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Freezing and glass transition of hard spheres in cavities
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Dynamical and static properties df= 13—4000 hard spheres in spherical cavities with smooth and rough
walls have been calculated by molecular-dynamics computer simulations. We use a dynamical criterion to
distinguish between fluidlike and solidlike states. The associated crossover densities show a strong dependence
both on the system size and on the surface roughness. ForNatgese crossover densities tend to gk
glass transitiondensity for rough walls and to tHeulk crystallizationdensity for smooth walls. The crossover
densities for finiteN are found to be significantly smaller than the corresponding bulk densities. A detailed
examination of the layer-resolved radial- and tangential mean-square displacements reveals qualitatively dif-
ferent dynamics for smooth and rough cavitig$1063-651X99)00105-1

PACS numbegs): 64.70—p, 61.20.Ja

I. INTRODUCTION Previous work has focused on three related but comple-
mentary aspects: Firsplanar walls were considered; par-

The dynamics of confined systems can be drastically difticular attention was paid to the precrystallization transition
ferent from the corresponding bulk behavidi. An intrigu-  of hard spheres near hard smooth walls8] and to phase
ing question concerns the microscopic mechanisms whichansitions in hard-sphere fluids confined between two paral-
induce such changes. A large number of different experimerie! smooth wall{9]. Furthermore, a periodic structure on top
tal works on the kinetic glass transition in confined systemf @ planar wall was studied, see, e[d0]. In particular, the
[1-5] has been published during the past decade, however3ructural properties of grooves consisting of a periodic array
general microscopic background is still missing. The mea®f saw-toothed wedges was recently investigated by com-
surement of dynamical features of complicated organic molPuter simulation[11] and density-functional theory12].
ecules(salol, pentylene glycol, propylene glycol, étm po- Also the effect of surface roughn_ess was recently considered
rous materials is, however, confronted with seriousfor @ planar geometry13]. In this work we extend such
difficulties, such as the dubious determination of the densitptudies to a random wall roughness and a curved surface. As
within the pores, the lack of knowledge of effective interpar-& Second aspect of previous work, the thermodynamics in
ticle and particle-wall interactions, etc., which do play andl_ffe_rent ensembles and density profiles were investigated
important role during the transition process. The experimenWithin our model for smooth curved wall25-17. In our
tal results are sometimes inconclusive even regarding eRaper we focus more on the single-particle dynamics of the
ementary questions such as, for example, the shift of théystem and include a possible wall roughness as well. Fi-
glass transition temperature compared to the 48l For naIIy_, the glass transitiongl8] and_the freezing transition _
technical applications as well as from a more fundamentdj:.Lg] in clusters were .recently studled..These plusters are fi-
point of view, it is necessary to understand in detail how thehite but structurally different from confined fluids.
structural, dynamical, and rheological properties are affected Our main result is that the dynamics and the location of
by the interparticle- and particle-wall interactions. In particu-the freezing transition depend crucially on the wall rough-
lar, a molecular roughness of the walls is expected to slow€Ss and on the finite size of the confined system. The wall
down the dynamics near the walls. This was recently demfoughness may even trigger the overall dynamics of a large
onstrated in experiments on van der Waals glasses in nan_gystem by preventing _crystalllzatlon near the walls and forc-
pores with and without lubricated surfades. ing the hard spheres into a glassy strucfiz@21.

In this paper we study this effect theoretically within a The paper is o.rgamzed as follows. In Sec. Il we mtrodyce
model of hard spheres confined in spherical cavities. Th@Ur mod_el. Thenin Sgc. Il we focus on structural properties.
model is simple since the interactions are governed only by e major part of this paper concerns the dynamics mea-
packing effects. For the wall-particle interaction, we also asSured by the mean-square displacements of the individual
sume an excluded volume form. However, we include surParticles. In particular, we discuss the distance-resolved dy-
face roughness explicitly. This enables us to compare thBamics for smooth and rough walls in Sec. IV. Finally, Sec.
dynamics directly with that in a smooth cavity. The modelV is devoted to a discussion and an outlook.
can be realized for spherical molecules confined to spherical
pores[5]. A possible realization of our simple model can be
colloidal particles confined in water droplets or vesicles,
where besides the accurate knowledge of the density and the We have performed molecular-dynamics simulations for
shape of the confining geometry, the direct optical observahard spheres(HS) confined in spherical cavities. Both
tion of the particle dynamics would be possible as &l smooth and rough cavity walls were investigated. Our model

Il. THE MODEL
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cavities with smooth walls, clearly=N(o/8R)3, while we
determineV and » for each rough wall by a Monte Carlo
calculation.

