattling field may be seen as 010 012 014 016 018 020 022

an increase of the “effective” system temperature thus jus- ™

tifying a quasiequilibrium treatment. Hence the solid melting

curve is obtained by 9
0.30F )

P2 i gf
<a' i ~L,, (11) o2 S

0.20 | fi B

where L, is the Lindemann parameter for the associated |, o8 .- pommtr T

monodisperse system in equilibrium. This relation together SRR

with Eq. (10) determines the location of the solid melting 0.10 F

line. g -
0.05F

B. Application of the theory to an equilibrium situation 0.00 brteriinis, Cveiins VT T T Levieiin,

Let us now check our theory in an equilibrium situation
by comparing it to simulation data for the melting line. We
discuss both monodisperse and polydisperse systems for har
sphere and Yukawa interactions. osof §

For a monodisperse hard-sphere system, the Lindemanr ' c)
parameter at melting of the face-centered c(ie) crystal 0.25L R
lattice isLy=0.13[26]. Our cell model gived ;=0.11 in . 4
good agreement with the simulation. In evaluating our 020 F
theory, we have taken the solid melting density from com- '
puter simulation.

The cell theory, however, underestimatesif the inter-

; : : : 0.10F
actions become softer. Detailed computer simulations of the s //’_

T*

~ 0.15F

melting line of a Yukawa solid are availall27—29,25. The 0.05F

associated solid lattice structure is fcc for hard interactions :

H —-1/3 - _ 0.00 P T [N [P [ il NP |

(i.e., for kp~**>4) and body-centered-cubibco) for soft AT Y T T

interactions(i.e., for kp~¥3<4). From the simulations, it is N
known that the Lindemann parameter along the melting T
curve mcreasesi\i\gth decreasirg ' from the hard S@lgre FIG. 1. Averaged Lindemann parameters reduced tempera-
value 0.129 fp~"“—) to the plasma value 0.1%p ture T*. The solid line is the theoretical result using the cell model.
=0). Our theory, evaluated at the solid melting curve, yieldsthe dotted line is from computer simulation. The crosses show a
Lo=0.09-0.10 which is significantly lower than the simula- heating situation, while the open circles correspond to a cooling
tion data. Hence the solid cell model becomes less reliableituation. (a) Equilibrium situation of a monodisperse systeps,
for softer interactions. =0. Here the exact melting temperature as known from R&. is

We now turn to polydisperse systems in equilibrium. Inindicated by the arrow; the parameteis equal to 5.8(b) Equilib-
fact recent computer simulations on siZ80] and charge- rium situation with polydispersityp,=0.1, A\=5.8 andE,/kgT
[31] polydisperse colloids indicate that the Lindemann rule is=0. (c) Nonequilibrium situation withp;=0.1, A =4.8, w7=570,
valid with polydispersity. As far as actual numbers for the Eq/kgT= 100.
melting line are concerned, there are only few computer
simulation data available. An accurate solid melting curve
was obtained recently using thermodynamic integration for §33,34 for the size-polydisperse hard-sphere crystal, the ap-
size-polydisperse hard-sphere fcc crystal by Bolhuis angblication of the criterion(11) yields perfect agreement with
Kofke [32]. The melting density grows with increasing poly- the simulation data up to a relative size polydispersity of 5%.
dispersity and scales withi for small p,, consistent with  The same is true if one applies the Lindemann critefibt)
our theory. If one constructs a similar cage-cell theoryfor a charge-polydisperse case. Here one can reasonably re-
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produce the simulation data of Rd31] up to a relative the Lindemann parametérn) of the particles in order to lo-
charge polydispersity of 20%. As for further full quantitative cate the crystal melting transition. The system either runs in
comparison between theory and simulation, we refer to Figsa steady-state situation where the fcc solid remains stable or

