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Abstract. The core—core structure factor of dense star polymer solutions in a good solvent is
shown theoretically to exhibit an unusual behaviour above the overlap concentration. Unlike
usual liquids, these solutions display a structure factor whose first peak decreases with increasing
density while the second peak grows. The scenario repeats itself with the subsequent peaks as
the density is further enhanced. For low enough arm numlfe¢g < 32), various different
considerations lead to the conclusion that the system remains fluid at all concentrations.

1. Introduction

Star polymers are macromolecular entities consistingfopolymeric arms chemically
attached to a common centre. At the limit where the number of monomers per arm (degree
of polymerization)N is large, the size of the central core of the star is negligible compared
with the overall radius of the macromolecular aggregate and can be ignored at a first
approximation. Scaling theory has provided insight into the structure and conformation of a
singlestar and the way that these properties are influenced by the arm number (functionality)
f, N and solvent quality [1, 2]. From both theoretical and experimental points of view, it

is even more interesting to describe the propertiedenfsestar polymer solutions by means

of an effective pair potential acting between star centres. Experimentally, this is important
as interstar correlations are ubiquitous in attempts to understand neutron scattering spectra
of dense star polymer solutions. Moreover, such a description of stars establishes a bridge
between polymer and colloidal science: indeed, due to their peculiar construction, star
polymers can be viewed as hybrids between polymers and colloidal particles. Once such a
description has been established, it is then possible to look at a star polymer solution as an
effective one-component system of point particles (the star centres) and employ the known
machinery from liquid-state theory and/or computer simulations to study its properties.

By way of direct comparison with experimental data, it was found recently that star
polymers in a good solvent can be described by an effective pair potential which is
logarithmic for short distances and crosses over to a Yukawa form for larger interstar
separations [3]. This is a new type of interaction in the sense that (i) it has an ultra-
soft logarithmic core whose hardness depends in fact on the functionality a way
which will be explained shortly and (ii) it features a crossover from one functional form
to another at some length scate which is of the order of the corona diameter of the
star. Systems which are described by simple, spherically symmetric interactions have been
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studied extensively in the last thirty years, since the development of powerful computers
made integral equation theories and simulations computationally tractable [4—6]. For most of
the commonly considered interactions (power laws, Yukawa, square-well or square-shoulder
potentials etc) the liquid structure factStk) features a single characteristic length which

is basically set by the density. Moreover, the correlations in structure grow with increasing
density o until, at some temperature-dependent value, the system crystallizes. We call the
liquids for which such a scenario materializesual or normal The purpose of this paper

is to show that star polymer solutions are unusual, in the sense thpbr its real-space
counterpart, the radial distribution functigr(»), have quite unexpected behaviour above
the overlap concentration of the solution. The latter is defined as the polymer concentration
at which the stars start overlapping within their corona. There exist two competing length
scales which manifest themselves in the form of a structure factor whose peaks do not grow
simultaneously in height gs increases, but rather lower-order peaks grow higher until they
completely dominate and the original main peak disappears. These two lengths are the
average interparticle distanaex p~%/3 and the corona diameter of the stars. Moreover,

for low enough functionality, freezing does not take place, i.e., the system remains fluid at
all densities.

The rest of the paper is organized as follows. In section 2 we present the model pair
potential and briefly discuss its properties. In section 3 we present results from computer
simulations and integral equation theories regarding the structure of the system for a very
wide range of densities demonstrating the unusual features and we discuss their origin. In
section 4 we present a simple ‘hard-sphere mapping’ argument to establish the lifnit of
beyond which the system does not crystallize. In section 5 we discuss the connection with
experiments. Finally, in section 6 we summarize and conclude.