We have studied the above models by a molecular-
dynamics computer simulation for seveMlat various den-
sities. Cavities with rough walls were constructed as follows:
we generated a random packifi@P) configuration of 729
HS with a packing fraction of;=0.61 applying the efficient
algorithm of Jodrey and Torj23]. The periodic boundary
conditions allowed us to use this block as a “brick” and
build larger blocks containing many thousands of particles.
Hereupon we marked a spherical cluster inside the block,
around an arbitrarily chosen particle whose position served
FIG. 1. Schematic picture of a cavity with a rough wall. The from this point on as the center of the cavity. The cluster was

white spheres represent the mobile particles, the fixed dark particle‘sgphericaln i.n the sense thf"‘t thodé particles were chosen
constitute the rough cavity wall. which were inside a spherical shell around the central one.

After this, we scaled the diameters of every particle to enable
system contained!=13—4000 hard spheres of diameter ~he change of positions of the members of the marked clus-

interacting via the pair potential ter, but not allqwing the escape t.hrough the wall consisting
of the surrounding unmarked particles. As already stated, the
0, r>c volume V which we need to fix the packing fraction was
Vpg(r)= v 1< (2.2 measured by Monte Carlo simulation with a relative accu-
I} =0,

racy of about 10%2—10"3.
In the case of smooth walls, the spherical symmetry al-
. . - " “lows trivial overall rotation of the whole system around the
forth, the particle positions are denoted by, wherei  cavity center. As a consequence of the conservation of the
=1...N. ) ] total angular momentum of hard spheres in our model, this
In the case of a smooth wall, the spheres interact with thgjopal rotation would survive in the simulation, precluding
cavity wall via an external potential. For a sphere at positionne observation of the interesting part of the dynamics. To

wherer is the interparticle distance of the particles. Hence

r, the potential energy is avoid this, we set the total angular momentum of the hard
spheres to be zero in all of our future considerations and
- 0, r=R-oa/2 simulations.
Ve(ry= (2.2

A simulation cycle started with an equilibration period of
typically 10°— 10* collisions per particle followed by a pro-
whereR stands for the cavity radius and=|F| is the dis- duction run of 16— 10° collisions per particle. In the case of
tance of the particle from the origin of the coordinate frame,f0ugh walls, we have averaged data from-1D simulation
which is taken to be the cavity center. cycles performed for different cavities at the same packing

Cavities with rough walls have been built frony fixed ~ Values?.

“boundary” hard spheres of the same diameteisee Fig. 1.
Details of this procedure are described later. In this case, the IIl. STRUCTURAL PROPERTIES
external potential can be written as

o, r>R—-o/2,

First we have calculated the radial density profil@)
Ny defined as

V) =2 Vyr =17, (2.3 . N B
- p<r)=<m§1 5<r—ri>>, (3.

where ther( (i=1,... N;) denote the position of the fixed

wall particles. where(- - -) denotes a static canonical average of the finite
Due to the excluded volume interactions in our model, theSystem:

temperaturel only sets the relevant energy sclgrl, thus N

the single remaining thermodynamic parameter is the num- ()= iJ ard. .. f ard. . ( I G)(|F——F-|—cr))

ber density per unit volumeg=N/V, or the corresponding Zn 1 N 1 b

packing fractiondefined by N

i<j=

o3 X
77=N'n'6—v. (2.9

n]l exp[—VeX‘(Fn)]). (3.2

Here the prefactorZy ensures correct normalization
HereV is the physical volume which can be covered by the({(1)=1) and®(x) denotes the unit step function. Tha-
spheres inside the cavity. Of course, this volume is in generalial probability density to find one particle at a distance
larger than the free volume which can be accessed by thizom the origin is given by 4r2p(r). The contact value of
center-of-mass coordinates of the free particles. For spherical(r) for smooth walls was determined via



