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Abstract. Recently a classical scheme of the Car–Parrinello method was proposed to simulate
charged colloidal suspensions described by the highly asymmetric ‘primitive model’ of
electrolytes. To make the simulations feasible one has to rely on a pseudopotential picture which
smooths out the counterionic density profile near the macroionic surfaces. Using ‘exact’ Monte
Carlo simulations of the same model with two macroions only, we critically test the validity of
the pseudopotential construction. We find that the effective forces between the macroions and
the counterion density fields are satisfactorily described by pseudopotential theory for strongly
interacting macroions. However, for a configuration of nearly touching macroions, there are
substantial deviations. Variants of linear screening theory lead to less satisfactory comparison
with the Monte Carlo data than the ‘ab initio’ calculations supplemented with the pseudopotential
picture. Among all linear screening models, the Poisson–Boltzmann-cell model supplemented
with a size correction is found to be the best description.

1. Introduction

The great challenge of condensed matter theory is to understand the macroscopic properties
of a given material arising from the interactions between the microscopic particles,
i.e. electrons and ions. The past ten years have seen a tremendous success in predicting
such macroscopic quantities (such as the phase diagram) by so-called ‘ab initio’ computer
simulations. In particular, Car–Parrinello-type [1, 2] simulations were extremely helpful for
predicting the structure and thermodynamics of metals and semiconductors. The key idea is
to treat the quantum mechanical electrons within density functional theory and couple their
density field then to the molecular dynamics of the classical ions. Subsequently, this method
was also applied to pure classical systems, particularly charged colloidal suspensions [3, 4],
where the role of the electrons is played by classical counterions. In this context, the basic
microscopic interactions are modelled within the primitive model of strongly asymmetrical
electrolytes involving both an excluded-volume contribution from the finite mesoscopic
core of the charged colloidal particles and long-ranged Coulomb terms. The microscopic
counterions are treated within density functional theory of an inhomogeneous plasma which
is combined with the molecular dynamics of the oppositely charged macroions. Since, at
least in principle, only the bare microscopic (or mesoscopic) interactions are entering into
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the model, one may call these Car–Parrinello methods ‘ab initio’ calculations meaning that
one starts from the very beginning, i.e. the microscopic level of the interactions.

However, if one really wants to simulate an actual material, these methods are strictly
speaking not ‘ab initio’ since most frequently one has to invoke additional (sometimes
rather technical) assumptions and approximations. One principal problem is that the exact
density functional is not known, either for the classical plasma or for the interacting electron
gas. So one would do better to speak of density functional computer simulations. One can
overcome this problem by arguing that the spatial modulation of the electron (or plasma)
density is weak, justifying the local density approximation for the free-energy functional
[5]. A second more practical problem, also related to the first one, is the behaviour of this
density field near the ionic (or macroionic) cores. Typically, the wavefunction of valence
electrons is strongly oscillating inside the ion cores. In the colloidal context, this problem
is even more severe since the density field piles up near the macroionic surface due to
the strong Coulomb attraction and then is exactly zero inside the impenetrable macroionic
spheres. This immediately implies a high resolution of the density field in real space which
makes the simulation quite expensive since one has to include many grid points in real space
or wave-vectors in reciprocal-space sums. In order to overcome this problem one has to
rely on the validity ofpseudopotentials[6]. The key idea of the pseudopotential picture is
to introduce a fictitious ion–electron (or macroion–counterion) interaction that leads to the
same electronic wavefunction (or counterion density field) outside the ionic cores. Hence
two basic requirements have to be fulfilled by any pseudopotential:

(i) it has to benorm-conserving,i.e. the wavefunction (or density field) has to be
identical outside the cores [7]; and

(ii) it has to betransferable,i.e. the norm-conserving property has to be fulfilled in any
typical ionic configuration [8].

In the electronic context, a lot of experience has accumulated during the past three
decades on how to construct and use pseudopotentials for many different atomic systems;
see e.g. [6]. These potentials were tested in great detail [9]. Much less is known as regards
the validity of classical pseudopotentials. In this paper we compare exact results for the
effective force between two macroions gained by Monte Carlo simulation of the primitive
model with the ‘ab initio’ results which rely on the validity of the pseudopotential picture.
For typical configurations, i.e. for those macroionic configurations which have a reasonable
statistical weight, the results are in fact very close, while there are increasing deviations
for nearly touching macroions and for very high macroion packing fractions. This means
that the ‘ab initio’ simulations can in general be trusted if one has a calculation of the pair
structure and thermodynamics in mind. Rare events such as coagulation, however, cannot
be correctly described by pseudopotential theory.