1(a) and Xb) and to our discussion in Sec. V. it suddenly melts at the melting temperatufg losing its
crystalline order. The melting process is signaled by a drastic
IV. BROWNIAN DYNAMICS COMPUTER SIMULATIONS increase of the Lindemann parameter. In fact, after the melt-
IN NONEQUILIBRIUM ing process is finished grows steadily with simulation time
) ) ) . indicating a finite long-time self diffusion in the fluid.
Our Brownian dynamic$BD) code is very similar to an In the equilibrium situation §,=0), it is known that

equilibrium simulation of charge-polydisperse colloldS].  aher jong simulation runs are needed to obtain the solid
We putN=864 particles into a cubic cell of lengthwith o 1ing point precisely. For shorter simulation times one
periodic Boundary conditions. The colloidal number density,5iher probes the spinodal instability of a superheated solid
is p=N/I". The particles interact via an effective Yukawa [37] which occurs at higher temperatures. Hence our melting
pair potential temperatureT?, is systematically too large. An estimate of
the error can be obtained by cooling a molten system. Typi-
Vij(r)=ZZjUg exp(— «r)/ «r, (12 cally the system exhibits a hysteresis effect. The associated
refreezing temperaturg; as monitored by a decreasing Lin-
whereU, sets the energy scale. Ttdimensionlesscharges demann parameter is smaller that the real melting tempera-
Z; are drawn from a rectangular distribution around a meanure. Hence the real temperature should be in the interval

valueZ which is set to 1 without loss of generality: bounded byT}, andT; . As we shall demonstrate below, this
method gives the melting temperature with a relative error of
1\12p, for |Z—1|<+3p, 5-10 %. It has the advantage that it can be directly applied to
= (13 a nonequilibrium case where the thermodynamic criteria of
0 elsewhere. phase coexistence are missing.

We finally remark that the system did not refreeze into the

The width of the distribution is fixed by the prescribed poly- initial fcc structure but was rather trapped in an amorphous
dispersitypz . All particles have the same diameterCon-  glass upon cooling. Nevertheless the fcc crystal is the ther-
sequently, their friction constany is also the same. The modynamic stable state, at least for small polydispersities.
coupling polydispersity is taken to be proportional to thestill, as the kinetic glass transition is occurring for smaller
charge polydispersity, i.ef;=EqZ;, whereE, measures the temperatures than the recrystallization transitid#, pro-
amplitude of the oscillating field. The direction of the exter- yvides a lower bound for the true melting point.
nal force is always along an edge of the simulation box. We
remark that in equilibrium, any thermodynamic quantity only V. RESULTS
depends on the two parametexs=«kp *=ka and T*
=kgT exp(\)/U, [28]. Of course, this is no longer true in In Figs. a)—1(c), the time- and polydispersity-averaged
nonequilibrium. In a steady state, the external field intro-Lindemann parametdr = W/a is displayed versus tem-
duces two additional parameters: the field amplitude gives geratureT*. Clearly, L is increasing with temperature. Fig-
further energy scale and the frequency sets an additional timgre 1(a) shows the monodisperse case in equilibrium. The
scale. arrow indicates the bulk melting point of the Yukawa solid at

Our starting configuration was a fcc lattice which wasT*~0.206 as obtained by thermodynamic integratiag].
randomly occupied by particles of different charge. Ror From Fig. 1a) it becomes clear that our simulation method
=5.8, as chosen throughout our simulations, this structure igdata along the dashed linprovides a reasonable estimate
the thermodynamically stable one, at least for small polydisof the melting transition. In fact, the equilibrium melting
persitieq 28]. We have checked explicitly by taking different temperature is within the loop resulting from the hystersis by
random occupations, that our results were not affected by theooling the molten system. Theoretical resultslfdrom our
initial occupation. The Langevin equations of motion includ-cell model are shown as solid line. As the cell model ne-
ing the shaking external field were numerically solved usingglects the mobility of the neighbor cage completely, it is
a finite time stepAt and the technique of Erm4B5,36. The  reliable only for small temperatures and underestimaties
Brownian time scale is set by=y/p?3U, which is the typi-  larger temperatures. These findings are consistent with our
cal time after which a free particle has diffused over itsdiscussion in Sec. Il B.
mean-interparticle distanca The typical size of the time In Fig. 1(b) the equilibrium case for a charge-polydisperse
step wasAt=0.003r. sample is shown. The melting point occurd &t 0.18 which

