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Effective interaction and density profiles of confined charged colloids

Anne M. Denton?, Hartmut Léwen®"#

nstitur fur Theoretische Physik II, Heinrich-Heine-Universitat Dusseldorf, Universititsstirafie 1, D-40225 Dusseldarf, Germany
SFustitut fur FestLorperforschung, Forschungszentrum Julich, D-52425 Julich, Germany

Abstract

The interaction between charged colloidal particles confined between two parallel charged plates is investigated theoreticatly. We
propose a simple model with a space-dependent Yukawa pair potential between the colloids which is derived from lineal screening and
density functional perturbation theory. Within this model, the density profile of the confined colloidal particles is obtained by computer
simulation. In the absence of van der Waals attractions between the walls and the colloidal particles, there is no practical difference in the
colloidal density profiles as compared with those obtained with the usual space-independent Yukawa pair potential. However, there can be
large deviations if an additional large wall attraction is present. © 1998 Elsevier Science S.A. All rights reserved

Keywords: Charged colleid; Molecular dynamics; Confinement; Density functional theory

1. Introduction

Charged colloids confined between two parallel glass
plaies have the intriguing property that their positions can
be watched in real space by video microscopy (see e.g. Refs.
[1,2]). This allows for a direct determination of their pair
structure and their Brownian trajectories. For highly
charged plates and highly charged colloidal particles,
there is effectively only one colloidal layer providing an
excellent realisation of a strictly two-dimensional system
[3]. It is known that the freezing transition in two spatial
dirmensions can be mediated by a hexatic phase [4]. Hence,
colloidal monolayers represent important samples for a
search for such a hexatic phase with long-ranged bond
orientational order [5-12].

The aim of this paper is to investigate and discuss the
effective interaction between the charged colleids if they are
strongly confined between highly charged plates. The effec-
tive interaction has gained considerable interest recently
since experiments reveal the possibility of an attraction
between colloidal particles close to the wall [13-17]. The
interpretation of the experiments is, however, still not
unambiguous and there is not any clear hint from theory
that an effective attraction takes place.

Almost every theoretical approach for the effective

* Comespording author. Fax: +49 211 8112262,
e-mail: hlowen@thphy.uni-duesseidorf.de

interactions adopts linear screening theory for colloids
heavily confined fo the mid-plane in between the plates.
The dominant term then is a two-dimensional Yukawa
pair potential = exp (—xr)/r [18-21] where r is the lateral
interparticle separation and the inverse Debye-Hiickel
screening constant k is dominated by the counterion con-
centration in the mid-plane. This 2-dimensional Yukawa
model was extensively used in subsequent computer sirnu-
lations for the structural correlations [22-26], the Brownian
dynamics [22,23,27-29], and the freezing transitions in
two-dimensional fluids [30]. In this paper, we generalise
this result taking into account the non-uniformity of the
counterionic density profile in the direction z perpendicular
to the plates.

Consequently we obtain a space-dependent Yukawa pair
potential which depends not only on the difference between
the two particle positions but also on the positions them-
selves In fact, the inverse screening constant ¥ now depends
explicitly on the z-coordinates, Z; and Z,, of the colloidal
pair. We adopt linear screening theory as formulated
recently in the density functional langnage [31] and use
density functional perturbation theory to obtain an explicit
expression for this space-dependent pair potential. We then
explore the density profile of the colloidal particle by com-
puter simulation.

1t turns out that the density profile is reduced in the mid-
plane if the z~dependent « is used as compared to the tradi-
tional case of constant «. Intuitively this is expected since

G040-6090/98/5 - see front matter  © 1998 Elsevier Science S.A. All rights reserved
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the screening becomes more effective close to the plates due
to the increased amount of counterions from the charged
wall and hence the particles explore closer wall distances.
The deviation from the Yukawa potential can become par-
ticularly pronounced if an additional van der Waals attrac-
tion between the walls and the colloidal particles is present.