The paper is organized as follows. In section 2 we describe the primitive model for
the interactions. Then we give the definition of the effective macroionic forces in section
3. After having discussed the different theoretical approaches in detail in section 4, we
present our results in section 5. The final section, section 6, is devoted to conclusions and
the outlook.

2. The primitive model

The physical system that we have in mind is that of charged mesoscopic colloidal macroions
suspended in a microscopic fluid together with their microscopic counterions. The macroions
carry a chargeZe that is normally two or three orders of magnitude larger than the charge
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−qe of the monovalent or divalent microscopic counterions. Here,e denotes the elementary
charge. We considerNm macroions with diameterσ ≡ 2R confined in a volumeV
corresponding to a finite number densityρm = Nm/V at a temperatureT . The macroion
density can conveniently be expressed in terms of their volume fractionφm = πρmσ

3/6.
The counterions possess a number density which is determined by global charge neutrality
to be

ρc = Zρm/q. (1)

Within the ‘primitive model’ the solvent solely enters via its dielectric constantε reducing
the Coulomb interaction between the charged species. One assumes the following pair
interaction potentialsVmm(r), Vmc(r), Vcc(r) between macroions and counterions,r denoting
the corresponding interparticle distance:

Vmm(r) =

∞ for r < σ

Z2e2

εr
for r > σ

(2)

Vmc(r) =

∞ for r < σ/2

−Zqe
2

εr
for r > σ/2

(3)

Vcc(r) = q2e2

εr
. (4)

The counterions represent a one-component classical plasma (OCP) with the Coulomb
repulsion (4) containing a further length scale, the so-called Bjerrum length

λB = e2/εkBT

wherekB is Boltzmann’s constant. For water (ε = 78.0) at room temperature (T = 300 K),
λB = 7.2 Å.

For high charge asymmetry corresponding to typical samples of charged suspensions,
the ‘primitive model’ cannot be solved for largeNm by direct computer simulation
on present-day computers. Within classical Car–Parrinello-type (so-called ‘ab initio’)
simulations, however, this becomes feasible with the price of the additional pseudopotential
approximation. The key idea of this paper is to treat a special configuration of only two
macroions (Nm = 2) which are placed along the room diagonal of a cubic box with periodic
boundary conditions. The macroion centres are separated by a distancer and are surrounded
by their periodic images. The lengthL of the cube as determined by the macroion density
is L = (2/ρm)1/3; see figure 1. This corresponds to a configuration of a bcc crystal
distorted in the (111) direction. One should bear in mind that due to the periodic boundary
conditions and image particles this is a many-body (though highly correlated) macroionic
configuration. In such a small system, one cannot calculate the structural correlation or
the thermodynamics due to the finite system size. However, one can extract the distance-
resolved effective macroion forces and the density field of the counterions. ForNm = 2,
a direct Monte Carlo simulation of the primitive model is possible [10]. Comparing the
effective macroion forces with the ‘ab initio’ data, one can hence test the validity of the
pseudopotential approximation inherent in any ‘ab initio’ simulation.

3. Effective macroion forces

Let us now give the statistical definitions of theeffective macroion forces.They clearly
contain two parts, one stemming from the direct Coulomb repulsion between the macroions
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Figure 1. The configuration of two macroions (dark spheres) of radiusR and central distancer
studied in the paper. They are placed along the room diagonal of a cube of lengthL. The size
of the cube is determined by the macroion density. Due to the periodic boundary conditions, all
periodic images of the macroions are also taken into account. Two of these image charges are
shown as broken circles. The counterions which are also periodically repeated are not shown.

(2) and the other from the macroion–counterion interaction (3). This implies that the force
Fi acting on theith macroion located atRi can be written as

Fi = F (m)
i + F (c)

i (5)

where the direct macroionic partF (m)
i is the pairwise Coulomb repulsion:

F (m)
i = −∇Ri

Nm∑
j=1;j 6=i

Vmm(|Ri −Rj |) (6)

{Rj ; j = 1, . . . , Nm} being the given macroion positions. The second contribution to the
total effective force,F (c)

i , is the canonically counterion-averaged force from the macroion–
counterion interaction (3):

F (c)
i = −

〈
Nc∑
j=1

∇Ri
Vmc(|Ri − rj |)

〉
c

. (7)

Here,{rj ; j = 1, . . . , Nc} are the counterion positions and the canonical average〈· · ·〉c over
an {rj }-dependent quantityA is defined via the classical trace

〈A({rk})〉c = 1

Z
1

Nc!

