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Melting of polydisperse colloidal crystals in nonequilibrium

H. Löwen and G. P. Hoffmann
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 23 March 1999!

The influence of a time-dependent oscillatory external field on the melting transition of a polydisperse
colloidal crystal is examined by theory and computer simulation. In a monodisperse crystal the field just
induces an overall dynamical mode which does not affect the melting line. For a polydisperse sample, on the
other hand, the field shifts the melting line towards smaller temperatures. Combining a solid cell approach and
a Lindemann criterion in nonequilibrium, a simple theory is presented showing that the temperature shift scales
with the square of the relative polydispersity. The theory is in reasonable agreement with nonequilibrium
Brownian dynamics computer simulations.@S1063-651X~99!11908-1#

PACS number~s!: 82.70.Dd, 64.70.Dv
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I. INTRODUCTION

While by now equilibrium melting and freezing trans
tions are microscopically well understood within theory, e
periment, and computer simulation@1,2#, much less is known
about these phase transformations away from equilibri
Rapid temperature quenches, for instance, are known to
duce metastable thermodynamic phases@3,4#. Another non-
equilibrium situation is induced by an external tim
dependent oscillatory field. Soft matter materials such
colloidal suspensions are excellent model systems to s
equilibrium phase transition@5,2,6# and are also vulnerabl
to small external perturbations. They thus represent id
samples for which the influence of external time-depend
oscillatory fields can be studied quantitatively.

In this paper we study the influence of an external os
latory field on the melting transition of colloidal crystals. A
a model, we describe the motion of the colloidal particles
completely overdamped Brownian motion under the infl
ence of an external time-dependent but space-indepen
force. Such a coupling can be realized in quite different
perimental setups@6#: Both electric@7# or laser-optical@8#
external fields can be superimposed to the colloidal sam
They act as an external force since the material of the
loidal particles possesses another dielectric constant o
than the solvent. For magnetic colloids an alternating ex
nal homogeneous magnetic field results in the same exte
coupling @9#. A third realization are colloids under shear.
contrast to the typical case of linear shear flow where m
experimental@10#, theoretical@11#, and computer simulation
@12# studies are available, we focus here on oscillatory sh
fields which were also investigated by experiments@13,14#
and simulations@15#. Our model is identical to an oscillator
shear situation in the limit of small shear rates. As we sh
show, polydispersity becomes crucial for the shift of the no
equilibrium melting transition in this limit. Finally, the col
loidal sedimentation problem in a constant gravitational fi
is recovered as a special case in our model by setting
frequency of the external field to zero. Regarding the la
situation, Batchelor and co-workers@16# already emphasized
that polydispersity has a significant effect on the sedime
tion velocity ~see also Ref.@17#!.

In this work, we show that an external oscillating fie
PRE 601063-651X/99/60~3!/3009~6!/$15.00
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shifts the solid melting line towards lower temperatures w
respect to the field-free equilibrium case. In order to do
we have performed extensive nonequilibrium Brownian d
namics ~BD! computer simulations. We also propose
simple Lindemann rule of melting suitably generalized
nonequilibrium which is confirmed by our simulations. Co
crete results for the melting line are obtained with the help
a cell model for charge-polydisperse colloidal suspensi
interacting via an effective Yukawa potential. The trends
obtained from the theory are in reasonable agreement
the BD simulations. One of our main results is that the sh
of the solid melting line scales with the square of the relat
polydispersity of the colloidal sample. Since melting curv
can be measured precisely by light scattering techniq
@18#, our result may facilitate a direct measurement of po
dispersity which is normally seen only indirectly in
smeared structure factor.

This paper is organized as follows: In Sec. II, the mode
introduced. Then we describe the generalized Lindem
criterion for a nonequilibrium situation in Sec. III. Our BD
simulation techniques are summarized in Sec. IV. Sectio
is devoted to a discussion of the results and to a compar
of theory and simulation. We finally conclude and state so
interesting open questions in Sec. VI.