We studied the system as a function of temperafire  is the same value as in the monodisperse case. Again the
starting with small temperatures and continuing our simulatheory underestimates the Lindemann parameter.
tions by heating the system. The temperature was increased Finally, in Fig. 1(c), a nonequilibrium situation is shown.
discontinuously in small steps. Between the discontinuou¥he melting point in nonequilibrium can be detected by the
heating process we kept the temperature constant and simsame analysis as in equilibrium: it is signaled by a dramatic
lated typically 2<10* time steps which correspond to a increase ol and the error in locating the melting point can
simulation time of 6@. After an initial relaxation period of be estimated by cooling the system down again resulting in a
207, statistics were gathered. During the simulations, wenarrow hysteresis loop. The Lindemann parameter at melting
monitored the reduced root mean-square displaceffient is again 0.18. The theory underestimaltess in equilibrium.
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VI. CONCLUSIONS
0.22

In conclusion, we have studied the melting of polydis-
perse colloidal crystals in an oscillating external field by
computer simulation and theory. The simulation data provide
compelling evidence that the Lindemann melting rule does
also apply in nonequilibrium. The external field shifts the
melting point towards lower temperatures. The shift can be
understood semiquantitatively within a simple solid cell

0.20

0.18

T*

016

0.14 ; model of a Brownian oscillator. It scales with the square of
012} the polydispersity.
L , , , , In fact, it would be interesting to verify our predictions in
0.00 0.05 0.10 0.15 0.20 experiments on real colloidal samples. Different realizations
P, of such an external field as oscillatory shear and external

laser-optical or magnetic fields are conceivable. If the melt-

FIG. 2. Melting line away from equilibrium under the influence ing point is known in a sensible experiment by a suitable
of an oscillating field as a function of the relative charge polydis-gauging, the shift of the melting line gives direct information
persity p; and the reduced temperatufé. \ is fixed to 5.8. The  about the intrinsic polydispersity of the colloidal suspen-
solid lines are from cell theory. The associated three parametstjons.
combinations are(i) equilibrium Eq/kgT=0 (upper curvg (ii) We finish with a couple of remarks and state some inter-
nonequilibrium:w=1140 andg, /kgT= 100, (iii ) nonequilibrium:  esting open questions: First, one should develop — with the
w7=570 andE, /kgT= 100 (lowest curve. The symbols show the help of the Smoluchowski equatio— a density functional
results of the computer simulation for the same parameter combifheory of freezind 2] away from equilibrium. Second, a bi-
nations; triangles are for cage, circles for caséii), and rectangles nary solid should be investigated in more detail. For large
for caseliii). The size of the symbols corresponds to the error of the, oy etries of the two particle species, the external field
simulation data. The dotted lines are a guide to the eye. may induce a phase separation from a random-occupied crys-
tal into two single crystals occupied by only one of the two
species. Third, in noncubic crystals the shift will also depend
strongly on the orientation of the external field. It would be

To summarize, one important finding is that the Linde-jnerasting to study how this anisotropy affects the melting

mann parameter at melting was always a_rou_nd 0.'18' Th' oint. Finally, the nonequilibrium molten state should be in-
was even true for 15 other parameter combinations involvin

. ) . . > T yestigated in more detail: its anisotropic structural correla-
quite different frequencies and field strengths. This implies;ono'in 4 steady state should be compared to the equilibrium

tha_t the generallzgluo.n of Fhe Lllndemann.me_lt.mg from €qUl-correlations. Here further data from computer simulations as

I|br|um'to noneqwhpnum is valid, which justifies our basic | I as the development of liquid integral equatigs] in

theoretical assumption. _ _— nonequilibrium are highly desirable. Even in the liquid phase
Several data for melting in nonequilibrium are collected,ore ‘might be a further phase transformation into a struc-

in Fig. 2. We have shown melting Iineg in tipe-T* plane' tured liquid with separated stripes of high-charge and low-
for three different parameter combinations. The solid l'ne%harge colloidal particles.

are obtained from our cell theory. We have matchgdo be As discussed in Sec. II, the melting transition of a mono-
0.1028 in order to fix the equilibrium transition for a mono- disperse colloidal system exhibiting simple Brownian dy-