1

33Nc

∫
V

d3r1 · · ·
∫
V

d3rNc A({rk}) exp

[
− Vc

kBT

]
(8)

whereV is the system volume,3 is the de Broglie thermal wavelength of the counterions
and

Vc =
Nm∑
n=1

Nc∑
j=1

Vmc(|Rn − rj |)+ 1

2

Nc∑
i,j=1;i 6=j

Vcc(|ri − rj |) (9)
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is the total counterionic part of the potential energy. Furthermore, the classical partition
function

Z = 1

Nc!

1

33Nc

∫
V

d3r1 · · ·
∫
V

d3rNc exp

[
− Vc

kBT

]
(10)

guarantees the correct normalization〈1〉c = 1.
An alternative expression for the counterion-induced forcesF (c)

i can be obtained
by using the inhomogeneousequilibrium counterion density profilein the field of fixed
macroions which is defined via

ρc(r; {Rj }) =
〈
Nc∑
n=1

δ(r − rn)
〉
c

. (11)

ThenF (c)
i can be rewritten as

F (c)
i ({Rj }) = −

∫
V

d3r ρc(r; {Rj })∇Ri
Vmc(|r −Ri |). (12)

Denoting with R1 and R2 the positions of the two macroions in our case, we
have F1 = −F2 and the total effective force depends only on the macroion distance
r = |R2 − R1|. From symmetry considerations, the direction ofF1 is along the room
diagonal, i.e. parallel toR1 −R2. We therefore consider only the magnitude of the force
projecting it onto the room diagonal

F(r) = F1(r) · (R1−R2)/r (13)

which is the key quantity of this paper. Clearly,F(r) vanishes in a symmetric configuration
of a bcc crystal when the two particles are separated by a distancer ≡ r0 = (

√
3/2)L.

The forceF(r) will be linear in r aroundr = r0. In general, we expect repulsive forces,
i.e. F(r) > 0. Near contact,r & 2R, the magnitude ofF governs colloidal coagulation if
an additional van der Waals interaction is present.

The forceF(r) is a rather sensitive quantity which gives direct insight into the effective
interactions. For instance, pair correlations are much more insensitive to the microscopic
interactions.

A direct interpretation ofF(r) in terms of a bare effective macroionic pair interaction
is invalidated somewhat by the fact that all of the periodic images may also contribute.
This implies thatF(r) is not the direct effective pair potential between two macroions. For
short-ranged effective potentials and close separationsr, however, these contributions are
small. On the other hand, if an effective pair potentialU(r) (e.g. obtained within linear
screening theory) is given, one can calculate the effective forces resulting from this potential
in the presence of the periodic images of the macroions and compare with the exact Monte
Carlo data. In fact, there are different recipes for obtaining such a pair potential from linear
screening. The actual form is always a Yukawa expression of the type

U(i)(r) =
Z∗(i)

2e2

εr
exp(−κ(i)r) (14)

but the prefactor—or alternatively the effective macroion chargeZ∗(i)—and the screening
constantκ(i) differ in different models labelled by(i). This will be discussed in more detail
in the next section. The effective force is then given by

F(r) ≈
∣∣∣∣∣∇R1

∑
n

U(i)(|R1− re−R(0)
n |)

∣∣∣∣∣ (15)

whereR(0)
n = (2/

√
3)r0n are all cubic lattice vectors labelled byn ≡ (nx, ny, nz) ande is

a unit vector along the room diagonal.
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4. Different theoretical approaches to the effective forces

4.1. Monte Carlo simulation

We used the standard Monte Carlo scheme [11] treating the long-ranged Coulomb forces
using Ewald sums. We start with an arbitrary counterion configuration which does not
penetrate into the two fixed macroion cores. Typically 2× 104 Monte Carlo steps per
counterion are used to equilibrate the counterions and then the canonical average (7) is
taken for 4× 104 Monte Carlo steps per particle. We also obtained the inhomogeneous
counterion equilibrium density along the room diagonal by directly exploiting its definition,
equation (11).

