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‡ Institut für Theoretische Physik II, Universität Düsseldorf, D-40225 D̈usseldorf, Germany

Received 13 June 1997

Abstract. The phase behaviour of simple systems interacting via model pair potentials that
include both a hard core and additional short-range interactions is predicted using a classical
density-functional-perturbation theory. The combination of a narrow attractive square well and
a repulsive square barrier, approximating interactions in charge-stabilized colloidal suspensions,
gives rise to isostructural solid–solid transitions whose stability isenhancedrelative to that of
the square-well potential alone. The temperature dependence of rms particle displacements for
these idealized systems is shown, from both theory and Monte Carlo simulation, to behave
anomalously at densities for which neighbouring barriers overlap.

1. Introduction

The stable state of the hard-sphere solid, at all densities beyond freezing, is known from
computer simulations [1] and experiments [2] to be a single close-packed (fcc or hcp)
crystal. The addition of short-range interactions beyond the hard core, however, can
profoundly influence the high-density phase behaviour. As clearly demonstrated by a variety
of simulation and theoretical studies [3–13], either attractiveor repulsive interactions, if of
sufficiently short range, may induce a first-order phase transition between two crystals of
the same structure below a critical temperature [14]. Although analogous to the more
familiar vapour–liquid transition in systems with long-range attraction, this isostructural
transition occurs entirely within the solid and is stable (relative to the fluid–solid transition)
for attractions or repulsions only of very short range compared with the hard-core diameter.

This remarkable behaviour has been predicted, in particular, for systems interacting via
model pair potentials consisting of a hard core plus a narrow attractive square well [3, 4]
or repulsive square shoulder [5–9]. Similar behaviour has been predicted for the hard-
sphere/attractive-Yukawa system [10, 11] and a class of continuous attractive-well pair
potentials [12]. Aside from their fundamental utility in helping to illuminate links between
microscopic interactions and macroscopic properties, such extreme pair potentials are also of
practical interest as approximate models of the interactions in certain colloidal systems. For
example, mixtures of uncharged hard-sphere colloids and non-adsorbing polymers exhibit
effective attraction, due to polymer depletion, that is reasonably modelled by a simple
square-well potential of width related to the polymer radius of gyration. Suspensions of
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uncharged hard-sphere colloids with adsorbed polymers can be similarly approximated by
a shouldered potential, although here a simple square shoulder is certainly an extreme
idealization.

Despite intriguing predictions, isostructural solid–solid transitions in colloidal
suspensions have thus far defied experimental observation. Possible explanations are
destabilization by polydispersity [15, 16] and pre-emption by gelation in concentrated
suspensions whose van der Waals attraction diverges near hard-core contact [17]. This
motivates the present work, the primary purpose of which is to investigate the phase
behaviour of a simple system whose interactions includeboth short-range attractionand
repulsion. Specifically, we focus on a model pair potential combining a hard core, an
attractive square well, and a repulsive square barrier. Despite its idealized form, this
pair potential does include the major short-range features of the effective pair interactions
between sterically and charge-stabilized colloidal suspensions [2, 18, 19], namely a steeply
repulsive core, an attractive well, and a repulsive barrier. Applying a practical perturbation
theory scheme, previously proven for the square-well [4] and square-shoulder [8] systems,
we compute the free energy as a function of density and temperature and thereby predict
phase behaviour. The essential qualitative prediction to emerge is that adding a square-
barrier interaction to the square-well potential significantlyenhancesthe stability of
isostructural solid–solid transitions. In addition, we compute, by means of both theory and
Monte Carlo simulation, root mean square (rms) displacements of particles from their lattice
sites in the solid and examine the variation with temperature and density. For densities such
that nearest-neighbour barriers overlap, rms displacements are shown to exhibit anomalous
dependence on temperature,decreasingwith increasing temperature.

We proceed in section 2 by describing our theoretical and simulation approaches, based
on classical density-functional theory and the standard Metropolis Monte Carlo algorithm.
Section 3 presents our results, in the form of phase diagrams and rms displacements, for
the square-well and square-barrier systems alone, as well as for the combined square-well–
barrier interaction. Possible relevance to colloidal suspensions is discussed in parallel.
Finally, in section 4 we summarize and conclude.