II. MODEL

We considerN colloidal particles in a volumeV with a
fixed number densityr5N/V. The colloidal suspension is
held at fixed temperatureT since it is embedded in a bath o
microscopic solvent particles of the same temperature.
colloidal particlesi and j are interacting via an effective pa
potentialVi j (r )5ZiZjV0(r ), wherer is the interparticle dis-
tance. Here we have introduced a polydispersity in the eff
tive interaction between the colloidal particles by the intr
sic particle propertyZi (Zi.0).In fact, this particle property
is a random variableZ which is distributed according to a
normalized distribution functionp(Z) with a mean value

Z̄5E
0

`

dZ Zp~Z! ~1!

and a relative polydispersity
3009 © 1999 The American Physical Society
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pZ5AZ2/Z̄221. ~2!

Typical examples are charge- and size-polydisperse coll
@19,20# where

Zi5Qi exp~ks i /2!/~11ks i /2! ~3!

is the effective charge~with Qi and s i denoting the bare
charge and diameter of theith particle! and V0(r )}exp
(2kr)/r has a Yukawa form~with k denoting the inverse
Debye screening length!.

The dynamics of the colloids is assumed to be Browni
Hydrodynamics interactions are neglected which is a s
approximation if the colloidal volume fraction is small. Un
der these conditions any energy transferred onto the collo
particles via the external field is immediately damped by
solvent friction. The friction constantg i53phs i with h de-
noting the shear viscosity of the solvent! is directly propor-
tional to the polydispersity in size, which can be extrac
from a normalized size-distribution functionp(s) with a
first moment s̄ and a relative polydispersity ps

5As2/s̄221. Strictly speaking, the distribution functionp
and the bar have a different meaning here than in Eqs.~1!
and ~2!. We nevertheless keep the same notation since
clear from the argument which kind of polydispersity a
which kind of average is meant.

The external oscillatory force acting on theith particle is
pointing in thez direction and modeled as

FW i~ t !5eW zf i cos~vt ! ~4!

wherev is the external frequency,eW z is the unit vector along
the z direction, andf i is the coupling parameter of theith
particle to the external field. The variable$ f i% describe a
third kind of polydispersity which we call coupling polydis
persity. It is characterized by a normalized distribution fun
tion p( f ) with mean f̄ and relative rootvariancepf

5Af 2/ f̄ 221. For charged suspensions in an electric fie
f i5QiE0 , whereE0 is the amplitude of the effective electri
field @21#.

Our first important consideration concerns samples wh
are monodisperse in size and coupling, i.e.,ps[pf[0. Since
all particles feel the same external force, the net effect of
coupling is a trivial dynamical mode

rW0~ t !5eW zf̄ sin~vt !/3phvs̄. ~5!

In fact, the stochastic Langevin equations for the colloi
trajectoriesrW i(t) ( i 51, . . . ,N) read as

g i

drW i

dt
52¹W rW i(j Þ i

Vi j ~ urW i2rW j u!1FW i~ t !1FW i
~R!~ t ! ~6!

where the random forcesFW i
(R) describe the kicks of the sol

vent molecules acting onto theith colloidal particle. These

kicks are Gaussian random numbers with zero mean,FW i
(R)

50, and variance

~FW i
~R!!a~ t !~FW j

~R!!b~ t8!52kBTg idabd i j d~ t2t8!. ~7!
ds
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The subscriptsa andb stand for the three Cartesian comp
nents andkBT is the thermal energy. The Langevin equatio
~6! can be rewritten in terms of new reduced trajector

rW̃ i(t)[rW i(t)2rW0(t) such that the transformed equations ha
the same form as the original ones in the field-free case@22#.
This immediately implies that any structural correlations
the colloidal particles are unaffected by the field. In partic
lar the solid melting line does not depend on the exter
field strengthf̄ . However, the situation is different if the siz
or coupling polydispersity in nonvanishing. This will be e
plored theoretically in the next section.

