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Freezing and clustering transitions for penetrable spheres
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We consider a system of spherical particles interacting by means of a pair potential equal to a finite constant
for interparticle distances smaller than the sphere diameter and zero outside. The model may be a prototype for
the interaction between micelles in a solvent@C. Marquest and T. A. Witten, J. Phys.~France! 50, 1267
~1989!#. The phase diagram of these penetrable spheres is investigated using a combination of cell and density
functional theory for the solid phase together with simulations for the fluid phase. The system displays unusual
phase behavior due to the fact that, in the solid, the optimal configuration is achieved when certain fractions of
lattice sites are occupied by more than one particle, a property that we call ‘‘clustering.’’ We find that freezing
from the fluid is followed, by increasing density, by a cascade of second-order, clustering transitions in the
crystal.@S1063-651X~98!05309-4#

PACS number~s!: 61.20.Gy, 64.70.Dv, 61.20.Ja
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I. INTRODUCTION

Much of our current understanding of the liquid-sol
transition from a microscopic point of view is based on t
density-functional theory of inhomogeneous liquids@1–3#.
This approach allows, in principle, the systematic calculat
of the phase diagram of any system, once the pair pote
between its constituent particles is given. A number of p
interactions of variable ‘‘hardness’’~hard spheres, inverse
power, Yukawa, etc.! have been studied, yielding the pha
coexistence between a fluid phase, which is stable up
moderate densities, and a crystal, which is stable at hig
densities. For most of the systems that have been consid
in the literature, the assumed pair interaction between
ticles has the property that it grows as the distance betw
the particles decreases, and diverges at zero separa
These are the usual,unboundedinteractions. For such inter
actions, a whole mechanism of liquid-state integral equa
theories has been developed, which allows one to calcu
with a high degree of accuracy the structure and thermo
namics of the fluid phase, which is in turn a necessary ing
dient in any density-functional treatment of the freezing tra
sition.

Much less is known about interactions that arebounded;
i.e., they allow the particles to ‘‘sit on top of each other
imposing only a finite energy cost for a full overlap. This
natural since a true, microscopic interaction always forb
overlaps. However, the situation may be different if, e.g., o
considers the ‘‘potential of mean force’’ between two po
meric coil centroids in a good solvent, as suggested m
years ago by Stillinger@4#. The two centroids may coincid
without this resulting in a forbidden configuration. Stilling
thus introduced the ‘‘Gaussian core model,’’ consisting
particles that interact by means of a pair potentialf(r )
5f0exp(2r2/s2), wherer is the interparticle distance,f0 is
an energy scale, ands is a length scale. This model and i
phase diagram have been examined in Refs.@4,5#, following
an approach based on general mathematical properties
ticular to the Gaussian potential and on computer simu
tions, for a review see Ref.@6#.

In this paper we also consider a bounded potential, al
PRE 581063-651X/98/58~3!/3135~10!/$15.00
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an apparently simpler one. We take an interaction betw
spheres that is simply equal to some positive constant if th
is any overlap between them and zero otherwise. The st
of such a model is not of purely academic interest; a f
years ago, Marquest and Witten@7# suggested that interac
tion potentials qualitatively similar to a step function a
expected for micelles in a solvent. We study the phase
gram of this model by using standard techniques~integral
equation theories for the fluid and a cell model for the soli!,
also combined with computer simulations. We find, on t
one hand, that the boundedness of the interaction makes
standard integral equation theories inadequate to accura
describe the dense liquid phase of the system. On the o
hand, the fact that the interaction is constant brings abo
novel possibility for the crystal to lower its free energ
namely, the formation of groups of two or more particl
~‘‘clusters’’! occupying the same lattice site, a property th
we call clustering. As a result, there are second-order clu
tering transitions within the region of the phase diagram
cupied by the solid.

The rest of the paper is organized as follows: In Sec. II
present our approach for the fluid phase and in Sec. III
the solid phases. The results are combined in Sec. IV wh
we present the phase diagram of the model. Finally, in S
V we summarize and conclude.

II. PENETRABLE SPHERE MODEL: THE FLUID PHASE

We consider a model of penetrable spheres, whose in
actions are described by the pair potential:

f~r !5H «, 0<r ,s

0, s,r ,
~2.1!

wheres is the diameter of the spheres and« is the height of
the energy barrier («.0). The packing fractionh and re-
duced temperaturet are defined as

h5
p

6
rs3, t5

kBT

«
, ~2.2!
3135 © 1998 The American Physical Society
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wherer is the number density,T is the temperature, andkB
is Boltzmann’s constant.