The paper is organised as follows. In Section 2, we define
our model deriving the space-dependent Yukawa pair
potential from density functional theory. Then we present
our results in Section 3, We conclude in Section 4.

2. Derivation of the model

In order to derive the effective interaction between con-
fined charged colloids, we proceed in four steps. We first
consider a situation without any macroions, i.e. the number
of macroions Ny, is zero. Then we subsequently discuss a
single macroton (N, = 1}, a pair of macroions (N, = 2), and
finally an arbitrary number N, of macroions. In all of our
considerations, there is no added salt, and the macroion
radius is set to zero, i.e. the spatial extension of the macro-
ions is much smaller than the local Debye—Hiickel screen-
ing length, The general situation is sketched in Fig, 1;: Two
parallel plates each of them carrying a homogeneous surface
charge density o are a distance 2L apart. The surface charge
comes from dissociated counterions with a charge ge where
g is the valency and e the elementary charge. In between,
there is a microscopic solvent with a dielectric constant e
and N, macroions each of them carrying a charge Ze and
provide a total number of N,|Z/g! additional oppositely
charged counterions which are indistinguishable from
those coming from the charged plates. The spatial coordi-
nate perpendicular to the plates is denoted with z. The origin
z =0 coincides with the position of the left plate. The
macroion positions are given by {r_}, where i = 1,..., N,
labels the macroions. Their z-coordinates are denoted with
Z.

2.4. Density profile of counterions without any macroion

This case is well-studied since the early theoretical foun-

LLLLL
N
S

2L

Fig. 1. Schematic diagram of a colloidal suspension between Pamllel walls.
The distance between particles | and 2 is denoled by IR~ RS, their
distance from one wall by Z; and Z,, and the separation of the walls by 27.

dations of colloid science, see e.g. the textbooks ([32]; for a
review see [33]). The Poisson—Boltzmann (PB) theory for
the counterions can be solved analytically for a sitwation of
two equally charged plates. In the salt-free case, the mean
number density of counterions stemming from the charged
walls is fixed by global charge neutrality to

ag
__ 0 1
2o el ey
The inverse Debye—Hiickel screening length kg is then

defined via

4w (ge)2py

0

=1 2
2 ehgT @)

where kpT is the thermal energy. Within PB theory, the z-
dependent inhomogeneous number density profile p,(z) of
the counterions is given by
2v; i
A =0 3

o= 00 L ool /L) ©
where the index w indicates that the counterions are solely
coming from the charged walls. The constant In is impli-

citly given as the solution of the transcendental equation

(KoL)
293

—tanygp =0 ’YU {O, g:| (4}

A typical counterion density profile p,(z) is shown in Fig.
2. Note that for very hip surface charge densities ¢ the
midplane counterion density saturates at a constant valae
since most of the counterions condense in a Stern-layer
close to the plates. Explicitly, pz=L) - #/8L N as
lol — oo with g = (ge)*kpTe being the Bjerrum length of
the counterions.
The corresponding electric potential ¢(z) reads

2k T
#(z)= - T{;m(cosm(i ~z/L)) (5)

This potential is normalised such that it vanishes for the
midplane {z = L) between the plates, For z = L, it can be
approximated by a paraboia

” 782

o=~ 32t (ST +ot-n/mh ©
ge L

A typical shape of ¢(z} together with its parabolic approx-

imation is shown in Fig. 3.

We note that these results can be derived alternatively
from density functional theory [31]. In fact, p,(z) is the
density profile that minimises the Helmho tz free energy
functional F, [p(r }] with respect to p(r) under the constraint
of fixed average density

2L d
J j d%c?)aj P rp(F) =Bl )
A

Here, 0 = ZLA is the total system volume and A is the area
of one plate. j"{)[p(r }] consists of three terms
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i Fig. 2. Density distribution p,{z) of counterions between walls of surface

charge density g = 12 8e/nm’, separated by a distance 2L = 0.005 em. It
was determined from Poisson Boltzmann theory and used as a reference
dengity in the simuiations,