2. The pair potential acting between star polymers

Our starting point is the pair potential acting between two star polymers in a good solvent
separated by a centre-to-centre distancehich reads

v | 618 - ine/e) + a+ Vi r <o)

kT (5/18) f¥2(1+ \/f/2) Yo /r) exp[-/ f (r — 0)/20] r > o)
wherekp is Boltzmann’s constant andl is the absolute temperature. This is an entropic
interaction stemming from excluded-volume effects between monomers belonging to two
different stars in a good solvent. It was shown recently [3] that the length schks to
be chosen as twice the distance between the centre of the star and the centre of the largest
(outermost) blob [7]. The logarithmic form of the interaction for interparticle distances
r < o results from the arguments of Witten and Pincus [8]. For o we take an
exponential form for the interaction with a decay length equal to the largest blob diameter.
For details on the determination of the overall numerical prefactor of the logarithmic term,
we refer the reader to reference [3]. The amplitude of the Yukawa tail is finally determined
by the requirement of smoothness of the interactionato. In what follows we use as
the unit of length and introduce a dimensionless ‘packing fractipdéefined as

_T 3

= 6,00 . (2)

It has been shown in reference [3] that this choice of a pair potential [9] brings about

good agreement between theory and experiment as regards small-angle neutron scattering
(SANS) data for a wide range of densities (or polymer volume fraction). Moreover, a
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Figure 1. The pair potential given by equation (1) fgr= 18, 32, 64, 128 and 256 as a function
of the centre-to-centre separation

similar exponential ‘cut-off’ of the logarithmic part of the interaction has also been employed
recently in a study of the elastic moduli of block copolymer micelles [10]. The entropic
nature of the interaction renders the temperatfirérrelevant, as the Boltzmann factor
e V™ is temperature independent. Instead, the arm nunfbplays now the role of an
effective inverse temperature. Indeed, in the lighit> O the interaction vanishes, whereas
at the ‘colloidal limit’ f — oo we recover the well-known hard-sphere (HS) interaction. In
figure 1 we show the pair potential for different values fof Whereas for largef = 128
and 256 there is a spectacular change in its behaviourcesssesr, for low f-values, the
potential is ultra-soft and its range becomes longer.

As will be shown in section 4, the ultra-soft character of the interaction at hand has the
consequence that, for low enough values of the functionglithe system never crystallizes,
no matter how large the density or external pressure are. Thus, this system offers us a
unique possibility to examine the behaviour of the structural functions of the liquid (the
radial distribution function and/or the structure factor) over a practically unlimited range of
densities. This is the subject of the following section.

3. The anomalous structure factor

First, we summarize some basic notions from the theory of classical liquids and refer the
reader to reference [4] for details. A quantity of central interest for a classical fluid in
equilibrium is the so-called radial distribution functigitr) and the closely associated pair
correlation functioni(r) = g(r) — 1. If we call p the number density of the liquid, then

the quantitypg(r) is nothing else but the density profile that develops if we keep a particle
fixed at the origin. In other words, the quantigyr) expresses the ordering of the rest

of the system around a given patrticle of the liquid. Equivalently, one can look at the
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Figure 2. The radial distribution functiorg(r) as obtained from simulations and from the RY
closure for different)-values. (ay; = 0.10; (b) n = 0.60; (c) n = 1.50.

structure factorS (k) which is simplyp times the Fourier transform of the pair correlation
function. The peaks of (k) reveal information about the characteristic length scales in the
system. Alternativelyg(r) is more appropriate if one wishes to determine, e.g., the average
coordination number of the liquid.
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Figure 2. (Continued)

Both g(r) and S(k) can be measured in a standard Monte Carlo simulation [5, 6].
We have hence performed such simulations for a wide range of densities and, in addition,
we have solved the Rogers—Young (RY) closure [11] in order to obtain a comparison.
After ascertaining that the RY gives quite reliable results for all of the densities for which
simulations were carried out, we relied on this closure to calculate the structure of the fluid
for very high packings (600 > n = 10.00), where a simulation would be very expensive
since a very large number of particles in the simulation box would be necessary in order to
obtain reliable results.

In figure 2 we show representative results in order to provide a comparison of the radial
distribution functiong (r) obtained from simulations with the RY result for various different
values ofy. Apart from small discrepancies for the intermediate vajue 0.60, it can be
seen that the agreement is quite good. Hence, the RY closure is a reliable theoretical tool
for the calculation of the pair structure of the liquid. It should also be noted that for high
values ofy, n 2 3.0, the RY closure reduces practically to the hypernetted chain (HNC)
for our system. This is expected since, for high densities, we are dealing with a long-range
interaction when distances are measured in units of average interparticle distance and the
HNC is known to be most accurate precisely for long-range potentials.