Figure 1. The model pair potential, consisting of a hard core of rangeσ , a square well, and a
square barrier of equal widthδ and depth/heightε. The arrows on the horizontal axis indicate
nearest-neighbour distances for densities corresponding to figures 2–4(b).
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2. Theory and simulation

2.1. Density-functional-perturbation theory

We consider a simple classical system interacting via the model pair potentialφ(r) shown
in figure 1, which comprises a hard core of diameterσ , an attractive square well of width
δ and depthε, and a repulsive square barrier of widthδ and heightε:

φ(r) =


∞ r < σ

−ε σ < r < σ + δ
ε σ + δ < r < σ + 2δ

0 r > σ + 2δ.

(1)

With temperature and number density measured in units ofε/kB andσ−3, respectively, the
system is completely specified by the single dimensionless parameterδ/σ . (For simplicity,
we consider here only the special case in which the well and barrier have equal widths and
equal amplitudes.)

For the purpose of calculating equilibrium phase coexistence at a given temperature
in the canonical ensemble, the relevant theoretical quantity is the Helmholtz free energy
F . The free energy of the highly non-uniform solid phase is determined here within the
framework of classical density-functional (DF) theory [20]. The DF approach is based on
the existence of a functionalF [ρ] of the spatially varying one-particle densityρ(r) that is a
minimum [21, 22], under the constraint of fixed average density, at the equilibrium density
ρeq(r), where it is equal to the Helmholtz free energy:F [ρeq ] = F .

The free-energy functionalF [ρ] separates naturally into an ideal-gas termFid [ρ],
corresponding to the non-uniform system in the absence of interactions, and an excess
termFex [ρ], depending entirely upon internal interactions:

F [ρ] = Fid [ρ] + Fex [ρ]. (2)

The ideal-gas free-energy functional is given exactly by

Fid [ρ] = kBT
∫

dr ρ(r)[ln(ρ(r)33)− 1] (3)

whereβ ≡ 1/kBT and3 is the thermal de Broglie wavelength. In contrast, the excess
free-energy functional is in general not known exactly. The theoretical challenge is thus to
sensibly approximateFex [ρ], and the numerical task then to minimizeF [ρ] with respect to
ρ(r).

For systems characterized by steeply repulsive short-range interactions and relatively
weak longer-range interactions, approximations are greatly facilitated by appeal to
thermodynamic perturbation theory [23, 24]. In the case of a pair potential that includes
a hard core, such as that of equation (1), perturbation theory is especially appropriate, for
thenφ(r) decomposes naturally into a hard-sphere (HS) reference potentialφHS(r) and a
residual perturbation potentialφp(r). The free-energy functional is then formally expressed
in the form [23]

βF [ρ] = βFHS [ρ] + β
∫ 1

0
dλ 〈8p〉λ (4)

where

8p ≡
∑
i<j

φp(|ri − rj |) (5)
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is the total perturbation energy and〈· · ·〉λ denotes an average with respect to the probability
distribution of a system whose pair potential isφλ(r) = φHS(r) + λφp(r). Expansion of
〈8p〉λ about the HS reference system (λ = 0) generates an exact perturbation series. To
first order in the perturbation potential,

βF [ρ] ' βFHS [ρ] + 1

2

∫
dr
∫

dr′ ρ(r)ρ(r′)gHS(r, r′; [ρ])βφp(|r − r′|) (6)

whereFHS [ρ] and gHS(r, r′; [ρ]) denote the free-energy and pair distribution functionals,
respectively, of the HS solid. With a HS reference system, the exact perturbation expansion
amounts to a Taylor series in the inverse temperature with coefficients depending only
on density. Evidently the purely entropic zeroth-order term is independent ofT and
the first-order perturbation term proportional to 1/T . The neglected higher-order terms
are proportional to successively higher powers of 1/T with coefficients related to mean
fluctuations of the total perturbation energy. Convergence of the expansion is governed by
the amplitude of these fluctuations relative to the thermal energykBT [23, 25].