Clearly, at zero temperature the model reduces to the h
sphere~HS! potential. The first task is to investigate th
structure and thermodynamics of the fluid state. In a theo
ical approach to the problem, typically one of the vario
approximate liquid-state integral equation theories is e
ployed, which yields the radial distribution functiong(r ) of
the fluid together with the direct correlation functionc(r )
related tog(r ) by means of the Ornstein-Zernicke~OZ! re-
lation @8#:

g~r !215c~r !1rE c~ ur2r 8u!@g~r 8!21#dr 8. ~2.3!

Another exact relation connectingg(r ) with c(r ) reads as

g~r !5exp$2bf~r !1g~r !212c~r !2B~r !%, ~2.4!

whereB(r ) is the so-called bridge function@9#, the sum of
all elementary diagrams that are not nodal. SinceB(r ) is not
known, the various approximate liquid-state integral eq
tion theories can be regarded as approximations of this q
tity. In this way, an additional equation or ‘‘closure’’ involv
ing only g(r ) and c(r ) is supplemented to the OZ relatio
and the system becomes solvable.

The simplest and most frequently employed theories
the hypernetted chain~HNC! and Percus-Yevick~PY!
schemes, which, however, due to their approximate chara
lack thermodynamic consistency; the ‘‘pressure’’ and ‘‘co
pressibility’’ routes to the liquid free energy yield differen
results. In the HNC, one simply setsB(r )50, obtaining the
closure

g~r !5exp$2bf~r !1g~r !212c~r !%. ~2.5!

On the other hand, the Percus-Yevick closure can be see
a linearized version of the HNC scheme regarding the te
g(r )212c(r ) in the exponential and reads as

g~r !5e2bf~r !@g~r !2c~r !#, ~2.6!

corresponding to the following approximation for the brid
function:

BPY~r !5@g~r !2c~r !#212 ln@g~r !2c~r !#. ~2.7!

There have been various attempts to improve the ab
approximations and to come up with a manageable the
that would also overcome the problem of thermodynam
inconsistency mentioned above. Among the most popular
the modified HNC~MHNC! approach of Rosenfeld and Ash
croft @9# and the theory of Rogers and Young~RY! @10#. In
the latter, one replaces the exact relation~2.4! above by the
closure

g~r !5exp$2bf~r !%F11
exp$g~r ! f ~r !%21

f ~r ! G , ~2.8!

where g(r )5g(r )2c(r )21 and f (r ) is a ‘‘mixing func-
tion’’ depending on a single parameterz and taken to have
the form
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f ~r !512exp~2zr !. ~2.9!

The parameterz is determined in such a way that thermod
namic consistency is achieved. The nomenclature ‘‘mix
function’’ comes from the fact that the RY closure provid
a means of interpolation between the PY and HNC closu

In order to obtain a comparison and test the performa
of integral equations, we have also performed stand
Monte Carlo simulations@11# in the constantNVT ensemble.
All runs were performed in a cubic box containing 500 pa
ticles and using periodic boundary conditions. We calcul
the radial distribution functiong(r ) as well as the structure
factor S(k) ‘‘on the flight.’’

For t50, where our model reduces to hard spheres,
PY solution is analytic and is known to describe the p
structure of the HS fluid quite well. As a first step, therefo
we have solved the PY closure for finite temperatures
well. In Fig. 1 we show results forg(r ) and in Fig. 2 for the
structure factorS(k) for t50.2 and packing fractionh
50.3 in comparison with simulation. In Fig. 3 we compa

FIG. 1. Comparison of the radial distribution functiong(r ) as
obtained from simulation, and the PY and HNC closures, fo
system of penetrable spheres at reduced temperaturet50.2 and
packing fractionh50.3.

FIG. 2. Comparison between the simulation result and the
closure for the structure factorS(k) at the same point as in Fig. 1
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the g(r )’s for the same temperature andh50.5. As can be
seen, for the lower density,g(r ) is reproduced quite well by
the PY closure outside the core. However, inside the core
simulation shows a tendency ofg(r ) to grow towards the
origin, which isnot reproduced by the PY result. The grow
of g(r ) towards the origin can be simply understood as f
lows: Since the interaction is such that it does not imp
any additional penalty for full sphere overlaps~in compari-
son with partial ones!, as the density grows there is an i
creasing tendency of the particles to form clusters in wh
more and more spheres ‘‘sit on top of each other.’’ In th
way, more space is left free for the remaining clusters a
the optimal configuration is achieved. The discrepancies
tween the PY and the true results are not dramatic foh
&0.3 and this limit grows with decreasing temperatu
Moreover, the discrepancies in the structure factor are m
less pronounced than those for the distribution functi
However, the differences become really spectacular as
packing fraction grows. The PY closure is inadequate to
produce the accumulation of spheres on top of each o
and brings about a radial distribution function that is qu
wrong at high densities.