III. LINDEMANN CRITERION IN NONEQUILIBRIUM

A. General outline of the theory

Let us assume that all polydispersities are small. We f
ther adopt the picture of a harmonic solid using a solid c
model with fixed neighbors located at the lattice positio
$RW j%. On average, these particles constitute a cage pote
for which we assume no occupation correlations, i.e.,
approximate in Eq.~6!

(
j Þ i

Vi j ~ urW i2rW j u!'(
j Þ i

Z̄ZiV0~ uRW j2rW i u!

'V̄1 1
2 ZiK~rW i2RW i !

2. ~8!

Here we assumed cubic crystal symmetry such that the
monic picture becomes isotropic.V̄ is an irrelevant additive
constant. The effective ‘‘spring constant’’

K5 (
RW jÞ0

Z̄

3
@V09~Rj !22V08~Rj !/Rj # ~9!

depends~via the lattice constant! on the colloidal densityr.
Equation~9! assumes that one lattice point is in the orig
V08(r ) andV09(r ) denote the first and second derivative ofV0

with respect tor. Within these approximations the stochas
Langevin equations describe a driven Brownian harmo
oscillator. As a side step we remark that this picture of
colloidal crystal has been directly proved by dynamic lig
scattering experiments in equilibrium@23#. Transforming

again onto reduced trajectoriesrW̃ i(t)5rW i(t)2rW0(t) and onto

reduced lattice positionsRW̃ j (t)5RW j (t)2rW0(t), one can
readily calculate the polydispersity average of the redu
mean-square displacement. If the frequencyv is comparable
to a typical inverse time scale of the colloidal motion,
makes sense to also perform a time average. The resul
the full averaged mean-square displacement is

^rW i
2&5

3kBT

KZ̄
~11pZ

2!1
1

2

f̄ 2

G21v2

3S pf
21ps

222~ f i / f̄ 21!~s i /s̄21! D ~10!

with G5KZ̄/3phs̄. The right-hand-side of Eq.~10! consists
of five terms. For the equilibrium case~i.e., zero external
field, f̄ [0), only the first two terms are relevant: The ave
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PRE 60 3011MELTING OF POLYDISPERSE COLLOIDAL CRYSTALS . . .
aged mean-square displacement is increasing with increa
polydispersity and the leading correction is quadratic inpZ .
Furthermore, if there is no correlation between the two d
tributions in f and s, the last term vanishes. Size and co
pling polydispersity both enhance the mean-square displ
ment and the leading order scales again with the square opf
andps .

To access the melting curve we now use the Lindem
rule @24# in a generalized sense. It states that a solid mel
its root-mean-square displacement is roughly 15% of
mean distancea5r21/3 between the particles@25#. We pos-
tulate that this rule is also valid in our nonequilibrium sit
ation. In fact, a high-frequency rattling field may be seen
an increase of the ‘‘effective’’ system temperature thus j
tifying a quasiequilibrium treatment. Hence the solid melti
curve is obtained by

A ^rW i
2 &

a
5L0 , ~11!

where L0 is the Lindemann parameter for the associa
monodisperse system in equilibrium. This relation toget
with Eq. ~10! determines the location of the solid meltin
line.

B. Application of the theory to an equilibrium situation

Let us now check our theory in an equilibrium situatio
by comparing it to simulation data for the melting line. W
discuss both monodisperse and polydisperse systems for
sphere and Yukawa interactions.

For a monodisperse hard-sphere system, the Lindem
parameter at melting of the face-centered cube~fcc! crystal
lattice is L050.13 @26#. Our cell model givesL050.11 in
good agreement with the simulation. In evaluating o
theory, we have taken the solid melting density from co
puter simulation.

The cell theory, however, underestimatesL0 if the inter-
actions become softer. Detailed computer simulations of
melting line of a Yukawa solid are available@27–29,25#. The
associated solid lattice structure is fcc for hard interacti
~i.e., for kr21/3.4) and body-centered-cubic~bcc! for soft
interactions~i.e., for kr21/3,4). From the simulations, it is
known that the Lindemann parameter along the melt
curve increases with decreasingkr21/3 from the hard sphere
value 0.129 (kr21/3→`) to the plasma value 0.19 (kr21/3

50). Our theory, evaluated at the solid melting curve, yie
L050.09– 0.10 which is significantly lower than the simul
tion data. Hence the solid cell model becomes less relia
for softer interactions.