Clearly the accuracy of the simple first-order perturbation approximation (equation (6))
must suffer with decreasing temperature. In general though, we can expect considerably
higher accuracy for the dense solid than for the fluid. The essential reason for this is the
relatively weak variation of the solid two-particle densityρ(r)ρ(r′)gHS(r, r′; [ρ]) near the
sharp step inφp(r) compared with that of its fluid counterpartρ2gHS(r), giving rise to
generally smaller fluctuations of8p in the solid than in the fluid. (An exception occurs,
however, at an average solid density for which the nearest-neighbour distance is near the
step inφp(r).)

A quantitative measure of the accuracy of equation (6) can be drawn from the molecular
dynamics simulations of Young and Alder [6], who explicitly computed the first three terms
in the perturbation expansion for the related square-shoulder (inverted square-well) system.
Over a range of shoulder widths, Young and Alder found the second-order term to be
negligible in the dense solid but increasingly significant with decreasing density, the second-
order coefficient approaching∼10% of the first-order coefficient near melting. Also worth
noting are the Monte Carlo simulations of Weis [27], showing the first-order approximation
to be accurate to better than 1% for the Lennard-Jones solid near the triple point. As a rule,
we anticipate equation (6) to be valid for the pair potential of equation (1) forkBT > ε.

Turning now to the excess free-energy functional of the HS reference solid in equation
(6), we use the modified weighted-density approximation (MWDA) [26], which provides a
reasonably accurate description of the excess entropy of hard-particle solids with minimal
computational effort. This maps the excess free energy of the HS solid onto that of the
corresponding uniform fluid, according to

FMWDAex [ρ] = NfHS(ρ̂) (7)

whereN = ∫ dr ρ(r) is the number of particles andfHS(ρ̂) is the excess free energy per
particle of the uniform HS fluid evaluated at an effective or weighted density

ρ̂ ≡ 1

N

∫
dr
∫

dr′ ρ(r)ρ(r′)w(|r − r′|; ρ̂) (8)

defined as a weighted average of the physical density with respect to a weight function
w(r). The weight function is in turn specified by the requirement(

δ2FMWDAex [ρ]

δρ(r) δρ(r′)

)
ρ(r)→ρ

= −kBT c(2)HS(|r − r′|; ρ) (9)
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ensuring that the approximate functional possesses the correct range of non-locality and
generates the exact two-particle Ornstein–Zernike direct correlation functionc

(2)
HS(|r−r′|; ρ)

of the HS fluid (see [26] for details). The fluid-state input functionsfHS andc(2)HS are taken
here from the analytic solution of the Percus–Yevick equation for hard spheres [23].

The perturbation term in equation (6) involves the HS pair distribution functional
gHS(r, r

′; [ρ]). Aside from parametrizations of its spherical average [27–29], little is
known about the detailed form of this functional. On general physical grounds, however, it
is expected to be considerably less structured than the fluid functiongHS(|r − r′|; ρ). The
reason for this is that particles in the dense solid, localized as they are about lattice sites,
are much more weakly correlated with their neighbours than in the disordered fluid. This is
borne out by the MWDA and related approximations [30–33], all of which map the solid
onto an effective fluid whose densitŷρ is found to be much lower than the average solid
density. Therefore, as in our earlier study of the square-shoulder system [8], we approximate
gHS(r, r

′) by the unit step function of rangeσ :

u(|r − r′|) =
{

0 |r − r′| < σ

1 |r − r′| > σ .
(10)

This mean-field approximation, although appropriately excluding correlation of a particle
with itself, neglects most of the pair correlations. It should become increasingly realistic,
however, upon approach to close packing, asρ(r) tends to aδ-function and the uncorrelated
cell (or free-volume) model becomes exact [34]. Recently an alternative perturbation theory
based on the spherical average ofgHS(r, r

′; [ρ]) has been proposed and applied to Lennard-
Jones and square-well systems with promising results [35].