The radial distribution functiorg () of the system at hand shows the typical evolution
of a normal liquid as the density is increased until we reach the overlap derisityhis
is the density at which the average interparticle distanee p~%° becomes equal to the
length scaler. It corresponds roughly to an overlap packing factién= 0.50. Forn < n*,
the functiong(r) displays oscillations with a characteristic length scaleThe heights of
the peaks of(r) grow with density; the same behaviour is also observed for the structure
factor S(k), of course.

The situation changes above the overlap concentration, as can be seen in figure 3(a).
Instead of having a main peak gfr) atr ~ a, we observe that one peak gfr) always
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Figure 3. (a) The radial distribution functiog(r) and (b) the anomalous structure facik)
above the overlap density.

remains at slightly outside the logarithmic partrag o regardless of the densityThe
‘main’ peak of g(r) grows gradually as the density is increased. Indeed,-at0.80, g(r)
shows just a shoulder preceding the peak g o mentioned above and only at> 1.00

can one distinguish a clear peakrate a. Even then, this peak remains lower than the
second untily = 1.30. Thereafter, it surpasses the second peak in height but, still, the
position of the second peak gf(r) is not at twice the distance of the first peak, as is the
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case for normal liquids, because the latter is determined by the density and the former by
the length scale.

This anomaly ing(r) is reflected, naturally, in the shape and evolution of the structure
factor S(k), as can be seen in figure 3(b). As a first remark, we find that the height of the
main peak ofS(k), which grows until we reach the overlap packing, becotoegr above
n*. More unusual features are observed if one looks at the positions and the competition
between the first two peaks. Though the second peak remains at twice the position of
the first up ton = 0.60, at packingy = 0.80 the position of the first peak is practically
unchanged with respect to thatat= 0.60, but the second peak nawoves closeto the
origin and increases in height. This trend persisty @gows and already ai = 1.30 the
second peak has become higher than the first, which shows a clear trend of disappearing at
higher densities, as will be confirmed shortly.

This anomaly in the structure factor can be traced to the crossover of the interaction
from a Yukawa to a logarithmic forrandthe softness of the logarithmic potential. Indeed,
above the overlap concentration the system always ‘tries’ to maintain one coordination shell
outsidethe logarithmic part, where the interaction is weak. At the same time, the softness
of the logarithmic core allows two things to happen: on the one hand, qualitatively, the
system always remains fluid which would not have been the case if the core was harder
(e.g. a HS core, or even the same, logarithmic form for differgénas will be shown in
section 4). On the other hand, more quantitatively, the softness of the logarithm allows for
a rather broad first peak of the radial distribution function which can accommodate enough
particles to allow for the second peak to occur immediately outsiges .

The unusual shape of the structure factor can be understood by means of the existence
in g(r) of these two different length scales: one length saate p~1/2 which is manifestly
density dependent and one length sdale o which is density independent. Belay? only
the first length scale appears but abg¥éoth are present. Let us caj] the position of the
nth peak of the structure factor. The first peakSgk) corresponds, roughly, to the length
scaleb, i.e. k1 =~ 27 /b and the second peak to the length sdaleaq, i.e. k, ~ 27 /(b — a).
Indeed, as can be seen from figure 3()is practically constant, whereés decreases with
density, a feature that can be attributed to the increase of the quantiy ~ o — p~%/3
with growing density. Moreover, the growth of the second peak can be understood since
the structure that gives rise to it becomes more pronounced with incregsagythe first
peak ofg(r) takes shape.