L gl =F e+ 7 P ]+ F O ()] (8)

The first term F “)[p(;)} is the entropy from an ideal coun-
terion gas which is a local but nonlinear functional

FOpG )=k T J Erp(r)In(A% (7 ) - 1] ©)

A denoting the thermal de Broglie wavelength of the coun-
terions. The second term, F° )[p(r)] describes the linear
external coupling to the plates,

fﬂ”[p(;)hjﬁ Pro( V() (10)

which ensures vanishing counterion density profiles beyond
the plates since

V(0= oo for z << Qund z > 2L
WZY 0 for0<z<2L

When the integration is confined to the physically accessi-
ble volume @, then: ' vanishes. We nevertheless for-
mally keep this term since different wall-counterion
interactions could be described more flexibly then. Finally
the Coulomb coupling between the counterions is taken
into account via the nonlocal mean-field term which is
quadratic in p(?):

(11)

| ?(3)[0(;}]z—j & fJ A (e ‘(qe) (12)

ternatively ¢

In the following we shall use the more flexible density
functional language to extract the effective interactions.

2.2, A single macroion between charged plates

_, Let us now consider a single macroion with a posttion
r1={X,, Y\, Z) (0 £ Z, <£2L). The total free energy den-
sity functional #([o(7], {F}) which has to be minimised,
with respect to the counterion density profile now involves
Follp(¥)] and the additional Coulomb coupling of the

counterions _to  the macroion which we denote by

FY(p(M1, (R }). Hence,

FoM1=Folo@+F (o], (R }) (13

with

FO®), {7 })zL & rp(A)\VncllF—F 1) (14)

where

Vielr)= 241 (15)
Er

is the macroion—counterion interaction. An analytic mini-
misation of F{[p(F)], | R 1) 1s not possible, since the pro-
blem is not any longer translational invariant in lateral
direction. We assume, however, that the actual minimum
is close to the former (macroion-free) PB solution given by
Eqg. (3). In particular, this is justified if most of the counter-
ions in the solution are stemming from the charged plates.
Hence we take p,(z) as a reference density and expand the
nonlinear functional F (])[p(?')] quadraticatly around this
reference density [311:

FOlo(P] = kg TL & r{ p (DA, (2)) +

In(A” 0, () (0(F) — o, (2) + (oM —-p, (DY}  (16)

w( )
Within this quadratic approximation, the minimising con-
ditien for F([p(M], {R]) becomes linear

‘M;))wmc(ir 3 \)+J FrAT) Tf’; )ﬂ,l +p=0 (17)

where the density difference A(F) = p(7) — p.(2) is the
unknown function and p is a Lagrange multiplier ensuring
global charge neutrality. Due to the term kg T(A(F)/p0,.(2))
this integral equation cannot be solved analytically. We
hence adopt a further ‘adiabatic’ approximation assum-
ing that p.(7} is slowly varying in the region where the
additional counterions from the macroions are located
around the macroion, i.e. in the region where A{¥) is non-
vanishing. This allows us to set kgT(A(F)/p.(2) =
kg T(A(P)/p,.(Z1)) in Eq. (17). Now, by Fourier transforma-
tion, we obtain A{F) as

kgT

Z K(Zy)exp(—« HZpIF-R 1)

AP =AD G R
H=AYFR))= 7 dx PR

(18)

where the Zj-dependent inverse Debye—Hiickel screening
fength is now given by

d(ge) pw(Z,))
EkB T

This shows a posteriori that our adiabatic approximation is
reasonable as long ag the particle is not too close to the
plates such that its Yukawa orbital does not penetrate into
the walls. Clearly, the extension of the Yukawa-density-

K(Z:) = (19)
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o(z)e/(k;T)

el

Fig. 3. Electrostatic poteatial ¢(z) due to the wall counterion distribution in
Fig. 2 (solid curve) and the parabolic approximation o it (dashed curve).

orbital (Eq. (18)) shrinks if the macroions get closer to the
wall. This is due to the increasing counterion concentration
at embodied in p.(z) which keeps the additional counter-
ions closer to the macroions.