For the close-packed solids of interest here, the density distribution is quite reasonably
parametrized by the isotropic Gaussianansatz

ρ(r) =
(
α

π

)3/2∑
R

e−α|r−R|
2

(11)

which places a normalized Gaussian at each lattice siteR of the close-packed fcc crystal. For
ασ 2 > 50, the ideal-gas free-energy functional per particle (equation (3)) is very accurately
approximated by

βFid/N = 3

2
ln(α/π)− 5

2
. (12)

Combining equations (6), (7), (10), and (12), our approximate total free-energy functional
per particle is given by

βF [ρ]/N = 3

2
ln(α/π)− 5

2
+ βfHS(ρ̂)

+ 1

2N

∫
dr
∫

dr′ ρ(r)ρ(r′)u(|r − r′|)βφp(|r − r′|). (13)

Minimization of F [ρ] with respect to the single variational width parameterα at fixed
averageρ determines the free energy of the solid.

For the fluid phase we take the uniform (constant-ρ) limit of equation (6):

βF(ρ)/N ' ln(ρ)− 1+ βfHS(ρ)+ 2βπρ
∫ ∞

0
dr r2gHS(r; ρ)φp(r) (14)

together with the essentially exact Carnahan–Starling and Verlet–Weis expressions [23] for
the fluid functionsfHS(ρ) and gHS(r; ρ), respectively. This ensures that the fluid and
solid phases are treated within the same perturbation approximation, which is essential for
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a consistent description of the fluid–solid transition. We stress, however, that the first-order
perturbation approximation is expected to be of more limited validity for the fluid than for
the solid.

In practice, the fluid and solid free energies per volumeF/V are computed as a function
of reduced average densityρσ 3 at a given reduced temperaturekBT /ε. For hard spheres
alone,F/V is simply a monotonically increasing function ofρ. The addition of a square
well or barrier of widthδ induces inflection in the curve ofF/V versusρ, which, for
sufficiently narrow width (δ � σ ) and lowT , may lead to coexistence between an expanded
(lower-density) solid and a condensed (higher-density) solid. The densities of coexisting
fluid and solid phases are established by means of a Maxwell common-tangent construction
on the fluid and solidF/V , or equivalently an equal-area construction on the chemical
potentialµ = ∂(F/V )/∂ρ, ensuring equality of the chemical potentials and pressures in the
two phases. Repetition of the procedure for a range of temperatures systematically maps
out the fluid–solid–solid coexistence region in theT –ρ plane.

In addition to the free energy, density-functional theory also predicts the form of the
density distribution. Within the Gaussian approximation (equation (11)), this amounts to
a prediction of the width parameterα, which gauges the degree of particle localization.
A more convenient measure of localization is the Lindemann ratioL, defined as the ratio
of the rms particle displacement to the equilibrium nearest-neighbour distance in the solid.
For an fcc crystal of average densityρ, L = √(3/α)/a, wherea = (4/ρ)1/3 is the lattice
constant. Although the Lindemann ratio is often considered only along the melting curve,
in this paper we examineL in the solid at fixed density away from melting.

2.2. Monte Carlo simulation

To test our theoretical predictions for the Lindemann ratio, we have independently performed
a series of Monte Carlo (MC) simulations, implementing the standard Metropolis algorithm
for a perfect fcc crystal at fixed temperature and density in a cubic simulation cell with
periodic boundary conditions. A collection ofN particles, interacting via the pair potential
φ(r), and initially positioned at fcc lattice sites, are subjected sequentially to a series of
trial moves of randomly chosen direction and amplitude. The maximum amplitude of trial
moves is chosen to permit an acceptance ratio of∼0.4. A move that changes the internal
energy by an amount1U is automatically accepted if1U < 0. If 1U > 0, the move
is accepted only with probability exp(−1U/kBT ). Following each accepted move, the
positions of all particles are adjusted to maintain a fixed centre of mass. This adjustment
is essential to avoid gradual drifting of the lattice sites. After an equilibration stage of 104

trial moves per particle, statistics on rms displacements of the particles from their lattice
sites are accumulated over a further 5×104 trial moves. Finite-size effects are monitored by
simulating systems of various sizes. All results reported here are for systems ofN = 16 384
particles, for which finite-size effects are negligible.