: o ) .
disperse sample at* =0.21. Simulation data are shown as namics without any hydrodynamic interactions is not af-
symbols. The simulation error as obtained via the width Oftgcteq at all by a space-independent oscillating field. The
the corresponding hysteresis loop is indicated by the symbaesent paper discusses a nontrivial model by considering
size. The error becomes larger for large polydispersities,q| disperse samples. There are two other situations for a
which might be due to the fact that the fcc solid is no longery oo disperse system where the space-independent oscillat-
stable. In theory and simulation, the melting line shifts t0-j,q field has a nontrivial influence on melting. If inertia ef-
wards smaller temperatures as the polydispersity is iNfgcts are incorporated in the dynamics, our general argument
creased. The theoretical transition temperatures are, hows, 5 dynamical overall mode does not hold. This applies
ever, systematically too high as compared to the “exact’s g " for Fokker-Planck dynamics which can be used as a
simulation data. This is obviously due to the theoretical aSgescription for the dynamics of dusty plasnias]. Second a
sumption that the neighbor cage is completely fixed relativeserjoys complication arises if hydrodynamic interactions
to the overall dynamical mode. This clearly results in a morg 40 41 are taken into account. Then the field will have an
stable solid and in a higher nonequilibrium melting tempera;nfuence on the melting line for a monodisperse sample.

ture. Due to the large simulation error, we cannot extract thgs i cases should be explored in more detail in future stud-
scaling of the shift from smalp, definitively, but we can ;oq

certainly rule out a linear scaling. Hence tp% scaling as
predicted by cell theory is compatible with our simulation
data. . . . ACKNOWLEDGMENTS
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trends are predicted correctly within the theory. and G. Naele for helpful remarks.



3014

[1] Observation, Prediction and Simulation of Phase Transitions

in Complex Fluids, Series,Gdited by M. Baus, L. F. Rull,
and J. P. RyckaertKluwer Academic Publishers, Dordrecht,
1995, Vol. 460.

[2] H. Lowen, Phys. Rep237, 249(1994.

[3] W. Ostwald, Z. Phys. Chen22, 289(1897.

[4] J. Bechhoefer, H. lwen, and L. Tuckerman, Phys. Rev. Lett.
67, 1266(1991.

[5] For a review, see P. N. Pusey, liiquids, Freezing and the

Glass Transitionedited by J. P. Hansen, D. Levesque, and J.

Zinn-Justing(North-Holland, Amsterdam, 1991
[6] A. K. Arora and B. V. R. Tata, Adv. Colloid Interface S@i8,
49 (1998.

[7]1 T. Palberg, W. Mach, J. Schwarz, and P. Leiderer, J. Chem.

Phys.102, 5082(1995.

H. LOWEN AND G. P. HOFFMANN

PRE 60

1169(199J); H. Lowen, J. P. Hansen, and J. N. Roux, J. Phys.:
Condens. MatteB, 997 (1991).

[20] B. D’Aguanno and R. Klein, J. Chem. Soc., Faraday Tr&s.
379(199)); Phys. Rev. Ad6, 7652(1992.

[21] One should bear in mind, however, that counterion friction
effects may also become important, see, e.g., K. SehtaVv.
Weise, A. Sobotta, and M. Drewel, J. Colloid Interface Sci.
143 287 (199); T. Palberg, M. Evers, N. Garbow, and D.
Hessinger, inTransport and Structure in Biophysical and
Chemical Phenomenadited by S. C. Muller, J. Parisi, and W.
Zimmerman(Springer, New York, in pregs

[22] The same conclusion can be drawn from the equivalent Smolu-
chowski picture by changing variables appropriately in the
Smoluchowski equation.

[23] R. Piazza and V. Degiorgio, Physica182, 576 (1992.

[8] A. Chowdhury, B. J. Ackerson, and N. A. Clark, Phys. Rev. [24] F. A. Lindemann, Phys. Z11, 609 (1910.

Lett. 55, 833 (1985; A. P. Gast and C. F. Zukowski, Adv.
Colloid Interface Sci30, 153 (1989; R. Kesavamoorthy, R.