In these terms, we can now make the hypothesis that the first peak of the structure
factor will disappear altogether when the density is such thata = a or b = 2a. In
other words, the structure factor will have a main peak at a position dictated only by the
density, when the length is twice the lengthz, in such a way thag(r) has exactly two
oscillations of wavelengtla betweenr = 0 andr = b. Sinceb ~ o, it turns out that
the density must be such that~ o/2. As can be seen in figure 4(a) this occurs at the
‘magic’ value n, = 3.40, where the subscript denotes the number of oscillationg(iof
in the interval [Qb]. Accordingly, the structure factor at = n, has a strong first peak
(which, however, has evolved from the second peak at lower densities!) located at a position
2r/a =~ 4w /o. In figure 4(b) we show also the structure factornat 2.00 in order to
show the disappearance of what used to be the first pe8kkpfand its replacement by the
second one. However, we emphasize that the fact thatai, we have again a structure
factor with its main peak located at a positiép,, ~ p¥® does not mean that we are
dealing with a normal liquid. Indeed, as can be seen from figure 4(b) the structure factor
shows some weak substructure which is not present for usual liquids.

It is now pertinent to ask the question of what happens once the density is further
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Figure 4. (a) The radial distribution functiog(r) and (b) the structure factdf(k) as obtained
from simulations and from the RY closure at= n, = 3.40. For comparison, the structure
factor atn = 2.00 is also shown.

increased. Does the height of the new main peak grow until the system solidifies or does
the above scenario repeat itself? We have solved the RY closure for packing fractions up
to n = 60.00 and we find that, in fact, it the second possibility that materializes.n As

grows, the main peak is lowered and the one that used to be the third at low densities
grows; see figure 5(a). The mechanism that brings about this scenario is none other than
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Figure 5. (a) The structure facto§(k) and (b) the radial distribution functiog(r) for values
of the packing fraction in the intervah < n < n3.

the development of more and more oscillations inside the logarithmic core in the function
g(r), as can be seen in figure 5(b). In fact, one can repeat the argument about the ‘magic
packing fractionn, above for an arbitrary humber of oscillations as follows: the structure

factor S(k) will be dominated by a single length scale whenever there is an integer number
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Figure 6. The structure factof (k) at the magic values of the packing fractigp, for m = 2,
3,4 and 5.

of oscillationsm betweenr = 0 andr = b ~ o. Given the magic packing fractiom, it is
straightforward to show that the general magic packing fracgjpmvill be related ton, by

3
= (2) mesas o

Using n, = 3.40 we obtainns = 11.475, n4 = 27.20 andns = 53.125. The structure
factor for these magic values is shown in figure 6. It can be seen clearly that for the
mth magic value,S(k) has a dominant peak located at the positiannZo. As the order
m grows, the height of the dominant peak also decreases slightly and some substructure
develops inS(k). However, the main length scale comes from theoscillations of the
radial distribution functiorg(r) in the logarithmic core.

The above results can be nicely summarized by making a log—log plot of the positions
of the first few peaks of the structure factor against the packing fraeticas shown in
figure 7. We emphasize here that when we talk about:thepeak we actually mean ‘the
peak which is thesth if we extrapolate at low enough densities that we are in a regime
where the liquid is normal’. The reason for this distinction is that @gows the low-order
maxima of the structure factor disappear, as explained above, and as a result what used to be
a second-order maximum now becomes first order etc. This is manifested in figure 7 by the
fact that the curves representing the positions of the various makjiratop at some value
of n. Moreover, since a higher-order peak overtakes a lower-order one in height before the
latter completely disappears, we indicate the highest peak in figure 7 by the filled symbols.

Referring to figure 7, we can make the following remarks: according to our previous
definition, the fluid interacting by means of the potential given by equation (1) is normal for
packing fractions; < n* = 0.50. Indeed, in this regime on the one hand the first maxima
follow the scalingk; o« p/2 and on the other hand the higher-order maximpare located
at positionsk,, = nk1, both features being a manifestation of the existencesifiglelength
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Figure 7. A log—log plot of the positions of the various peaks $f) against the packing
fraction . The filled symbols indicate the highest peak (see the text). The arrows indicate the
locations of the magic packing fractiong, and the dashed straight line has slope 1/3.

scalep~/3 in the structure of the system. Above the overlap densityhe scaling breaks
down. However, if we extrapolate the straight line with slog& Which characterizes the
normal regime to higher densities, we find that it passes precisely through the main maxima
at the magic packing fractionsg,. Indeed, at those values of the density the length scales
p~Y3 ando are commensurate and we have an accidental scaling of the main psék of

with the one-third power of the density. However, the higher-order peal§gkofare still

not located at integer multiples of the first one and we are dealing with an unusual fluid for
all densities exceeding the overlap dengity