In the spirit of density-functional perturbation theory, we
insert this result for A(F) = A(m(‘r', R 1) into the density func-
tional F{fpe(H], {ﬁl 1) and get the effective force F 1 acting
on the macroion approximately as

Fi= - g Flow@)+AVERL KD 20)
In leading order this turns out to be

Fi== 3, Veul2)) 21
where the external macroion potential is given by

Vol Z1) =1Zelp(Z)) (22)

Here ¢(Z,) is the PB-result of Eq. (5).

This result implies that the macroion—wall interaction is
as expected from our macroion-free consideration of the last
chapter. The additional counterions from the macroions do
not alter this result since they are spherically symmetric
around the macroion and their contribution averages out.
We remark that the potential V(7)) can directly be
measured by internal reflection microscopy [34]. Within
the parabolic approximation (Eq. {6)). the macroion behaves
as a Brownian oscillator in z-direction with a Gaussian
macrofonic density profile which can also be tested by
experiment [3].

At this stage, we also remark that the force F , is a coun-
terion-averaged force, not an instantaneous force. It is this
force with which one has to perform the additional macroion
average [31] to obtain total statistical averages.

2.3. Two macroions between charged plate

Consider now a pair of macroions (¥, = 2) with pos-

Hions R‘l Z(Xi, Yl:ZI) and }_éz :(Xz, Yz,Zz) In this case,
FN[p(AL {7 }) from Eq. (14) has to be replaced with

= — 2 4
T (A, (R, R,)) =Jﬂ d%(?’)_:zl Vi (IF=R;1) (23

and the total functional now depends parametrically on fél
and I_éz, F=F([p(®)], ]—éf, i=1,2). We now follow the same
strategy as explained in the last section and chose as a
reference density

Pwl)=p(2)+p (24)

where p=1Z/¢IN,,/Q is the mean counterion density com-
ing from the macroions. Expanding the non-linear part
7 V(] of the functional as in Eq. (16), we again adopt
the ‘adiabatic approach’ for kgT(A(F)/p.(z)) (with
AF=p(¥)-p,(2)) and approximate p,(z) here by an aver-
aged constant

Zn
b=+ J deon(D =p(Z1. 25) 25)

1
ZZ_ZI Z
Again, as in Eq. (18), the minimizing counterion density
o0 {R;}, i=1,2) consists then of Yukawa orbitals cen-
tered around the macroions with an inverse Debye—Hiickel
screening length given by
d(qe)' #(Z1, Z:)

K(Z), Z,) = T (26)

Le.
0= (B L Z
PO (R} i=1,2)=py(zt T IE\K(ZL,ZZ)

exp(—x(Zl,%)lf—R',-D

47 —
7R,

2n

— Z=L;Z=L

I‘\
4l i\ 1T S ]
LAl

0
0.0
r/d

Fig. 4. Interaction potential V(r,Z),Z;) between two particles for run A vs.
their separation r in units of an average separation o (¢ is the nearest-
neighbour separation in a 2-dimensional triangular lattice of the same
density}. The solid curve corresponds to two particles in the mid-plane
(Z, = Z, = L), the short-dashed curve to two particles at Z, = Z, = L/2, and
the long-dashed curve to one particle in the mid-plane {Z; = L} and one at
Zz = U?-
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Inserting this result into the density functional we obtain in
leading order for the effective forces F; acting onto the

¢ macroions

b B Fo G FUedLIR i-1,2)

77  exp(—k(Z), L)IR, - Ry 1)
R —R,l

== g, | VeulZ)+ (28)

Consequently, the macroions interact via a Yukawa pair
potential with a space-dependent screening since « depends
explicitly on Z; and Z,. On the other hand, the macroion—
wall interaction stays the same as for a single macroion,

2.4. N, macroions between charged orate

Finally we consider an arbitrary number of macroions,

. We assurpe that the interaction is pairwise and given by

the space-dependent Yukawa pair potential as described
by Eq. (28). The only difference as compared to the last
section is that there is now a finite counterion concentration
from the macroions since they possess a finite number den-
sity py, = Ny/Q. Let us state the final model we shall inves-
tigate by computer simulation in the following section.