The failure of the PY closure to describe the very den
liquid at finite temperatures is not a surprise; after all, it
known that PY works best for hard, short-range interactio
like hard spheres. Thus, we resorted to the HNC as a pos
solution. In Fig. 1 we show the comparison of the HNCg(r )
with simulation for the data pointt50.2, h50.3. As can be
seen, now the penetration towards the origin isoveresti-
mated. In fact, this feature becomes more and more p
nounced ash grows and, as a result, the HNC fails to co
verge any more forh*0.6 at t50.1. We can qualitatively
understand the overestimation ofg(r ) inside the core by the
HNC as follows: it is well known that the bridge function
a positive-definite quantity@9# ~although this has not bee
strictly proven, it turns out to be true in almost all cases! and
thus it plays the role of an ‘‘effective repulsive interaction
Then the HNC, by settingB(r )50 everywhere, gives rise to
a g(r ), which is too high. For the case of an unbound
interaction that diverges at the origin, inaccuracies in

FIG. 3. Comparison between the simulation result and the
closure for the functiong(r ) at h50.5 andt50.2. Note the dra-
matic increase ofg(r ) from simulation inside the core. The simu
lation value forg(r ) at r 50 is in fact equal to 18.5.
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approximation ofB(r ) especially for lowr where this func-
tion is relatively large, cause no serious problems. Inde
referring to Eq.~2.4! we see that iff(r )→` as r→0, then
the interaction dominates in the exponential and sendsg(r )
→0 for short separations. But in our case wheref(r ) re-
mains finite for allr , an accurate knowledge of the bridg
function isessentialin order to bring about a sensible theo
for this system.

The Rogers-Young closure provides a more sophistica
approximation forB(r ). We have attempted, therefore,
solve this closure but again we ran into difficulties: no se
consistent solution could be found forh*0.45 for t50.1.
Moreover, the results for the lower values ofh were very
similar to the PY ones. Further attempts to modify and i
prove the RY closure did not yield the desired agreem
with the simulations. We do not expect that any other of
standard closures will be of much use either, for the reas
described above: in the formulation of all approxima
liquid-state theories it is assumed~explicitly or implicitly!
that the strongly repulsive interaction simply forbids clo
approaches between particles, so that there exists some~gen-
erally temperature and density dependent! distancer 0, such
that for r ,r 0 the radial distribution functiong(r ) vanishes.
Here, the situation is quite the opposite: the interaction
such that itfavorsclose approaches~in fact, full overlaps! at
high density. Thus, we have decided to resort entirely
computer simulations in order to calculate the structure
thermodynamics of the fluid phase at high densities.

There are two ways or ‘‘routes’’ to evaluate the exce
free energy of a fluid from a simulation. The density route
‘‘ h route’’ consists of performing a series of simulations
fixed temperature but for increasingly high densities. On
the radial distribution functiong(r ;h) has been calculated
the form of the interaction at hand implies that the exc
pressure is related to the ‘‘jump’’ ofg(r ) by the equation:

bPex

r
54h@g~s1;h!2g~s2;h!#, ~2.10!

where g(s6;h) is the value of g(r ) immediately out-
side/inside the core. Then, the excess free energy per pa
is obtained by

bFex~h!

N
5E

0

hbPex

r

dh8

h8
. ~2.11!

Another way to calculate the excess free energy is by
so-called temperature route or ‘‘t route.’’ Here, one makes
use of the thermodynamic identity relating the excess ene
per particle,Uex/N[uex(b) and the reduced excess free e
ergy per particle,bFex/N[b f ex(b) at fixeddensity:

uex~b!5
]@b f ex~b!#

]b
, ~2.12!

to express the latter as an integral fromT5` ~where uex
vanishes! to the considered value of the temperature:

b f ex~b!5E
0

b

uex~b8!db8. ~2.13!

Y
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Thereby, a series of simulations is performed at fixedh but
at successively decreasing temperatures. For each tem
ture, the value of the internal energy is measured and at
end the integral of Eq.~2.13! is performed. Notice that for
the interaction at hand, the evaluation of the internal ene
in a simulation is particularly simple; denoting byNs the
average number of particles lying within distances from a
given particle during the simulation, one simply has

uex~b!5 1
2 «Ns~b!. ~2.14!

If one envisions a two-dimensionalh-t plane, then theh
route corresponds to a horizontal path and thet route to a
vertical path along this plane. If neither of the two pat
crosses any phase boundaries along its way from its sta
point to its end, then the values obtained for the excess
energy using either route should beidentical. If, on the other
hand, one~or more! phase boundaries are encountered alo
the way, then differences will occur. We have, therefo
performed simulations for various different temperatures
density ranges to check this agreement and to use the re
as a first diagnostic tool for possible phase transformati
on the system. Results for temperaturest50.1, 0.2, and 1.0
are shown in Figs. 4~a!, 4~b!, and 4~c!, respectively. As can
be seen, the two routes yield identical results~within ‘‘ex-
perimental’’ errors! for the highest temperature, up toh
51.8. However, for the two lowest temperatures, discrep
cies start to appear, fort50.1 at abouth50.5 and for t
50.2 at abouth50.7. As this is a clear indication of a phas
transition located in the neighborhood of theseh values, nei-
ther theh nor thet route results can be considered as relia
estimates of the free energy of the system for values oh
exceeding the above. However, they can be used in conj
tion with our theoretical results for the free energy of t
crystal phase in order to draw some general conclusions
garding thetopologyof the phase diagram, on the one han
and to trace it out in more detail on the other. These con
erations are presented in Sec. IV.