3. Results and discussion

We have applied the approach described in section 2 to a hard-core system interacting via
the square-well–barrier model pair potential of equation (1). To assess the influence of
individual features of the pair potential on phase behaviour, we have also examined hard-
core systems interacting via square-well and square-barrier potentials alone (lines 2 and 3,
respectively, of equation (1)). As noted in section 1, the square-well and square-well–barrier
potentials may roughly model interactions in colloidal systems. Furthermore, the square-
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Table 1. Monte Carlo simulation data of figures 2–4(b) for square-well (SW), square-barrier
(SB), and square-well–barrier (SWB) solids withδ/σ = 0.06: the Lindemann ratioL as a
function of reduced temperaturet = kBT /ε at reduced solid densitiesρσ 3 = 1.092 and 1.294,
corresponding to nearest-neighbour distancesrnn/σ = 1.09 and 1.03, respectively.

L

t ρσ 3 = 1.092 ρσ 3 = 1.294

SW
1.9 0.1196± 0.0006 0.029 16± 0.000 09
2.0 0.1184± 0.0009 0.029 33± 0.000 07
2.1 0.1172± 0.0004 0.029 45± 0.000 05
2.2 0.1169± 0.0005 0.029 65± 0.000 06
2.3 0.1163± 0.0004 0.029 77± 0.000 09
2.4 0.1155± 0.0005 0.029 86± 0.000 10

SB
2.0 0.1181± 0.0005 0.029 32± 0.000 08
2.2 0.1162± 0.0006 0.029 65± 0.000 09
2.4 0.1156± 0.0005 0.029 85± 0.000 07
2.6 0.1146± 0.0006 0.030 13± 0.000 08
2.8 0.1137± 0.0007 0.030 31± 0.000 10
3.0 0.1130± 0.0007 0.030 43± 0.000 08
3.2 0.1125± 0.0005 0.030 57± 0.000 11
3.4 0.1118± 0.0004 0.030 67± 0.000 07
3.6 0.1112± 0.0003 0.030 75± 0.000 09
3.8 0.1107± 0.0004 0.030 89± 0.000 07

SWB
3.0 0.1229± 0.0008 0.028 39± 0.000 08
3.5 0.1199± 0.0006 0.028 95± 0.000 05
4.0 0.1176± 0.0006 0.029 37± 0.000 07
4.5 0.1164± 0.0007 0.029 67± 0.000 08
5.0 0.1149± 0.0006 0.029 98± 0.000 10
5.5 0.1142± 0.0006 0.030 19± 0.000 08
6.0 0.1128± 0.0003 0.030 40± 0.000 05

barrier potential may be of relevance to certain simple metals (e.g. Al) whose effective pair
potentials exhibit a barrier.

Detailed predictions of the theory are presented in figures 2–4. Part (a) of each figure
displays the predictedT –ρ phase diagram for the case whereδ/σ = 0.06. This case is
of particular relevance as it defines the predicted threshold for stability of the coexistence
between isostructural solids in the square-well system [36]. Whereas forδ/σ < 0.06 the
fluid–solid–solid triple point lies below the critical temperature, permitting a stable solid–
solid transition over a finite temperature range, forδ/σ > 0.06 the transition is pre-empted
at all T by the fluid–solid transition. Note that such a narrow well is insufficient to induce
a vapour–liquid transition, resulting in the appearance of only a single fluid phase. Part (b)
of each figure shows the predicted Lindemann ratio as a function of temperature, up to the
critical temperature, at fixed average densitiesρσ 3 = 1.092 and 1.294. These densities
are of special interest as they correspond to the fcc equilibrium nearest-neighbour distances
rnn/σ = 1.09 (barrier centre) and 1.03 (well centre), respectively. Corresponding MC
simulation results are plotted for comparison and tabulated in table 1. For reference, the MC
results for the HS solid (T →∞) areL = 0.1024± 0.0003 andL = 0.032 67± 0.000 09
at the lower and higher densities, respectively. Below, we discuss first the phase diagrams
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Figure 2. The square-well system with well widthδ/σ = 0.06. (a) The predicted phase
diagram of temperature versus density (reduced units). The full curves represent fluid–solid
coexistence, and the dashed curves metastable isostructural (fcc) solid–solid coexistence, which
for this value ofδ/σ is pre-empted by fluid–solid coexistence (see the text). The regions of fluid
(F) and solid (S) stability are labelled. (b) The Lindemann ratio versus reduced temperature at
fixed average densityρσ 3 = 1.092, or nearest-neighbour distancernn/σ = 1.09 (upper panel),
andρσ 3 = 1.294, orrnn/σ = 1.03 (lower panel). The curves represent theoretical predictions,
the symbols the corresponding Monte Carlo simulation results. Note the change of scale between
the upper and lower panels.
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Figure 3. The square-barrier system with barrier width and separationδ/σ = 0.06, with the
same format as figure 2. (a) The predicted phase diagram, exhibiting now stable isostructural
(fcc) solid–solid coexistence. Regions of fluid (F), expanded solid (S1), and condensed solid
(S2) stability are labelled. (b) The Lindemann ratio, exhibiting anomalous increase of particle
localization with increasing temperature at densityρσ 3 = 1.092 (upper panel).