4.2. ‘Ab initio’ simulation and the pseudopotential construction

In addition we have done ‘ab initio’ calculations according to reference [4], but now for
two macroions in the configuration sketched in figure 1. They key quantity of this approach
is the inhomogeneous equilibrium counterion density which is gained by minimizing the
free-energy density functional in the external field of the fixed macroions. We have used the
expression (12) to obtain the effective forces. The pseudopotential construction is done in
the same way as described in reference [4]: in order to include the impenetrable macroion
core approximatively, we make it penetrable such that the true potentialVmc(r) in equation
(3) is replaced by the ‘pseudopotential’

V ′mc(r) = −
Zqe2

εr
erf(r/Rc) (16)

whereRc is chosen to be'R/2. This leads to an extra, unphysical, counterion charge
inside the cores, which must be compensated by increasing the macroion charge from
Ze to (Z +Z∗m)e. The permeability of the macroions leads to unwanted fluctuations of the
counterion charge density inside the cores, and hence of the apparent macroion charge, which
will strongly affect the static and dynamical properties of the macroion fluid. Therefore, in
a second step of the pseudopotential construction, these fluctuations are efficiently damped
by simultaneously assigning a severe free-energy handicap to the excess counterion charge
inside the macroions; see reference [4] for details. The whole pseudopotential procedure
should result in a ‘norm-conserved’ counterion densityρc(r) which is smooth inside the
macroion cores, but coincides with the physical density outside the cores. At the same time,
the continuity of the pseudopotential construction which takes care of a stiff counterionic
density profileinside the macroionic cores also suppresses an accumulation of counterions
near the macroionic surfacesoutsidethe cores.

The ‘transferability’ of this pseudopotential construction was hitherto only checked
indirectly anda posteriori. It was shown that the actual counterion fluctuations inside the
macroion core are indeed smaller than those outside the core [4]. However, the direct effect
of the pseudopotential approximation on the effective macroion forces which govern the
macroionic structural correlations was not investigated quantitatively in reference [4] and is
the scope of the present paper.

4.3. Effective pairwise Yukawa models

Let us summarize four different Yukawa-like models for the effective pairwise interaction
U(i)(r) of equation (14)(i = 1, 2, 3, 4).
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(1) DLVO theory. In the traditional linear screening theory of Derjaguin, Landau,
Verwey and Overbeek (DLVO) [12], which was derived for low macroion packing fraction,
we have(i ≡ 1)

Z∗(1) = Z exp(κ(1)R)/(1+ κ(1)R) (17)

which gives a size correction to the bare chargeZ and

κ(1) =
√

4πq2e2ρc

εkBT
. (18)

(2) MSA theory.It is possible to solve the mean-spherical approximation (MSA) of the
primitive model analytically [13]. In this picture(i ≡ 2) the effective macroionic interaction
is again a Yukawa potential with an effective chargeZ∗(2) which is larger thanZ∗(1) while
κ(2) ≡ κ(1).

(3) The Poisson–Boltzmann-cell (PBC) approach.In this theory(i ≡ 3) one solves the
nonlinear Poisson–Boltzmann equations in a spherical Wigner–Seitz cell centred around a
single macroion [14]. The Wigner–Seitz radius is determined by the macroion density. The
Poisson–Boltzmann equations are then linearized around a counterion densityρ̄c which is
determined self-consistently such that the mean counterion density of the linearized solution
coincides withρ̄c. Then

Z∗(3) = qρ̄c/ρm (19)

is determined by global charge neutrality and

κ(3) =
√

4πq2e2ρ̄c

εkBT
. (20)

(4) The modified Poisson–Boltzmann-cell (MPB) approach.This approach(i ≡ 4) is
similar to the former one [14]. The difference is that one takes the counterion density at the
Wigner–Seitz cell boundary,̃ρc, from the solution of the Poisson–Boltzmann equations and
linearizes these equation aroundρ̃c. Then one arrives at a result very similar to the PBC
approach [15]. However, we take a size correction similar to (17) into account; see again
[15]. Hence we get

Z∗(4) = q
ρ̃c

ρm

exp(κ(4)R)

1+ κ(4)R (21)

and

κ(4) =
√

4πq2e2ρ̃c

εkBT
. (22)

5. Results

We have investigated three parameter combinations which were used in runs of ‘ab initio’
calculations (runs A, B, and C) [4]. They are given in table 1. The dielectric constant of
the solvent was fixed to beε = 78, the macroion radius wasR = σ/2 = 53 nm, and the
temperature was 300 K. In order to demonstrate the typical range of macroion distancesr

which have a reasonable statistical weight we have shown the ‘ab initio’ data from reference
[4] for the pair correlation functiong(r) in figure 2. If g(r) is practically zero, then the
probability of finding two macroions with such a distance is very small.
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Figure 2. Macroion–macroion pair correlation functionsg(r) versus reduced distancer/R as
obtained from ‘ab initio’ simulations for the three different runs A, B, and C studied in this
paper. From reference [4].