III. THE SOLID PHASES

A. General considerations

In the solid phase the one-particle densityr(r ) is position
dependent, a property that characterizes the crystal as a
homogeneous phase. In the last twenty years, a common
oretical tool that provides for a satisfactory treatment of
freezing transition has been density-functional theory~DFT!.
In DFT, the crystal is viewed as a spatially inhomogeneo
fluid and the properties of the homogeneous phase are
to evaluate the free energy of a candidate crystalline st
ture, for a review see@2,3#. Among the most popular ver
sions of DFT is the modified weighted density approxim
tion ~MWDA ! of Denton and Ashcroft@12#, which has been
proven to be quite reliable for the case of the hard-sph
freezing transition.

In common applications of the MWDA, the one-partic
density of the candidate crystal structure is modeled as a
of normalized Gaussians centered around lattice sites,
the width ~localization! of the Gaussians is used as a var
tional parameter until a minimum of the free energy is foun
Typically, one makes in the MWDA the assumption th
ra-
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there is just one particle per lattice site. This is manifested
the usual parametrization for the one-particle density m
tioned above, which reads as

r~r !5S a

p D 3/2

(
$R%

exp@2a~r2R!2#, ~3.1!

where$R% denotes the set of Bravais lattice vectors anda is

FIG. 4. Free energy densities as obtained by theh and t routes
of the simulation.~a! t50.1; ~b! t50.2; ~c! t51.0. The solid lines
in ~a! and~b! denote the results obtained by using the compress
ity route of the PY solution and demonstrate that for low densit
the PY closure gives reasonable results for this quantity.
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the localization parameter. We call the version of t
MWDA where the above assumption is made the constrai
MWDA.

In principle, one would like to have at hand the possibil
of treating the average site occupancy as anadditional pa-
rameter in the theory. Then, the restricted parametriza
~3.1! above must be replaced by the more general expres

r~r !5xS a

p D 3/2

(
$R%

exp@2a~r2R!2#, ~3.2!

wherex stands for the average site occupancy and is to
treated as a variational quantity. For a HS crystal~and in
general for all diverging potentials that do not allow multip
occupancy!, it is natural to expectx<1. For the interaction a
hand, this general parametrization is quite essential, if D
is to be used, for the following reason: As the density of
crystal is increased beyond the close-packing limit of
considered structure, it is expected that it will be favora
for the system to form fractions of pairs, triplets, etc. Inde
whereas for a crystal with single occupancy the energy c
per site above the close packing limit is equal to one-hal
the number of nearest neighbors, formation of a numbe
pairs brings about a much lower cost, simply equal to
number of paired sites. At the same time, by pairing
lattice constant ‘‘opens up’’ and overlaps between nea
neighbors are avoided. The tendency for the formation
composite particles, or ‘‘clusters’’ is also manifested alrea
in the fluid, through the dramatic increase of the liquid st
g(r ) towards the origin mentioned in the previous sectio

The difficulty we are faced with, however, is that a fr
minimization of the MWDA functional doesnot yield a
physically acceptable value forx for the case of hard sphere
Indeed, it has been found@13# that the minimum of the un-
constrained MWDA occurs for a site occupancyx51.31, an
obvious physical impossibility for hard spheres. It follow
then that the results of a free minimization of the MWD
functional cannot be trusted, at any temperature. If, one
other hand, the general parametrization given by Eq.~3.2!
above is maintained, but the domain of acceptable solu
for x is restricted by hand to 0<x<1, then the valuex51 is
obtained as the minimum. Hence, theconstrainedMWDA
gives quite reliable results for the entropic free energy o
HS crystal.