6826 Z. T. NEMETH AND H. LOWEN PRE 59

0.65
10.0 } ]
"o N=114 0601 Glass
%_ 8.0 . 0.55 5 Crystal smooth
[e}] = “«—-  _roueh ————-—-—-
= 60} n=0.4 | 050 & t rough
2 (=
o
> 40} 0.45
2 0.40 |
8 20t}
0.35
O'Oo 0 05 10 15 20 25 30 35 0.30 : : .
' ' v ' : : : 0.00 0.02 0.04 0.06 0.08
Distance (r/c) 1N

FIG. 2. Radial density profile(r)o® versus reduced distance FIG. 3. Crossover packing fractions, versus 1N for smooth
rio for N=114 hard spheres in spherical cavities with smooth,, 415 (open circles and rough wallfull circles). Data are given
(solid ling) and rough wallgcurve with barg The different shells 5, N=13, 21, 43, 114, 214, 360, 496, 1048, 2093, and 4000. For
labeled by the numbers 1, 2, and 3 are indicated by the verticalmooth walls the statistical errors are smaller than the symbol size;
dashed lines. The curve with bars is an averaged density profile fqp, the case of rough walls the bars show the standard deviation of
10 different rough cavities having the same value of the packingpe transition packing fractions obtained from different rough cavi-
fraction as in the smooth casg+{ 0.4). The bars show the standard ijes The lines between the symbols are a guide to the eye. The
deviation of the densities from their mean value. packing fractions of the bulk freezing and glass transition are indi-

cated by arrows.

p

g

R- 5) =Py /kgT, (3.3 This quantity clearly characterizes the mobility of particles.
In bulk systemsA (N.) will diverge asN.— < due to a finite

where P,, is the wall pressure which can be directly mea-long-time diffusion; in a finite system, howevex(N,) stays
sured as a time average of the particle-wall collisifig. finite. The root-mean-square displacemdéntas proven to

Results forN=114 are given in Fig. 2. As expected, the be a key quantity in investigating freezing and glass transi-
density profile is strongly inhomogeneous in the smooth castion in bulk fluids. For fixedN, A varies slowly as a func-
(solid line), exhibiting several peaks in accordance with thetion of the thermodynamic parameters in the fluid phase,
layering of particles in concentric spherical shells around thevhereas it drops rapidly to smaller values as the system ar-
cavity center. We have labeled the different shells by intetives at a freezing or glass transition regifi#®,2§. In our
gers and fixed the width of the shells by the minima of themolecular-dynamics simulations, we have measukeébr
density profile, see Fig. 2. The smoother curve in Fig. 2smooth and rough cavities containiNg= 13— 4000 particles
representp(r) averaged for 10 different cavities of rough and we have looked for drastic dynamical changes as func-
walls each with the same packing fractign=0.4. The bars tions of the packing fraction. Throughout our calculations,
show the standard deviation of the data. As expected, th; was fixed to be 500. We used the following dynamical
structure is drastically smeared out since the rough wall in€riterion to locate the freezing or glass transitionAlfs /2
duces disorder exactly on the length scale of the spheres. @fter N.=500 collisions per particle, then the associated
course, due to our construction of the rough cavities where packing fraction is calledrossover packing fractioty. . Al-
central particle exists at the origin, there is a slight increas¢éhough this criterion seems to be arbitrary at first glance, it
of the density profile at the origin. Finally, we remark that has a number of advantages: First, it will perfectly reproduce
the structure of similar systems has been studied by otheahe bulk freezing and glass transition of hard spheres. Sec-
authors as well14—17, but only cavities with smooth walls ond, it is easy to implement and to handle. Third, it fixes the

were discussed. crossover packing fraction with excellent accuracy sice
depends sensitively on the density change.
IV. DYNAMICAL FEATURES Results for the crossover packing fractionsas a func-