We now turn to polydisperse systems in equilibrium.
fact recent computer simulations on size-@30# and charge-
@31# polydisperse colloids indicate that the Lindemann rule
valid with polydispersity. As far as actual numbers for t
melting line are concerned, there are only few compu
simulation data available. An accurate solid melting cu
was obtained recently using thermodynamic integration fo
size-polydisperse hard-sphere fcc crystal by Bolhuis
Kofke @32#. The melting density grows with increasing pol
dispersity and scales withps

2 for small ps consistent with
our theory. If one constructs a similar cage-cell theo
ing
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@33,34# for the size-polydisperse hard-sphere crystal, the
plication of the criterion~11! yields perfect agreement with
the simulation data up to a relative size polydispersity of 5
The same is true if one applies the Lindemann criterion~11!
for a charge-polydisperse case. Here one can reasonabl

FIG. 1. Averaged Lindemann parameterL vs reduced tempera
tureT* . The solid line is the theoretical result using the cell mod
The dotted line is from computer simulation. The crosses sho
heating situation, while the open circles correspond to a coo
situation. ~a! Equilibrium situation of a monodisperse system,pZ

50. Here the exact melting temperature as known from Ref.@28# is
indicated by the arrow; the parameterl is equal to 5.8.~b! Equilib-
rium situation with polydispersitypZ50.1, l55.8 and E0 /kBT
50. ~c! Nonequilibrium situation withpZ50.1, l54.8, vt5570,
E0 /kBT5100.
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produce the simulation data of Ref.@31# up to a relative
charge polydispersity of 20%. As for further full quantitativ
comparison between theory and simulation, we refer to F
1~a! and 1~b! and to our discussion in Sec. V.

IV. BROWNIAN DYNAMICS COMPUTER SIMULATIONS
IN NONEQUILIBRIUM

Our Brownian dynamics~BD! code is very similar to an
equilibrium simulation of charge-polydisperse colloids@19#.
We put N5864 particles into a cubic cell of lengthl with
periodic boundary conditions. The colloidal number dens
is r5N/ l 3. The particles interact via an effective Yukaw
pair potential

Vi j ~r !5ZiZjU0 exp~2kr !/kr , ~12!

whereU0 sets the energy scale. The~dimensionless! charges
Zi are drawn from a rectangular distribution around a me
value Z̄ which is set to 1 without loss of generality:

p~Z!5H 1/A12pZ for uZ21u,A3pZ

0 elsewhere.
~13!

The width of the distribution is fixed by the prescribed po
dispersitypZ . All particles have the same diameters. Con-
sequently, their friction constantg is also the same. The
coupling polydispersity is taken to be proportional to t
charge polydispersity, i.e.,f i5E0Zi , whereE0 measures the
amplitude of the oscillating field. The direction of the exte
nal force is always along an edge of the simulation box.
remark that in equilibrium, any thermodynamic quantity on
depends on the two parametersl5kr21/3[ka and T*
5kBT exp(l)/U0 @28#. Of course, this is no longer true i
nonequilibrium. In a steady state, the external field int
duces two additional parameters: the field amplitude give
further energy scale and the frequency sets an additional
scale.

Our starting configuration was a fcc lattice which w
randomly occupied by particles of different charge. Forl
55.8, as chosen throughout our simulations, this structur
the thermodynamically stable one, at least for small polyd
persities@28#. We have checked explicitly by taking differen
random occupations, that our results were not affected by
initial occupation. The Langevin equations of motion inclu
ing the shaking external field were numerically solved us
a finite time stepDt and the technique of Ermak@35,36#. The
Brownian time scale is set byt5g/r2/3U0 which is the typi-
cal time after which a free particle has diffused over
mean-interparticle distancea. The typical size of the time
step wasDt50.003t.