4. Hard-sphere mapping and the freezing transition

The structure factors obtained for the whole range of densities have the characteristic that
the maximum height of the main peak §itk) never exceeds the value 2.8. According to
the empirical Hansen—Verlet criterion [12], a liquid freezes when the first maximum of the
structure factor reaches a value 2.85. It was subsequently shown that freezing does indeed
set in if the order in the liquid phase, as measured by the first maximufiikof exceeds
this quasi-universal value [13, 14]. Hence, we have a first indication thaf fer32 the
system does not freeze. Naturally, the same must also hold for snfallafues as the
logarithmic core is then even softer. The absence of freezing was also confirmed in our
numerical simulations, where for all values pfwhich were simulatedn( < 12.00) the
system remained in a liquid-like configuration, with any order parameter of a hypothetical
crystalline solid vanishing.

Here, we want to apply a simple hard-sphere mapping procedure in order to corroborate
the above results fof = 32 on the one hand and establish approximately the ‘critical arm
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number’ f. on the other; this is defined as follows: fgr< f,. the system remains fluid at
all densities, but forf > f. there is at least one region in the density domain where the
system is crystalline.

Following an idea of Kangt al [15], we define an effective hard-sphere diametgs,
crudely representing the particle repulsion embodied in the pair potential of equation (1),
as follows. The pair potentidl (r) is divided into a short-ranged reference potentiglr)
and a longer-ranged perturbation potentia{r) at a suitably chosen break point Thus,
we write

V(r) = W)+ W) (4)
where Vy(r) is given by
Vo(r) =01 —r)[V(r) — F(r)]. (%)

Here, ©(r) is the Heaviside step function, arfd(r) will be defined soon. According to
equations (4) and (5), the perturbation potené&lr) is given by

Wr)=0A—-nrFr)+603F -1 V(). (6)

Now that we have split the potential in this way, it is possible to calculate the free energy of
the system by a simple hard-sphere perturbation theory [15, 16]. In this theory, the potential
Vo(r) is used to calculate an effective hard-sphere diametgr while the longer-ranged
potentialW (r) is treated in a mean-field approach. In the following, we are not going to trace
out calculations of free energies, but only to calcutatg, which is density dependent when

the specific choice fok and F (r), applied successfully in references [15, 16], is used. This
density dependence arises from the identification efith the nearest-neighbour distance
arc. Of the fcc structure, i.e.,

1/3
A=dfec = <£2> . )
0
Furthermore, the functioir'(r) is chosen as
Fr)=v() - [dzm} (0. —r) ®)
r r=A

guaranteeing that botlo(r) and dVo(r)/dr are vanishing at = A. With 1 and F(r)
specified,oys is then calculated fronVy(r) by using the well-known Barker—Henderson
(BH) approximation [17]

Ops = / dr [1 — e—ﬁVo(r)] 9)
0

or, alternatively, by a scheme proposed by Weeks, Chandler and Anderson (WCA)
[15, 16, 18]. We will only present results from the BH approximation, since the
corresponding WCA results are practically identical to the latter, thus leading to the same
conclusions.

After obtainingoygs from the BH or WCA scheme, we calculated the effective hard-
sphere packing fraction

_ T 3
NHs = E'OGHS

which is in general density dependent. We can henceletas a function of the ‘true’
packing fractionn, depending furthermore on the value ffas an additional parameter.
In figure 8, we show results forys for five different functionalitiesf. Obviously,nys is
increasing linearly with; for n < 0.1, and it reaches a maximum value dependingfoat
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Figure 8. The effective hard-sphere packing fractipps obtained by the procedure described
in section 4 as a function of the true packing fractignfor five different values of the
functionality f.

certain packing fractions.® < n < 0.7, which are again depending gh Forn > 0.74,
nys remains constant for all densities.