[25] H. Lowen, T. Palberg, and R. Simon, Phys. Rev. L&®.1557
(1993.

Jagannathan, S. Rundquist, and S. A. Asher, J. Chem. Phyf26] R. Ohnesorge, H. lwen, and H. Wagner, Europhys. Le22,

94, 5172(1991.
[9] A. T. Skeltrop, J. Appl. Phys55, 2587(1984).
[10] For a review see A. Onuki, J. Phys.: Condens. Mate$119
(1997.
[11] R. Lahiri and S. Ramaswamy, Physica2R4, 84 (1996.

[12] As for recent computer simulation studies, see, M. J. Stevens

and M. O. Robbins, Phys. Rev. 48, 3778(1993; S. Butler
and P. Harrowell, J. Chem. Phy%03 4653 (1999; S. R.
Rastogi, N. J. Wagner, and S. R. Lustipjd. 104, 9234
(1996; J. F. Lutsko, Phys. Rev. Let?7, 2225(1996; E. S.

245 (1993.

[27] M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. P&§s.
3286(1988.

[28] E. J. Meijer and D. Frenkel, J. Chem. Phgd, 2269(199J).

[29] M. J. Stevens and M. O. Robbins, J. Chem. PI98.2319

(1993.

[30] S.-E. Phan, W. B. Russel, J. Zhu, and P. M. Chaikin, J. Chem.
Phys.108 9789(1998.

[31] B. V. R. Tata and A. K. Arora, J. Phys.: Condens. Mafier
7983(199).

Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der[32] P. G. Bolhuis and D. A. Kofke, J. Phys.: Condens. Ma8gr

Schoot, Phys. Rev. B5, 3124(1997); N. Olivi-Tran, R. Botet,
and B. Cabane, Phys. Rev.5, 1997(1998.

[13] B. J. Ackerson and P. N. Pusey, Phys. Rev. Léft. 1033
(1988.

[14] Y. D. Yan, J. K. G. Dhont, C. Smits, and H. N. W. Lek-
kerkerker, Physica 202 68 (1994).

[15] W. Xue and G. S. Grest, Phys. Rev. Ld#l, 419(1990; H.
Komatsugawa and S. Nagsehys. Rev. B51, 5944(1995; 53,
2588(1996; S. Butler and P. Harrowell, J. Chem. Phy€5,
605 (1996.

[16] G. K. Batchelor, J. Fluid MecHL19 379(1982; G. K. Batch-
elor, C.-S. Wenjbid. 124, 495(1982.

[17] R. Lahiri and S. Ramaswamy, Phys. Rev. L€t9, 1150
(1997.

[18] T. Palberg, R. Simon, M. Vitth, and P. Leiderer, Prog. Col-
loid Polym. Sci.96, 62 (1994).

[19] H. Lowen, J. N. Roux, and J. P. Hansen, Phys. Rewv4A

9627(1996); Phys. Rev. B54, 634 (1996.

[33] P. Bartlett, J. Chem. Phy409, 10 970(1998.

[34] D. A. Kofke, P. G. Bolhuis, Phys. Rev. B9, 618(1999.

[35] D. L. Ermak, J. Chem. Phy§2, 4189(1975; 62, 4197(1975.

[36] See, e.g., M. P. Allen and D. J. Tildeslegpmputer Simula-
tion of Liquids(Clarendon Press, Oxford, 1989

[37] R. M. J. Cotterhill, W. D. Kristensen, and E. J. Jensen, Philos.
Mag. 31, 245(1974).

[38] See, e.g., J. P. Hansen and I. R. McDondldeory of Simple
Liquids 2nd ed.(Academic, London, 1986

[39] M. Zuzic, H. M. Thomas, and G. E. Morfill, J. Vac. Sci. Tech-
nol. A 14, 496(1996; V. A. Schweigert, I. V. Schweigert, A.
Melzer, A. Homann, and A. Piel, Phys. Rev. Le80, 5345
(1998.

[40] G. Nagele, Phys. Re272 215(1996.

[41] J. K. G. Dhont, An Introduction to Dynamics of Colloids
(Elsevier, Amsterdam, 1996