N, macroions with a finite number density p,, interact
with the plates via the external potential

oo . forz<<Qandz > 2L

VeulZ) =9 0~ |z l ‘3| In(cos(v0(1 —z/L)for 0<z< 2L
qe

(29)

. Among themselves they interact via a space-dependent
: Yukawa Pair potential

Z e exp(—k(Zy, Z,Y)R, — Ry D)
IR, — R,

(30)

ﬁl and 132 denoting the positions of the particle pair and

_4w(ge)p(Z,. Zy)

21,2, = 31
{2y, 2,) ol (31)
_ where

| /4! "

s plZy, Zy)= —_ 70, 3

Py, Zy)=1Z/q p“ﬁZg—Z,Jz dzp,(2) (32)

1 This means that «(Z;, Z,) is the root mean square between

the wall-counterion contribution and that stemming from
the ‘macroionic’ counterions, In the Limit of neutral plates
(p=0), we recover again the usual space-independent
screening « given by the counterions coming from the
macroions. In Tig. 4, the space-dependent pair potential

i as obtained from Eg. (30) is shown for different coordin-

ates 7, and Z, of the macroion pair. As expected, the poten-
tial depends sensitively on these z-coordinates. We finally
note that our model was not obtained by a systematic
approximation but the physical screening mechanism is

iincorporated, at least qualitatively. As in the case of the

bulk potential of DerJaguin-Landfau-Verwey-Overbeek

(DLVO) [35,36], we expect, however, that the range of
its applications is wider than expected from its theoretical
derivation as long as one deals with renormalized para-
meters.

We finally crudely model and include in our calculations
also the effect of a van der Waals attraction between the
plates and the particles, If the particles are index-matched
with the solvent, the van der Waals interaction between the
particles is small. In a typical experimental set-up (glass
plates and aquecus solutions), the polarizabilities of the
walls and the particles is quite different. This gives rise to
an additional external van der Waals potential. We shmply
include this attraction by adding a parabolic term b(z — L)
(b <) to the external potential (Eq. {29)). The most
extreme case is that where & = b, exactly cancels the quad-
ratic terin in the expansion of Eq. (6) which means that the
total external potential starts with a contribution < (z,)* for
z = L. The total external potential V,(Z) is shown in Fig. 5
for these two extreme cases (b= 0 and b = b).

3. Results of computer simulation

We performed standard molecuiar-dynamics simulations
(see e.g. Ref. [37]) with AV, = 500 macroions in a periodi-
cally repeated quadratic box in lateral direction. The time-
step was chosen such that the conservation of the total
energy was granted. After every 100 timesteps, the veloci-
ties were scaled in order to reproduce the prescribed tem-
perature. For the parameters we used room temperature
(T =300 K), and the dielectric constant was € = 10. The
counterions are monovalent (g = 1) and the macroion
charge number was Z = 100. The walls have a charge den-
sity o = 0.13e/nm” and are separated by 2L = 0.005 cm. For
run A the density of macroions was such that the screening
by ‘macroionic’ counterions was 2Lk, = 1, where &, =
47rmeq62/(ekBT). For run B this screening was 27k, = 0.2.1

50

40

1)
i
1
i
|
1
i

i

]

|

30 \

20 ¢

V_(2)/(k,T)

10

04 06 08 1.0
2/(2L)

Fig. 5. Polential energy Ve,{z) for particles of charge Z = 160 belween
charged walls as in Fig. 2. The solid curve corresponds to the electrostatic
wall interaction alone, the dashed curve to an ¢lectrostatic wall interaction,
the quadratic term of which is fully compensated by a wall atlracticn.
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Fig. 6. Density profile p,,{z) of macroions from run A (see text} for pure
electrostatic wall interaction. The sclid curve corresponds te a constant «,
the dashed curve to a space-dependent .