Clearly, the possibility of clustering appears as a mec
nism for the lowering of the free energy of the crystal main
for packing fractions exceeding the close packing limithCP;
at low temperatures~with which we are concerned here!, we
can still use the constrained MWDA forh,hCP and obtain
information about the structure of solids with single occ
pancy. We carried out the MWDA calculation for temper
tures 0.0<t<0.3, using the PY results as input for the flu
structure and free energy. The advantage of the MWDA
that the solid is mapped onto an effective liquid having
‘‘weighted packing fraction’’ĥ that is much lower thanh of
the solid@12#, typically ĥ'0.30. The necessary ingredien
for the MWDA are the values of the structure fact
S(uK u;ĥ) of the liquid at the nonzero reciprocal lattice ve
tors K of the crystal and the free energy per particle of t
fluid again at packing fractionĥ @12#. For such low pack-
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ings, the PY solution is reliable, as can be seen from Fig
for the structure factor and from Figs. 4~a! and 4~b!, where
we show the free energy curves obtained from the compr
ibility route of the PY solution, demonstrating that they ru
very close to the simulation results for low packings. W
found that for all temperatures, the solid free energies w
indistinguishable from the HS (t50) result, demonstrating
that the structure of the solids below close packing, even
finite temperatures, is identical to the HS solid, i.e., the p
ticles avoid any overlap. We will make use of this prelim
nary result shortly. However, for the study of crystals w
packing fraction exceedinghCP, the MWDA is unsuitable
for the reasons explained above, and we have to resort
different approach.

B. A cell model for the clustered solids

Let us consider, to begin with, a HS solid ofN particles
~HS diameters, massm! enclosed in volumeV, having
packing fractionh, and site occupancy equal to unity. Th
partition functionQN(h) is given by

QN~h!5S 4p

h3 E p2e2bp2/~2m!dpD N

3
1

N! EV
dr1dr2•••drNe2bV~r1 ,r2 , . . . ,rN!

[QNZN~h!, ~3.3!

whereh is Planck’s constant,QN is the kinetic, andZN the
configurational part of the partition function. For the eval
ation of the latter, we adopt the cell model@14–17#, which
exploits the picture of particle in a solid as being confined
cells of cages formed by the neighboring ones from which
cannot escape. We emphasize here that we employ the
model only as an intermediate step in order to establis
relation between the free energy of a clustered crystal
that of a HS crystal and not as a computational tool in or
to actually calculate these quantities. The packing fractionh
and the candidate crystal structure determine the volum
the cell, also called free volumev f(h). Then, the particles in
the solid can be treated as distinguishable. Since within
cell the Boltzmann factor is unity, the configurational par
tion function is given by

ZN~h!5S E
v f ~h!

dr D N

5v f
N~h!. ~3.4!

Strictly speaking, the expression above provides only a lo
bound to the true partition function of the crystal@18,19#.

Combining Eqs.~3.3! and~3.4! above, we obtain the free
energy per particle of a HS crystal having packing fractionh
and site occupancy one, as

bFHS~h!

N
[ f 0~h!52 lnFv f~h!

L3 G , ~3.5!

whereL[(2pmkBT/h2)1/2 is the thermal de Broglie wave
length.

Let us now proceed in an analogous way for the gene
casetÞ0. As mentioned above, we expect the formation
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doublets, triplets, etc. in the crystal. Clearly, as the densit
increased, more and more complicated composites will
pear ~quadruplets, quintuplets, etc.! To keep the discussion
simple ~and the theory computationally manageable! we re-
strict ourselves here to clusters up to triplets only.

Let us then considerN particles in a crystal withNs sites.
Of theseNs sites,N1 are occupied by a single particle,N2 by
pairs, andN3 by triplets. We set

N1

Ns
[s,

N2

Ns
[z, and

N3

Ns
[w. ~3.6!

Clearly, s1z1w51 andN5(11z12w)Ns . The result of
the formation of composites is that the ‘‘clustered solid’’ h
a lattice constant that corresponds not toh but to a new,
effectivepacking fractiong, which is lower and related toh
by

g5
h

11z12w
. ~3.7!

The idea is that the system will find it favorable to crea
as many clusters as possible so as to bring about an effe
packing g that is belowhCP. This way, the energy cos
comes entirely from the sphere overlaps in the clusters th
selves; otherwise, the lattice cell is now large enough, so
the expensive, multiple overlaps with the neighbors
avoided. This assumption is corroborated by the MWDA
sults for the single-occupied solids belowhCP. Indeed, it
was found that, for low temperatures andh,hCP, the sys-
tem behaves essentially a HS crystal. Hence, our mode
the clustered solid is the following: enough clusters
formed so that the effective packing fractiong is always
below hCP and, once this has been achieved, each ob
occupying a lattice site~being a single particle or a compo
ite! acts as a hard sphere with respect to any other ob
occupying a neighboring site.

With these assumptions in mind, we now proceed wit
cell model for the clustered solid. The free volumev f is now
dictated by the packing fractiong. Each site occupied by a
pair brings about an energy cost« and each site occupied b
a triplet a cost 3«. Taking into account the indistinguishabi
ity of the particles in the clustered sites, we can now wr
down an expression the partition function of our cluste
crystal, which, at this stage, doesnot include the entropy of
mixing:

QN~h,t !5QNF E
v f ~g!

dr GN1

3Fe2b«

2! E
v f ~g!

drE
v f ~g!

dsGN2

3Fe23b«

3! E
v f ~g!

drE
v f ~g!

dsE
v f ~g!

dtGN3

.