and then the Lindemann ratios.
In the high-temperature limit (T � ε/kB) all three systems are dominated by the

hard-core interaction. The fluid–solid coexistence curves therefore tend to the vertical at
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Figure 4. The square-well–barrier system with well and barrier widthδ/σ = 0.06, with the
same format as figure 2. (a) The predicted phase diagram, exhibiting stable isostructural (fcc)
solid–solid coexistence. (b) The Lindemann ratio, exhibiting anomalousT -dependence at density
ρσ 3 = 1.092 (upper panel).

the predicted HS fluid and solid freezing densitiesρf σ 3 = 0.912 andρsσ 3 = 1.044 (for
comparison, the simulation values [1] are 0.94 and 1.04). In the opposite low-temperature
limit (T � ε/kB), perturbation theory inevitably breaks down, as discussed in section 2. For
this reason, we have conservatively restricted our calculations tokBT /ε > 1.5. Nevertheless,
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theT = 0 limit in each case is intuitively clear. In the square-well and square-well–barrier
systems (figures 2(a) and 4(a)) the solid wins energetically over the fluid asT → 0 (or
equivalentlyε → ∞). The ground state must be coexistence between a zero-density fluid
(vacuum) and a condensed solid of densityρsσ 3 = 1.294 (rnn/σ = 1.03). Strictly viewed,
of course, all solids for whichrnn lies within the well (but beyond the core) are degenerate
precisely at T = 0. At finite but infinitesimally lowT , however, entropy breaks this
degeneracy. Free-volume considerations then dictate thatrnn at the centre of the well
maximizes the entropy. The square-barrier system develops a second hard core at range
σ ′ ≡ σ + 2δ = 1.12 asT → 0. Since there is no energetic advantage of the solid
over the fluid, the ground state is rather a coexistence between a fluid and an expanded
solid of large hard spheres of diameterσ ′, at densitiesρf σ 3 = 0.912(σ/σ ′)3 = 0.649
andρs1σ 3 = 1.044(σ/σ ′)3 = 0.743, and a condensed solid of small hard spheres at density
ρs2σ

3 = 1.294. We do not consider here the possible stability of crystal structures other than
fcc, which are not expected to bear on the stability of isostructural solid–solid transitions. It
should be noted, however, that Rascón et al [11], using a similar theoretical approach, have
recently found evidence for stable bcc crystals in square-shoulder systems with sufficiently
wide shoulders at intermediate densities and temperatures.

Comparing the phase diagrams in figures 2–4, one observes that the stability of
solid–solid coexistence, relative to fluid–solid coexistence, for the square-well potential
is significantlyenhancedby addition of a square barrier. The solid–solid reduced critical
temperaturetc ≡ kBTc/ε increases fromtc = 2.4 for the square-well system (metastable),
through tc = 3.9 for the square-barrier system, totc = 6.3 for the combined square-well–
barrier system. The latter may be compared with a fluid–solid–solid reduced triple-point
temperature oftt = 3.7. The enhancement can be intuitively understood by considering
independently the role of different features of the pair potential in inducing inflection in the
free energy per volume. The square well acts to reduceF/V at high densities corresponding
roughly to rnn ' σ + δ. The square barrier, in contrast, augmentsF/V at lower densities
wherernn ' σ + 2δ. The net effect is aconstructivesuperposition that increases the total
inflection and helps to stabilize solid–solid coexistence.