Our target guantity is the macroionic density profile p,,(z)
between the plates. In Fig. 6, we have plotted pp(z) in the
case of absence of van-der-Waals attraction (b = Q) for a
typical parameter combination. The counterion density for
calculations with space-independent « is taken to be the
same as that for the space-dependent case at z = L.

Comparing our results for the space-dependent potential
{dashed line) with that of the traditional space-independent
potential (solid line), one realises that the results are very
close. In fact, the repulsion from the charged walls is so
large that the macroions practically stay within a mono-
Jayer. Consequently, effects of the space-dependent screen-
ing are much reduced. The same result was obtained for
different other parameter combinations, proving that the
traditional Yukawa picture with constant inverse screening
length « is justified. Nevertheless one can see small devia-
tions: the midptane density is & little reduced and the wings
are slightly more pronounced for the space-dependent
screening.

The situation, however, can become different if the van
der Waals attraction between the walls and the macroions
is strong enough to pull the particies closer to the walls.
Results for the extreme case b = b, where the quadratic
term in V.(7) vanishes are shown in Fig. 7 for two dif-
ferent parameter combinations. Here, indeed, for the same
parameters as those in Fig. 6, there are stronger deviations in
the wings and in the mid-plane density. This is only the
case, however, if the structure is strongly influenced by
inter-particle interactions. For low particle densities (run
B) the profiles are determined mainly by the particle—wall
interaction, and are therefore largely independent of the
model.

4, Discussion and conclusions

In conciusion, we have investigated the inhomogeneous

screening induced by the wall counterions in calculating the
effective interaction between out-of-midplane macrotons. 1
only electrostatic interactions are taken into account, th
macroionic density profiles were practically indistinguish
able from those of the space-independent pair potential
This justifies the Yukawa-picture used in previous calcula
tions. However, if a strong van der Waals attraction is pre
sent, the macroionic density profiles can be affected by the
space-dependent screeming. In particular, the mid-plang
density is reduced and the wings are more extended toward
the walls.

Effects of the space-dependent pair potential may furthe
alter the freezing properties with respect to the usual space
independent Yukawa potential, and may eventually explail
the stability of near-wall crystallites which were recentl
found experimentally [17]. However, more theoretica
work is still needed in this direction.

It is clear that we have ignored several effects in ou
theoretical derivation including the finite macroion core
effect of added salt ions, and the effect of image charge
[18—20,38] which are important if the dielectric constants ¢
the plates and the solvent are different. A finite macroioni
core would result in an effective macroion charge depend
ing on the core size as known from the bulk macroionic cas
£35]. However, we leave a detailed calculation Justifyin,
this for future studies. Qur linear screening theory furthes
more only applies for diluted suspensions. To overcome thi
restriction, one has to do more sophisticated calculations. |
would be interesting to apply the ab initio computer simula
tion technique of Ref. {31] to confined colloids or to d
Monte-Carlo simulations of the primitive mode with onl
few macroions along the lines of Ref. [39], in order to e
our interaction mode and to incorporate non-linear counte
ion screening effects arising from a high macroion concer
tration.

S ' ' | — k=const run A -
- K{Z,Zyrun A
4 i =— x=gonhst; run B
e T EZ Z U0 B
SN
£
£ 3
=
N
= 2 -
i i

05 06 07 08
2/(2L)

Fig. 7. Density distribution of macroions for an electrostanc watt inlera
lion, the quadratic term of which is [ully compensated by a wall attractio
The solid curve corresponds to Tun A {see text) and a constant «, the shio?
dashed curve to run A and a space-dependent k, the long-dashed carve
run B and a constani , and the dot-dashed curve to run E and a spac
dependent «.
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