~3.8!

Using the relationN5N112N213N3 , performing the vol-
ume integrals above, and taking the logarithm, we obtain
is
p-

ive

-
at
e
-

or
e

ct

ct

a

e
d

2
lnQN~h,t !

N
52 lnFv f~g!

L3 G1S N213N3

N D t211
N2

N
ln2

1
N3

N
ln6. ~3.9!

The first term is, according to Eq.~3.5!, nothing butf 0(g),
the free energy of a HS crystal having packing fractiong.
The above expression is not yet the free energy of the c
tered crystal, as it does not include the ‘‘mixing-entropy
contributions arising from all the possible ways of choosi
the N2 andN3 sites that are occupied by clusters. This m
ing entropy is simply:

Smix5kBlnW, ~3.10!

whereW is precisely the number of ways of choosingN2 and
N3 sites out ofNs for the multiple occupancies. It is straigh
forward to show that

W5
Ns!

N2!N3! ~Ns2N22N3!!
. ~3.11!

Finally, thez- andw-dependentvariational expression for
the free energy per particle of a solid with clusters is giv
by

bF̃~h,t;z,w!

N
[ f̃ ~h,t;z,w!52

lnQN~h,t !

N
2

Smix

kBN
.

~3.12!

Collecting the results from Eqs.~3.6!–~3.9! and ~3.11!
above, we finally obtain

f̃ ~h,t;z,w!5 f 0S h

11z12wD1S z13w

11z12wD t21

1S zln21wln6

11z12w D1
1

11z12w

3@zlnz1wlnw1~12z2w!ln~12z2w!#.

~3.13!

The quantitiesz and w are variational parameters, as the
are no chemical potentials controlling the site occupan
hence the free energy per particle of the solid is given b

f ~h,t !5 min
$z,w%

f̃ ~h,t;z,w!. ~3.14!

In our considerations we have examined both the fcc
bcc solids, finding that the fcc is favorable always. So
restrict the discussion to this structure only. For the f
hCP50.74. For the free energy per particle of the HS sol
f 0 , at packing fractiong5h/(11z12w),hCP we use the
results from the constrained MWDA. An important resu
from the MWDA is that the fcc HS solid ismechanically
unstablebelowh50.46, i.e., the MWDA free energy canno
be minimized by a nonzero value ofa if the packing fraction
is below the value mentioned above. We have, thus, impo
an artificially high~practically infinite! value for the function
f 0(h) for h,0.46 and proceeded with the numerical min
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mization. The latter must be performed in the triangular d
main which is enclosed in thez-w plane by the boundaries
0<z<1; 0<w<1; andz1w<1.

C. Comparison with simulations

In order to check the reliability of the fraction of doub
occupied lattice sitesz as obtained from the above describ
theoretical model, we performed a numerical calculation
the free energyF̃ of the fcc solid at fixed temperaturet
50.1 and fixed particle volume fractionh50.8, where the
theory predictsw50, i.e., there are only singlets and do
blets in the crystal. For that purpose, we took advantage
thermodynamic integration method initially introduced
Frenkel and Ladd@20,21#. In this Monte Carlo method, the
free energyF̃ of the investigated system is calculated
transforming the system reversibly into a harmonic Einst
crystal of the same crystal symmetry, whose free energyFEin

is known analytically. The crystal symmetry of the referen
crystal is simply characterized by the zero temperature lat
sites of theN simulated particles$R%0

N5(R0,1, . . . ,R0,N). A
throughout extensive description of the method can be fo
in Ref. @22#.

In our specific use of this method, we choose the latt
sites R0

N of the reference harmonic crystal to be partia
doubly occupied, i.e., we setR0,i5R0,j for some randomly
chosen particle numbersi and j. We do not allow three par
ticles to have the same reference crystal position. So,
reference crystal structure is characterized by its crystal s
metry ~chosen to be fcc in our case!, its particle volume
fractionh, and its fraction of doubly occupied lattice sitesz.
For fixedh andz, the free energyF̃ could then be calculated
as described in detail in Refs.@21,22#. We performed calcu-
lations for various pairing fractionsz, ranging from 0.35 to
0.80, fixing the temperature att50.1 and the density ath
50.8. In all simulations, the number of particles was b
tween 500 and 700, therefore finite size effects could
neglected.

Since our Monte Carlo simulations were always p
formed for one specific realization of the singlet-and-doub
fcc solid, we had to add the mixing entropySmix @as given by
Eqs. ~3.10! and ~3.11!# to our Monte Carlo free energy re
sults. In principle, in the Monte Carlo simulations, the sy
tem was free to explore the configuration space associ
with the various possible realizations of the fcc solid, sin
we did not restrict the particle coordinates to distinct regio
in the simulation box. However, this would have requir
very long simulation runs since very large mean-square
placements of the particles would have been needed. Sin
our simulations the mean-square displacements of the
ticles were in the order of the lattice spacings, we had to t
into account the mixing entropySmix .