We will now briefly explain this behaviour ofjys(n), before switching to some
conclusions that can be drawn from figure 8 concerning the freezing transition of star
polymers. For smalh, where the break poirit is located at distances larger than the range
of the pair potential, equations (5), (8) and (9) lead to a density-indepeagegnsince the
pair potentialV (r) is density independent. Henogys scales linearly with; in this regime.
However, when. reaches distances where the potential is remarkably different from zero,
this linear scaling is no longer valid, since, according to equations (5) and{9)Js now a
decreasing function with increasing density. This fact materializes in a decreasing slope of
the functionnys(n), leading even to the existence of a maximumjyy(n). Having these
arguments in mind, the surprising fact thgis attains a constant value fgr> n. = 0.74
can be explained as follows. Exactly at the crossover packing fragtiaie break poini.
is located at the corona diameterand thereafter, fon > ., we haver < o. Therefore,
for n > n. the Yukawa part of the interaction potentia(r) is irrelevant for the calculation
of oys, as the reference potentieh(r) is purely logarithmic. Using equations (1) and (9),
it follows that in this regimery s scales linearly with, i.e.,

ons = A(f)r (10)

with the constant4(f) depending only on the arm numbgr but neither ons nor on .
Sincex scales witho~%3, equation (10) leads directly to the observed density independence
of nus(n) for n = n. [19].

The logarithmic pair interaction at hand is the only one showing this feature. Indeed,
in order to haverys o A, the integrand in equation (9) must be a functiornr 6 only, i.e.,
the length scaler must drop out of the expression fég(r). Let us assume that the pair
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potential V (r) is given by some functiomR(r/o; f) for r < A. If the reference potential
Vo(r) has to depend on/A only, the functionR(x; f) must satisfy the following relations,
as is clear from equations (5) and (8) above:

dR(r/o; f) o 1

R(r/o; f) = R(/os f) = R(r/A; f) O "

where R(x; f) is some other function. The above conditions (which are, in fact, not

independent but equivalent to each other) are fulfilled only by the family of functions
R(x; f) = C(f)In(x) + D(f)

with C(f) and D(f) arbitrary.

We now turn to the main reason for our interest in the values of the effective hard-sphere
packing fractionnys. Since the mapping onto an effective hard-sphere system gives quite
reliable results in predicting the freezing transition [15, 16], we use the valug; ofas
an indication for the existence of a freezing transition in the original system. Hard spheres
freeze in a fcc structure &tﬁ}’gd = 0.55 [20], and we therefore take this specific value
to explore a possible freezing transition of star polymers from figure 8. Obviously, for
f < 32,nps never exceeds.B5 for all , leading to the conclusion that the system remains
fluid at all densities For f > 32 on the other hand;ys attains values larger than35
at least in a limited window of packing fractions Consequently, there is a critical arm
numberf. >~ 32, meaning that the system never freezesffag f., but freezes presumably
at least in a limited range of densities fgr> f.. Our previously described finding that
star polymers withf = 32 did not freeze in all of our computer simulations is therefore
consistent with this crude hard-sphere mapping procedure.

As can be further seen from figure 8, there is a range of arm numfiers, f < 64,
in which nys exceeds ®5 only for Q2 < » < 0.7, which implies a ‘re-entrant-melting’
phenomenon ai ~ 0.7, i.e., a transition form a solid phase to a liquid phasgiff increased
above 07. Here, it is worth mentioning that re-entrant melting for star polymer solutions
at high concentrations was predicted by Wittdral on the basis of arguments arising from
scaling theory [21]. This prediction is independently verified here. Moreover, within our
crude model, star polymers witfi > 64 show a liquid phase foy < 0.2, followed by a
solid phase fomll higher densities.

(11)

5. Connection with experiments

From the experimental point of view, the extreme values of the packing fraction that we
have considered in section 3 are unattainable. At most, one can expect to observe a change
in the behaviour of the first peak of the structure factor as the overlap polymer concentration
(which corresponds to our overlap density) is crossed. Our prediction is that the height of the
first peak of the star—star structure factor of a star polymer solution in a good solvent is not
monotonically increasing with polymer concentration but rather it saturates at the overlap
density and decreases thereafter. On the basis of general scaling properties of polymers in
good solvents, Wittert al predicted, more than ten years ago [21], precisely that the peak
of S(k) is largest when the separation between stars is of the order of the star radius. Here,
we have confirmed this prediction quantitatively by employingo#loidal description of

star polymer solutions. We expect that such effects should be visible in SANS experiments
of dense star polymer solutions. To this end, stars with a labelled core should be used and
the extent of the labelled part should be made as small as possible. In this way, the effects
of increasing concentration on the structure factor will not be masked by the form factor of
the single star.
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Figure 9. The structure factor of a system interacting by means of the potential given by
equation (12) withA = 10 at various packing fractiong obtained in the HNC closure. Notice
the nonmonotonic behaviour of the maximum$ik) with increasing density.