We studied the system as a function of temperatureT* ,
starting with small temperatures and continuing our simu
tions by heating the system. The temperature was incre
discontinuously in small steps. Between the discontinu
heating process we kept the temperature constant and s
lated typically 23104 time steps which correspond to
simulation time of 60t. After an initial relaxation period of
20t, statistics were gathered. During the simulations,
monitored the reduced root mean-square displacement~i.e.,
s.
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the Lindemann parameterL! of the particles in order to lo-
cate the crystal melting transition. The system either runs
a steady-state situation where the fcc solid remains stabl
it suddenly melts at the melting temperatureTm* losing its
crystalline order. The melting process is signaled by a dra
increase of the Lindemann parameter. In fact, after the m
ing process is finishedL grows steadily with simulation time
indicating a finite long-time self diffusion in the fluid.

In the equilibrium situation (pZ50), it is known that
rather long simulation runs are needed to obtain the s
melting point precisely. For shorter simulation times o
rather probes the spinodal instability of a superheated s
@37# which occurs at higher temperatures. Hence our melt
temperatureTm* is systematically too large. An estimate o
the error can be obtained by cooling a molten system. Ty
cally the system exhibits a hysteresis effect. The associ
refreezing temperatureTf* as monitored by a decreasing Lin
demann parameter is smaller that the real melting temp
ture. Hence the real temperature should be in the inte
bounded byTm* andTf* . As we shall demonstrate below, th
method gives the melting temperature with a relative erro
5–10 %. It has the advantage that it can be directly applie
a nonequilibrium case where the thermodynamic criteria
phase coexistence are missing.

We finally remark that the system did not refreeze into
initial fcc structure but was rather trapped in an amorpho
glass upon cooling. Nevertheless the fcc crystal is the th
modynamic stable state, at least for small polydispersit
Still, as the kinetic glass transition is occurring for smal
temperatures than the recrystallization transition,Tf* pro-
vides a lower bound for the true melting point.

V. RESULTS

In Figs. 1~a!–1~c!, the time- and polydispersity-average
Lindemann parameterL5A^rW i

2&/a is displayed versus tem
peratureT* . Clearly,L is increasing with temperature. Fig
ure 1~a! shows the monodisperse case in equilibrium. T
arrow indicates the bulk melting point of the Yukawa solid
T* '0.206 as obtained by thermodynamic integration@28#.
From Fig. 1~a! it becomes clear that our simulation metho
~data along the dashed line! provides a reasonable estima
of the melting transition. In fact, the equilibrium meltin
temperature is within the loop resulting from the hystersis
cooling the molten system. Theoretical results forL from our
cell model are shown as solid line. As the cell model n
glects the mobility of the neighbor cage completely, it
reliable only for small temperatures and underestimatesL for
larger temperatures. These findings are consistent with
discussion in Sec. III B.

In Fig. 1~b! the equilibrium case for a charge-polydisper
sample is shown. The melting point occurs atL50.18 which
is the same value as in the monodisperse case. Again
theory underestimates the Lindemann parameter.

Finally, in Fig. 1~c!, a nonequilibrium situation is shown
The melting point in nonequilibrium can be detected by t
same analysis as in equilibrium: it is signaled by a drama
increase ofL and the error in locating the melting point ca
be estimated by cooling the system down again resulting
narrow hysteresis loop. The Lindemann parameter at mel
is again 0.18. The theory underestimatesL as in equilibrium.
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To summarize, one important finding is that the Lind
mann parameter at melting was always around 0.18. T
was even true for 15 other parameter combinations involv
quite different frequencies and field strengths. This impl
that the generalization of the Lindemann melting from eq
librium to nonequilibrium is valid, which justifies our bas
theoretical assumption.