In Fig. 5 we show our Monte Carlo results for the fre
energy of the fcc solid with singly and doubly occupied si
including the mixing entropySmix , as a function ofz for
fixed t andh. Also shown is the corresponding results of o
above described theoretical model@i.e., from Eq.~3.13! with
w50#. Obviously, the agreement of the pairing fractio
zmin , where the free energy of the fcc solid achieves a m
mum is very good. We have also done the same chec
different h values, obtaining similar agreement; thus, t
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theory described above provides a reliable method for
calculation of the free energy of the crystals.

D. Results of the variational calculation

We now present in detail the results obtained from
theory in the range of thermodynamic parameters 0<t
<0.3 andh<2.2. First, we introduce a terminology to cha
acterize the various types of fcc solids with respect to
fractions of sites occupied by clusters, as follows:~i! S solid
if s51, z5w50; ~ii ! SP solid if 0,s,1, 0,z,1, andw
50; ~iii ! P solid if s50, z51, andw50; ~iv! PT solid if
s50, 0,z,1, and 0,w,1; ~v! SPT solid if 0,s,1, 0
,z,1, and 0,w,1; and~vi! T solid if s5z50, w51.

These are the six types of solids that come out of
minimization. In Fig. 6 we show the dependence ofs, z, and
w on the fcc packing fractionh for t50.05. The typical
scenario that materializes, at least for temperaturest&0.1 is
the following: for packing fractionsh&hCP, we have the
usual S solid, as there is no particular gain for clusters to
formed. At higher densities, pairs start to appear and an

FIG. 5. The variational free energy of an fcc solid having pac
ing fractionh50.8 at temperaturet50.1 as a function of the frac-
tion of sites occupied by pairs.

FIG. 6. The fraction of sites with single, double and triple o
cupancy as a function ofh for fcc solids at temperaturet50.05.
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solid is formed. The pair fraction grows with density at t
expense of the singly occupied sites. Depending on the t
perature, the fraction of pairs may reach the value unity
abouth'2hCP before any triplets appear, thus forming a
crystal; this happens fort&0.05. For higher temperature
triplets appear while boths and z are nonzero, thus giving
rise to a SPT solid. By further increase of the density,
single-occupancy sites disappear altogether and a PT
emerges. Then, the pairs start being replaced by triplets c
pletely and a T solid takes the place of the PT solid.

As shown in Fig. 6, the fractions of multiply occupie
sites approach zero in a continuous way. Thus, we are ha
a sequence ofsecond-order clustering transitionsin the
solid, which gets more and more complicated as the pack
fraction grows. Whether all this sequence of transitions w
actually appear in the phase diagram depends also on
competition with the liquid free energy. The full phase d
gram, including the freezing transition, is discussed in
following section.

IV. THE PHASE DIAGRAM

In this section we determine the low-temperature ph
diagram of the system, putting together the results obtai
for the free energy of the solid, obtained by the proced
described previously, and those for the fluid free ene
coming from the simulations. A representative case fot
50.1 is shown in Fig. 7. The first question to be addresse
the topology of the phase diagram, in particular the possi
ity of the existence ofreentrant melting, i.e., a remelting of
the solid at higher densities. This is a realistic possibility t
in fact materializes for the bounded Gaussian potentia
Stillinger @4–6#.

Referring to Fig. 7, we see that if theh-route result for
the is taken as the ‘‘true’’ liquid free energy, then we wou
have indeed reentrant melting; in fact, for this temperat
the solid would be marginally stable ath'1.0, i.e.,t50.1
would be very close to a ‘‘maximum freezing temperatur
above which no thermodynamically stable solids would
ist. However, were this to be the case, then thet route to the
fluid free energy would have crossed no phase bounda
along its way. Thus, thet route would have given the tru

FIG. 7. Free energy densities for the fluid, as obtained by us
the h and t routes in the simulation and for the solid as a result
the theory. The reduced temperature ist50.1.
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fluid free energy at high packings and this, in turn, ought
lie below the solid free energy, consistently with th
reentrant-melting scenario. Obviously, this is not the ca
This leads us to the conclusion that there is no reent
melting, at least not in the range of densities considered h
Instead, there is freezing into a fcc solid, followed by a c
cade of clustering transitions as described in the previ
section.