) ) ) tion of the inverse total number of mobile spherell Hre
Let us now explore dynamical features which provide @given in Fig. 3. The bulk case can directly be obtained by
sensitive diagnostics in locating freezing and glass trans'faking the limit IN—0. In order to facilitate comparison
tions. We have measured the averaged root-mean-square disstween smooth- and rough walls, we have chosen the same
placementA after N, collisions per particle which is defined |, mpers of particles in both cases, namhly 13, 21, 43,
as 114, 214, 360, 496, 1048, 2093, and 4000. For rough walls
1/ N 12 the bars indicate the standard deviation of the data from their
(NC):(N< E IF.(0)— Fi(tc)|2> ) _ (4.1) mean values; for smooth walls the statistical error is sma}ller
i=1 than the symbol size. As a result, the crossover packings
. decreasewith decreasing system size, similar to a two-
Herer;(t) denotes the time-dependent trajectory of itte  dimensional system of a hard disk in spherical cavitiZj.
particle andt. is the time afterN. collisions per particle. This means that, for fixed density, the dynamics is slower in
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a finite system as compared to the bulk. 1.0
As is also clearly visible from Fig. 3, the crossover pack-

ing fractions strongly differ for systems having the sakhe

number of particles but different surface roughness. Interest- 0.8 |

ingly enough, this difference becomes more pronounced with

increasing system size. For largé and rough walls, the

crossover packing fraction tends to a value near liht

glass transitionwhich occurs atpq~0.57+0.01[26,25,28§.

On the other hand, for smooth walls, the crossover packing

fractions tend to the bulk freezing transitif2i7]. The reason 02t

for that can be understood as follows: For smooth walls the

system precrystallizes near the wdll§. Hence the crystal-

£05 |

line order is induced by the walls and proceeds into the cav- 0.0 . . .
ity leading directly to a crossover at the bulk freezing tran- 0.26 0.36 0.46 0.56
sition asN— . On the other hand, a rough disordered wall n

composed of fixed spheres favors a glassy surrounding and
induces a glassy layer on top of the walls. Consequently the
dynamical crossover happens close to the bulk glass transi-
tion density. Of course, for extremely large systems, again
bulk crystallization will dominate and force the system to
reach the bulk freezing density &s—x. Let us also briefly
comment on very small systemhé=13 where the dynamics

in rough cavities seems to be slightly slower than that in
smooth cavities: This is due to a local blocking of particle
displacements by the rough walls.

We have finally calculated the radial and the tangential
dynamics resolving the latter in different spherical shells.
First, we define the radial component of the root-mean-
square displacement via

1 N R ) 1/2

AR<NC>=(N<21[lri<0)|—|ri<Nc>|]2>) . (42 >0
Similarly we introduce a shell-resolved tangential compo- 40
nent of the root-mean-square displacement. In order to do so,
we characterize the different shells by starting from the den- 30 r
sity profile of a smooth wall, see Fig. 2. This profile Hdg z
minima at radiir( numbered from the wall to the cavity < 20 |
centerk=1,2,3... .Particularly, we fix the outermost mini-
mum atr{"'=R—¢/2 and we define the inner minimum at 1ol
the origin, rg\'"‘)zo. Correspondingly thekth shell is '
bounded by the inner radiu§” and the outer radiusy ). . )
The mean radiug, of the kth shell isR,= (r{d+r~1y/2, 0% 2 0.36 0.46 0.56

Now the tangential component of the root-mean-square n

displacement in th&th shell is , ,
FIG. 4. (a) Averaged radial root-mean-square displacemggt

N 1/2 versus packing fractiom; of N=114 particles for smoottisolid
1 S line) and rough(dashed ling cavities.(b) Same aga) but now for

(k) _ D2 g .
AT (Ne) ( N(Sk> < 21 (@iRy) > ) ’ (4.3 the tangential mean-square displacemaﬁg for a smooth wall.

From left to right:k=1 (solid line), k=2 (dashed ling andk=3

where ai=arcco$ﬂ(0)~Fi(tc)/[|Fi(0)| ) |Fi(tc)|]} denotes (dot-dashed line (c) Same agb) but now for a rough wall.

the angle between(0) andr;(t.) and the sum runs over all than that for smooth walls. This is due to the strong radial
trajectories which start and end in tkéh shell att=0 and  ordering in the smooth case which hinders interlayer hopping
t=t, respectivelyN¥ stands for the number of such trajec- processes. On the other hand, the surface roughness destroys
tories in thekth shell. The shell resolution is identically per- this ordering completelysee Fig. 2 which leads to a large
formed for rough walls in order to facilitate a direct compari- radial mobility even at higher densities. Data for the shell-
son. resolved tangential mobilita{ are given in Figs. é) and
Results forAg as a function ofy are shown in Fig. &).  4(c) for smooth and rough walls, respectively. In both cases,
The difference between smooth and rough walls is strikinga significant heterogeneity of the dynamics induced by the
for rough walls the radial mobility is significantly higher observed structural ordering is observed. For smooth walls,