Table 1. Parameters for the three different runs A, B, C: the bare chargeZ, macroion packing
fraction φm, as well as the data for the screened Coulomb reference pairwise potentials: the
effective chargeZ∗(i) for model (i) (i = 1, 2, 3, 4) and the corresponding Debye screening
parameterκ(i)R (κ(1) ≡ κ(2)).
Run Z φm Z∗(1) Z∗(2) Z∗(3) Z∗(4) κ(1)R κ(3)R κ(4)R

A 200 0.1 259 296 194 245 0.90 0.99 0.866
B 100 0.3 142 189 97.8 157 1.10 1.09 1.27
C 300 0.08 404 462 284 355 0.98 0.96 0.89

Using the different theoretical approaches discussed in the previous section, we have
calculated the distance-resolved effective macroion forcesF(r). The results for the three
parameter combinations (runs A, B, and C) are given in figures 3–5. Note that the parameters
used for the four different Yukawa models are also given in table 1. We can draw the
following conclusions.

(i) Apart from the PBC approach which is not corrected for the finite macroion size,
all Yukawa models and also the ‘ab initio’ approach produce forces that aresystematically
too high. This is expected for the following reasons. The linear response theory on the
Debye–Ḧuckel level gives a reduced counterion screening as compared to the nonlinear
theory on the Poisson–Boltzmann level since the free energy per counterion is overestimated
in the linear theory [4]. Extending the theory to a local density approximation (LDA)
the counterion screening becomes again more effective [16] such that even overscreening
(attraction) between plates has been found for extreme counterionic correlations. Here
extreme counterion correlations of course only occur if the counterions themselves are
strongly coupled. The Monte Carlo simulations also include fluctuations which give rise
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Figure 3. Effective macroion forceF in units of kBT /λB versus reduced distancer/R for
run A. The crosses are our Monte Carlo data. The statistical error is smaller than the cross
size. Furthermore the ‘ab initio’ data are given as well as those from the four different Yukawa
models.

Figure 4. As figure 3, but now for run B.

to an additional attractive part to the total force. These fluctuations of the Stern layer
are ignored in the mean-field-like density functional approach. Hence our results are
consistent with the following sequence: the Debye–Hückel theory with size corrections
produces stronger repulsions than the Poisson–Boltzmann theory which in turn produces
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Figure 5. As figure 4, but now for run C.

stronger repulsions than the superior local density approximation. Finally the LDA again
overestimates the forces since fluctuation-induced attractions (see e.g. [17] for a discussion)
are not included here.

We finally remark that both of the Poisson–Boltzmann approaches discussed previously
(namely PBC and MPB) are basically linear screening theories with parameters obtained
from nonlinear screening theories. So they are somewhat in between the linear Debye–
Hückel level and the full nonlinear Poisson–Boltzmann level.

Table 2. The gradient of the force near the perfect-lattice positions,−dF(r)/dr|r=r0 (in units
of kBT /R2), for the three different runs and all of the different theoretical approaches.

Run MC ab initio DLVO MSA PBC MPB

A 15.5± 1.5 16.3 18.35 24.00 10.69 17.49
B 20± 2 22.8 21.04 37.25 10.09 20.76
C 20± 2 22.3 26.43 34.55 13.64 24.59

(ii) The ‘ab initio’ data fit the Monte Carlo data well nearr = r0. This is explicitly
demonstrated in table 2 where we have shown the gradient of the force−dF(r)/dr evaluated
at r = r0. This quantity governs the energy scales as well as the dynamical properties of
a harmonic solid. In the crystalline phase or for strongly interacting fluids (like run A and
C), it is merely this quantity which determines the structural correlations as embodied in
g(r). From the data of table 2 we conclude that the ‘ab initio’ results for the gradient
are better than any Yukawa results for all of the three runs except for run B where the
MPB model is slightly better. However, for closer macroionic separationsr, the ‘ab initio’
results deviate strongly from the Monte Carlo data. This is also expected since due to the
pseudopotential construction accumulations of the counterions near the macroionic surfaces
are suppressed which leads to a stronger repulsion. Such small distances do not bear any
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Figure 6. Counterion equilibrium densityρc in units of 1/R3 along a one-dimensional cut
through the macroion centres. Thex-coordinate is such that the origin coincides with the
common centre of mass of the two macroions. The parameters are those for run A. Data for
ρc(x) are shown for two different macroion distances: (a)r = 250λB and (b) r = 156λB .
The solid lines are the Monte Carlo data, and the dotted lines are results from an ‘ab initio’
simulation. Inside the macroionic cores the counterion does not vanish in the ‘ab initio’ approach
due to the pseudopotential picture. The dashed lines are obtained from DLVO theory. For the
sake of clarity we set the DLVO density to be zero inside the macroionic cores.