The coexistence densities for the freezing transition
determined by performing a common-tangent construct
on the fluid- and solid-free energy curves. As mentioned p
viously, none of theh- or t-route curves can be considered
the ‘‘true’’ free energy of the fluid beyond the point whe
they start to diverge from each other. However, theh-route
curve is in a way ‘‘more wrong’’ than thet-route curve in the
sense that it yields, at high densities, fluid free energies
are lower than their solid counterparts and this leads to
contradiction explained above. Thus, the correct free ene
of the fluid must follow a curve that is identical to the sim
lation results up to the point where the two routes agree~and
where the liquid is stable! and then it must cross the soli
free energy and run above it~and thus the liquid is meta
stable there!. In this sense, the fluid free energy is ‘‘closer
to that obtained by thet route than the one obtained from th
h route. Therefore, we have performed the common-tang
construction using thet route result for the fluid. As the
lower end of the common tangent ends up lying in the reg
where the t-route results are indeed reliable, the prec
shape of the liquid free energy curve for densitiesbeyond
freezing is immaterial.

From the more quantitative point of view, the fact that t
coexistence region liespreciselyin the domain where theh
andt routes yield results that begin to diverge is an indep
dent confirmation for the theoretical approach we employ
for the solid. Indeed, this discrepancy is the signature o
phase transition that now comes about to be located in
right place by means of a completely independent theoret
approach for the crystal. The same agreement was foun
all temperatures we considered.

Putting everything together now, we trace out the liqu
solid coexistence curves as well as the boundaries of
second-order transitions between the crystals with the dif
ent types of clustering. The phase diagram obtained in
way is shown in Fig. 8. The region of stability of the T pha
is artificially enlarged. The reason is that, in order to det
mine with accuracy the stability for a given type of cluste
at least the next type of cluster must be put into the theo
i.e., quadruplets for the T solid, etc. As this is an increasin
complicated procedure, we have not done this here. H
ever, in view of the results already obtained, we expect t
the solid will proceed with more and more clustering at
creasing density, thus giving rise to a quite interesting ph
diagram.

V. DISCUSSION AND CONCLUSIONS

We have considered a toy model of penetrable sphe
characterized by an interaction that imposes a constant
ergy cost if there is any overlap between the spheres~no
matter how strong! and zero otherwise. Although the mod
is quite simple, the form of the interaction, which favors fu

g
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overlaps between the particles, brings about quite a few
teresting features. As a first remark, we have found an in
equacy of the traditional liquid-state integral equation th
ries to describe in a satisfactory way the high-density fl
phase of the system. We believe that this shortcoming ca
traced back to the inaccuracies in the estimation of the bri
function, inherent in all approximate closures. Such inac
racies are not dramatic if we are dealing with a unboun
interaction. In those cases, the different closures give res
that differ on the amount of structure of, say, the radial d
tribution function g(r ) outside some effective core whe
g(r ) vanishes. However, since the bridge functionB(r ) at-
tains its highest valuespreciselyfor r→0, if the bare inter-
action is not strong enough to dominate over the bridge fu
tion, then inaccuracies in the determination of the lat
become really crucial. Thus, it is not surprising that in o
case the problem becomes more severe as the density g

FIG. 8. The phase diagram of the penetrable sphere model.
thick lines denote the first-order freezing transition and the sha
region is the liquid-solid coexistence region. The dashed lines
note second-order clustering transitions in the solid. As explaine
the text, the region of stability of the T solid is artificially enlarge
due to the lack of the possibility of formation of four-particle clu
ters in our theory.
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@because thenB(r ) grows as well# and/or as the temperatur
is raised@because then the bare interactionbf(r ) dimin-
ishes#.

To the best of our knowledge, the only other bound
interaction for which an attempt has been made to trace
the phase diagram is the Gaussian model of Stillinger@4–6#.
In that case, it was found that the model displayed reent
melting. In Ref.@4#, some general criteria for the mathema
cal form of the interaction were laid down and it was stat
that for any pair potential meeting those criteria, reentr
melting behavior had to be expected. These conditions ar
follows: ~i! the interaction must be bounded at the origin,~ii !
it must vanish strongly enough at infinity to be integrab
and ~iii ! it must be differentiable at least four times. O
interaction satisfies these requirements, with the exceptio
~iii ! since it has a singularity atr 5s and it is not differen-
tiable there. However, this does not constitute a serious
lation as one could easily imagine an analytic potential t
would run arbitrarily close to our ‘‘step function’’ and fo
that potential the results would be practically identical to t
ones found here. However, another important ingredient
goes into reaching these general conclusions is the assu
tion that the solid~or solids of different crystal symmetry!
that is ‘‘nested’’ between the fluid at low and high densiti
have single site occupancy. We have not found reent
melting in our case, at least for the range of densities
temperatures we considered. Although we cannot excl
this possibility at some other region of the phase diagram,
believe that the arguments of Ref.@4# do not apply to our
case, precisely due to the clustering in the solid, which ta
place in our model. For the same reasons, our results a
odds with those of Marquest and Witten@7# who found re-
gions of stability of the bcc and simple-cubic structures
growing density, based on calculations of the ground-s
energy, making the assumption of single occupancy in
crystal. We find instead that a cascade of second-order t
sitions takes place in the crystal.
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