Additionally, it is natural to ask whether this honmonotonic behaviour in the peak of
S(k) is peculiar to the logarithmic form of the interaction inside the core or whether it can
be seen for other functional forms of the pair potential as well. To test this, we have taken
a toy potential which has a soft core for separations smaller than some lengtid a
crossover to a different functional form for larger separations. This toy potential reads

() | AC—0)?/(ro)  (r<o)
ksT |0 (r >o0)

(12)

where A is some numerical constant which we can vary and controls the steepness of the
interaction inside the core. We take natv= 10. Defining the packing fraction as
in equation (2) above, we have solved the HNC closure for a few differemtiues. The
results are shown in figure 9, where it can be seen that the same nonmonotonic behaviour of
the main peak of (k) is observed. Thus, the phenomenon is rather general and it relies on
the existence of a soft enough core in the interaction. Such interactions are not uncommon
in soft-matter physics. Hence, it would be of great interest if such anomalies could be
experimentally observed.

We finally comment on similarities of the logarithmic potential investigated in this work
to a model introduced by Uhlenbeck and Ford in the early days of liquid-state theory [22].
This special model is defined by a Gaussian Mayer function

f(r) =1—exp(—BV (1)) = exp(—ar?)
corresponding to the pair potential

BV (r) = —In(1 — exp(—ar?)).
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As shown in reference [22], all interparticle correlations can be calculated analytically within
the framework of graph theory. For small distaneeshe above potential reduces to

BV (r) =~ =2In(/ar)

corresponding to the potential of equation (1) with an arm numpber (36/5)%° ~ 3.7.

Since this arm number is significantly smaller th@n we expect the model system of
Uhlenbeck and Ford to be liquid for all densities, corresponding to an equation of state
analytical in the density.

6. Summary and concluding remarks

Employing a pair potential which has been shown to describe correctly the SANS data
of star polymer solutions in good solvents [3], we made quantitative predictions regarding
the behaviour of the structure factor as a function of increasing polymer concentration. In
particular, we found that above the overlap concentration, star polymer solutions display
features which are unknown for normal liquids, namely a breakdown optfescaling of

the positions of the peaks 6f(k) as well as an anomalous evolution of the heights of these
peaks: the lower-order peaks diminish in height and the higher-order ones grow.

Furthermore, we applied a hard-sphere mapping and used it as a crude diagnostic tool
in order to make preliminary investigations on the topology of the phase diagram of star
polymer solutions. The most striking feature of the hard-sphere mapping procedure is,
in our view, the fact that the effective HS packing fractipps remains constant at high
densities and depends only on the functionality We have shown that this characteristic
is particular to the logarithmic interaction. We speculate that interactions which are softer
than the logarithm will lead to anys which will be adecreasingunction of the density.

This has relevance, in particular, to ‘bounded’ interactions, i.e., interactions which do not
diverge at the origin, such as the Gaussian potential of Stillinger and Stillinger [23] or a
simple model of penetrable spheres introduced recently by us [24].

Another question of great interest is the phase diagram of star polymers. Detailed
calculations, based on extensive computer simulations as well as perturbation theory, are
currently under way. These calculations allow for the evaluation of the Helmholtz free
energies of various candidate crystalline phases and, subsequently, the comparison of the
latter with that of the fluid phase and the construction of the phase diagram. Preliminary
results are in full agreement with those presented here as far as the critical arm nfamber
is concerned; at the same time, they reveal a rich topology of the phase diagram as well
as a variety of unusual crystal structures. The presentation of the phase diagram of star
polymers will be the subject of a future publication.
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