6828 Z. T. NEMETH AND H. LOWEN PRE 59

mean of the solid curvédenoting the first shellis clearly
larger than in the case of the two other shells, which have
practically the same height and shape. This is consistent with
our data given in Fig. é). For rough walls, on the other
hand, the outermost shell is slowest. There are additional
maxima in the distribution at higher distanca$~ o indi-
cating tangential particle hopping processes near the cross-
over. Such additional maxima frequently occur near the ki-
netic glass transitiof25,28 and again support our picture
that the surface roughness induces a glassy structure near the
walls.

V. CONCLUSIONS

In conclusion, we have demonstrated that the dynamics in
cavities depends sensitively on the surface roughness. A cav-
ity wall which is smooth on the typical length scale of the
particles induces a strong layering and prefers, at least in our
hard-sphere model, a crystalline layer. Therefore the dynam-
ics becomes slow close to the bulk crystallization density.
On the other hand, a disordered rough cavity wall prevents
crystallization and prefers a glassy layer. Therefore the dy-
namics are faster for the rough case than for the smooth case.

As far as a comparison with actual experiments in pores
[4] is concerned, several caveats are in order. First, our
model system of hard spheres exhibits a freezing transition at
densities which are smaller than the glass-transition density.
For real molecules this may be quite different. Also we kept
the total angular momentum to zero here. Such zero modes
can become actually important in real smooth cavities and
may accelerate the dynamics considerably for smooth cavi-

FIG. 5. (a) Probability distributionP(A{) of the tangential ties. Also attractive wall-particle forces may become relevant
mean-sqare displacements =114 particles in smooth cavities in real systems. The best realization of our model will be for
at the crossover density.=0.47. (b) Same as(@ but now for  colloids [29,30 confined in structured cavities. Here, how-
rough walls at the crossover densify=0.50. ever, one should bear in mind that the colloidal dynamics are
rownian rather than Newtonian as studied in this work.
owever, since we kept the total angular momentum to zero

the results are as expected: the tangential mobility is highe§

in the outermost shell and decreases for the inner shell . A .
Clearly, AD>A® > A® holds over a broad density regime and the long-time dynamics is similar near the glass transi-
T T T tion [31], the results are expected to be qualitatively similar.

up to the crossover packing fraction. This is due to fluctua- We finish with a couple of remarks: First, it would be

tions in the total angular momentum which are most pro- : . " :
nounced in the outer shells. In the rough case, however, thuseful to explore the density profiles of rough cavities using,

picture is completely different; The above relation holds onlyg'g" density-functional methods which incorporate the cor-
for packing fractions up to;=0.3. Then the surface rough- rect packing geometrig82]. Second, one should study more

. . systematically the wetting behavior of structured surfaces by
ness Zl(?CkS tge tangential dynark?_llcs nearh_thhe dwall_gnd t?] rystalline and glassy layers for different kinds of roughness.
Z(ka)c(:)on dyer becomes more mo |e.. For hig ensities, th e present paper we have only studied one particular kind

ve relation 1S compl.etely inverted: Now the dynamics Mot roughness whose length scale was comparable with that of
the inner shell is less hindered by the roughness. Compari

Figs. 4b) and 4¢) for fixed density, the tangential dynamicsntg]e particles. More general studies including different topo-

; raphically and energetically caused roughnesses are impor-
of the smooth case are fas_ter ‘haf? that in the roug_h CaSEant to understand the dynamics of confined fluids and the
However, the global dynamics dominated by the radial parf_. : .

. ) . . . icroscopic nature of friction.
are still faster in the rough case, as manifested in a higher
crossover packing fraction in this case, see Fig. 3.

Figure 5 shows the probability density distribution
P(A) of the tangential root-mean-square displacements in We thank the Deutsche Forschungsgemeinschaft for their
the three shells for smootla) and for rough(b) walls at the  support within the Schwerpunkt “Benetzung und Struktur-
crossover packings. As can be deduced from F{g),3he  bildung an Grenzflehen.”
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