Several data for melting in nonequilibrium are collect
in Fig. 2. We have shown melting lines in thepZ-T* plane
for three different parameter combinations. The solid lin
are obtained from our cell theory. We have matchedL0 to be
0.1028 in order to fix the equilibrium transition for a mon
disperse sample atT* 50.21. Simulation data are shown a
symbols. The simulation error as obtained via the width
the corresponding hysteresis loop is indicated by the sym
size. The error becomes larger for large polydispersi
which might be due to the fact that the fcc solid is no long
stable. In theory and simulation, the melting line shifts
wards smaller temperatures as the polydispersity is
creased. The theoretical transition temperatures are, h
ever, systematically too high as compared to the ‘‘exa
simulation data. This is obviously due to the theoretical
sumption that the neighbor cage is completely fixed rela
to the overall dynamical mode. This clearly results in a m
stable solid and in a higher nonequilibrium melting tempe
ture. Due to the large simulation error, we cannot extract
scaling of the shift from smallpZ definitively, but we can
certainly rule out a linear scaling. Hence thepZ

2 scaling as
predicted by cell theory is compatible with our simulatio
data.

In conclusion, the cell theory is in reasonable but not
full quantitative agreement with the simulation. Still a
trends are predicted correctly within the theory.

FIG. 2. Melting line away from equilibrium under the influenc
of an oscillating field as a function of the relative charge polyd
persity pZ and the reduced temperatureT* . l is fixed to 5.8. The
solid lines are from cell theory. The associated three param
combinations are~i! equilibrium E0 /kBT[0 ~upper curve!, ~ii !
nonequilibrium:vt51140 andE0 /kBT5100,~iii ! nonequilibrium:
vt5570 andE0 /kBT5100 ~lowest curve!. The symbols show the
results of the computer simulation for the same parameter com
nations; triangles are for case~i!, circles for case~ii !, and rectangles
for case~iii !. The size of the symbols corresponds to the error of
simulation data. The dotted lines are a guide to the eye.
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VI. CONCLUSIONS

In conclusion, we have studied the melting of polyd
perse colloidal crystals in an oscillating external field
computer simulation and theory. The simulation data prov
compelling evidence that the Lindemann melting rule do
also apply in nonequilibrium. The external field shifts th
melting point towards lower temperatures. The shift can
understood semiquantitatively within a simple solid c
model of a Brownian oscillator. It scales with the square
the polydispersity.

In fact, it would be interesting to verify our predictions i
experiments on real colloidal samples. Different realizatio
of such an external field as oscillatory shear and exte
laser-optical or magnetic fields are conceivable. If the m
ing point is known in a sensible experiment by a suita
gauging, the shift of the melting line gives direct informatio
about the intrinsic polydispersity of the colloidal suspe
sions.

We finish with a couple of remarks and state some int
esting open questions: First, one should develop — with
help of the Smoluchowski equation — a density functional
theory of freezing@2# away from equilibrium. Second, a bi
nary solid should be investigated in more detail. For lar
asymmetries of the two particle species, the external fi
may induce a phase separation from a random-occupied c
tal into two single crystals occupied by only one of the tw
species. Third, in noncubic crystals the shift will also depe
strongly on the orientation of the external field. It would b
interesting to study how this anisotropy affects the melt
point. Finally, the nonequilibrium molten state should be
vestigated in more detail: its anisotropic structural corre
tions in a steady state should be compared to the equilibr
correlations. Here further data from computer simulations
well as the development of liquid integral equations@38# in
nonequilibrium are highly desirable. Even in the liquid pha
there might be a further phase transformation into a str
tured liquid with separated stripes of high-charge and lo
charge colloidal particles.

As discussed in Sec. II, the melting transition of a mon
disperse colloidal system exhibiting simple Brownian d
namics without any hydrodynamic interactions is not
fected at all by a space-independent oscillating field. T
present paper discusses a nontrivial model by conside
polydisperse samples. There are two other situations fo
monodisperse system where the space-independent osc
ing field has a nontrivial influence on melting. If inertia e
fects are incorporated in the dynamics, our general argum
for a dynamical overall mode does not hold. This appli
e.g., for Fokker-Planck dynamics which can be used a
description for the dynamics of dusty plasmas@39#. Second a
serious complication arises if hydrodynamic interactio
@40,41# are taken into account. Then the field will have
influence on the melting line for a monodisperse samp
Both cases should be explored in more detail in future st
ies.
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