statistical weight for run A and C (see again figure 2) but are important for run B. We
thus conclude that the pseudopotential picture works well for strong coupling but fails in
situations where the macroions approach each other. This immediately implies that the



8890 H Löwen and I D’Amico

Figure 7. As figure 6, but now for run C. The two macroion distances are now (a)r = 260λB
and (b)r = 156λB .

pseudopotential construction is not valid if one has a calculation of the coagulation rate in
mind [18, 19] which depends sensitively to the height of the energy barrier in the effective
pair potential between two colloidal macroions.

(iii) Qualitatively the results for the Yukawa models are in agreement with the discussion
in reference [4]. The MSA theory overestimates the forces while the PBC model
underestimates the forces. DLVO theory works for weak coupling (as for run B) but fails for
larger coupling (as for run A and C). The best overall agreement is achieved with the size-
corrected Poisson–Boltzmann-cell approach MPB. This is consistent with the conclusions
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of reference [15] where experimental data for self-diffusion could be fitted best within this
Yukawa model.

Finally we have compared the counterion equilibrium density fields along a one-dimen-
sional cut through the centres of the two macroions. In the ‘ab initio’ approach, this is
the central quantity obtained by minimizing the free-energy density functional. The Monte
Carlo data still bear a considerable error since they were obtained by averaging over a small
tube around this one-dimensional cut. Note that the MC data are not symmetrized around
x = 0. The overall integral of this quantity is fixed by global charge neutrality. Hence
it is less sensitive than the macroionic forces. Observing the comparison between the ‘ab
initio’ and the Monte Carlo data in figures 6 and 7, one reaches the same conclusion as
before: if the macroions are well separated, then the results practically coincide. For nearly
touching macroions, the counterion density in between the macroions is drastically reduced
due to the stiffening process in the pseudopotential construction. This, of course, leads to
the overestimation of the macroionic forces discussed previously.

While most of the linear screening theories do not predict the counterion density fields
directly, the DLVO approach can be used to extract a counterionic density distribution
around the macroions. In DLVO theory the counterion equilibrium density consists of a
linear superposition of Yukawa orbitals [4]:

ρc(r; {Rj }) ≈
Nm∑
i=1

Z∗(1)
q

κ2
(1)

4π

exp(−κ(1)|r −Ri |)
|r −Ri | (23)

where the sum is over all macroions including all of their periodic images. We have also
shown the DLVO result for the counterion density field in figures 6 and 7. The deviations
with respect to the MC data are more severe than in the ‘ab initio’ calculations. In particular,
already for large macroion separations, the contact counterion density near the macroionic
surfaces is underestimated by DLVO theory. For nearly touching macroions, the counterion
density in between is even more underestimated than in the pseudopotential picture. This
in turn explains again why theab initio forces are smaller than the DLVO forces.

6. Summary and outlook

To summarize: we have presented ‘exact’ Monte Carlo results for the distance-resolved
effective forces between two macroions in a many-body configuration. Testing the pseudo-
potential approach against these data, we found that it is justified in a strongly interacting
system while there are substantial deviations for a configuration of nearly touching
macroions.

One immediate consequence of our results is that it does not help to improve the density
functional itself if one wants to improve the quality of ‘ab initio’ simulations. In fact one
knows better functionals of the inhomogeneous plasma than the LDA [20, 21] which could
be used in ‘ab initio’ approaches. However, the pseudopotential construction is the most
important limitation and approximation. As it was used in reference [4], the pseudopotential
construction is only possible for a local density approximation.

Looking forward, let us discuss further generalizations and limitations of the
pseudopotential picture. First, it was used also for a situation of added salt ions in reference
[22]. Here the counterion–macroion interaction was treated differently to the coion–
macroion interaction. It is less clear how to generalize the pseudopotential construction
to situations away from the bulk, as for macroions confined between charged plates [23, 24]
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or in a gravitational field [25]. While a pseudopotential approach could be taken for rod-
like charged colloid particles [26] it is not obvious how to deal with binary (or charge-
polydisperse) mixtures of charged colloids [27]. These situations are challenging problems
for the future.
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