What relevance, if any, might exist between the curious phase behaviour predicted for
these model systems and that of real colloidal suspensions? As mentioned in section 1, a
practical hindrance to experimental observation of solid–solid transitions is polydispersity in
the diameter of colloidal particles, which tends to smear out any influence of interactions of
range comparable to the spread in size distribution. Although we have not numerically
determined the threshold interaction range (δ) for solid–solid stability, it is evidently
considerably longer than that for the simple square-well system. This may have important
consequences for the observability of solid–solid transitions in colloidal suspensions.
Our results suggest optimal likelihood of observing isostructural solid–solid transitions in
charge-stabilized suspensions whose interactions exhibit a pronounced barrier and whose
polydispersity is limited to a few per cent. Further prerequisites seem to be a Coulomb
barrier considerably narrower than the core diameter, implying strong screening (high salt
or counter-ion concentration), and steric stabilization against coagulation and gelation.

Finally we discuss the peculiar dependence of the Lindemann ratio on temperature and
density. Although the theoretical values ofL are consistently low, the predicted trends
are, with one exception (see below), qualitatively consistent with simulation. Particularly
intriguing is the prediction, confirmed by simulation, that for the square-barrier and square-
well–barrier systems at the densityρσ 3 = 1.092 (nearest-neighbour lattice site separation
rnn/σ = 1.09),L decreaseswith increasingT . This behaviour challenges common intuition,
according to which thermal disorder, and thus rms displacements, increase withT . It is
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easily understood, however, by noting that at this densityrnn falls directly at the centre of
the repulsive barrier. In other words, nearest-neighbour barriers overlap. Suppose first that
every particle were localized at its equilibrium (lattice site) position. Each particle would
then sit beneath the barrier of every one of its neighbours and pay an energetic priceε

for each neighbour. A random displacement that takes a given particle closer to one of its
neighbours costs no internal energy—for a flat barrier—and may even reduce the internal
energy if the displacement takes the particle outside the barriers of its other neighbours.
With decreasingT (or equivalently increasing barrier height), such displacements become
increasingly favourable energetically, broadening the one-particle density distribution (or
increasingL). Qualitatively similar behaviour was predicted in [8] for a dense square-
shoulder solid. We have since confirmed this prediction by MC simulation. Like reasoning
accounts for the increase ofL with T at the higher densityρσ 3 = 1.294 (rnn/σ = 1.03),
where nearest-neighbour wells (or gaps for the square-barrier potential) overlap. The single
discrepancy between theory and simulation occurs for the square-well system at the lower
density (wherernn/σ = 1.09 lies outside the well). Here theory predicts a very gradual
increase ofL with T , in qualitative disagreement with simulation (the upper panel of
figure 2(b)). The source of this discrepancy is uncertain, but may be related to the fact that
in this case the system is in the metastable region of the phase diagram.

4. Conclusions

In summary, we have applied a practical density-functional-perturbation theory to predict the
phase behaviour of a system interacting via a model pair potential that includes a hard core
and additional short-range attractive and repulsive interactions. The combination of narrow
attractive square-well and repulsive square-barrier potentials is predicted to significantly
enhance the stability of isostructural solid–solid transitions over that of a square-well
potential alone. We conclude that such transitions, if experimentally observable in colloidal
suspensions, are most likely to be seen in charge-stabilized suspensions whose interactions
include a narrow Coulomb barrier. It is hoped that the present study may help to guide
future parametrizations of more realistic interaction models for colloidal systems. Finally,
the Lindemann ratio for these idealized systems has been shown, from both theory and
Monte Carlo simulation, to decrease upon increasing temperature at densities for which
neighbouring barriers overlap. Whether this unusual behaviour is purely an artifact of
potentials with sharp steps, or might occur also for some continuous potentials, is a matter
for future consideration.
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