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Abstract 

The effective forces between two spherical highly charged colloidal macroions are calculated 
within the primitive model of strongly asymmetric electrolytes using Monte Carlo simulations. 
For typical parameters corresponding to aqueous suspensions of polystyrene spheres, the forces 
are found to be repulsive over a broad range of distances between the macroions. Our results 
are in semi-quantitative agreement with different variants of linear screening theory. A recently 
developed cumulant expansion, however, fails in predicting the correct sign of the effective 
forces. 
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I. Introduction 

Charged colloidal particles suspended in a polar solvent represent an excellent real- 
ization of a classical fluid on a mesoscopic length scale and exhibit all kinds of  phase 

transitions as known from microscopic system [1]. The spherical colloidal particles are 
frequently called macroions: they carry a total surface charge Z which is much larger 
than the charge q of  the microscopic counterions. Any statistical theory of the structural 

correlations and the phase diagram for these macroions requires a detailed knowledge 
of  the effective inter-particle forces between the macroions [2]. These forces, obvi- 
ously, first contain a part due to the excluded volume of the macroions and another 
due to long-ranged Coulombic repulsion. The Coulomb part, however, is screened by 
the counterions resulting in a total effective short-ranged interaction. 
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Almost every statistical mechanical theory starts from the so-called "primitive model" 
(PM) of strongly asymmetric electrolytes involving only the excluded volume and the 
Coulomb interactions of the charged species (macroions and counterions) while the 
solvent enters only by its static dielectric constant e screening the Coulomb interaction. 
However, a direct computer simulation of the PM is only feasible for relatively small 
charge asymmetries (Z/q <~ 50) corresponding to the micellar regime [3,4]. The tradi- 

tional additional approximation is to neglect counterion correlations completely treating 
them as an ideal gas with a mean-field-like Coulomb potential energy, resulting in the 
(nonlinear) Poisson-Boltzmann theory or its linearized version, the Debye-Hiickel ap- 
proach [5-7]. The latter predicts an effective macroion pair potential V(R)  of Yukawa 
form 

Z*2e 2 exp( -xR)  
V(R) = eR (1) 

with an inverse screening length 

t¢ 2 = 4~pcqZ eZ /kBT~ (2) 

and an effective charge 

Z* = Z exp(xa/2)/( l  + xa /2 ) .  (3) 

Here, kBT is the thermal energy, a is the macroion diameter and R the center-of-mass 
distance of two macroions. 

In the present paper we simulate the primitive model by the Monte Carlo method 
for two (Nm = 2) macroions in a rectangular box at a fixed given distance R. Con- 
sequently, we get exact (in our case pairwise) results for the effective forces which 
were up to now only obtained with different levels of approximations [8-10]. From a 
canonical counterion average, the effective forces acting on the macroions are extracted 
for different R. One parameter combination is investigated corresponding to typical ex- 
perimental values for polystyrene spheres in aqueous solution. These parameters were 
also used in Ref. [11]. We found an effective repulsion which is semi-quantitatively 
described by standard Yukawa expressions of linear screening theory. Our work is a 
natural generalization of recent Monte Carlo studies for a single macroion (Nm = 1) 
in a spherical cell [ 12-16]. Most of the latter studies yield the osmotic pressure of the 
macroionic solution but, in every case, they are unable to predict the distance-resolved 
effective forces. 

Our paper is organized as follows: In Section 2 we define the primitive model and 
the statistical expression for the mean force acting on the macroions. The results are 
presented in Section 3 and finally, Section 4 is devoted to an outlook. 

2. Effective macroion forces in the primitive model 

We consider Nm = 2 macroions with bare charge Ze and diameter ~ confined in 
a cubic volume V of linear size L = V 1/3 corresponding to a finite number density 
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Pm = Nm/V at a temperature T. The two macroions are placed symmetrically along 
the body diagonal of the cube such that the centre of the cube coincides with the 
center-of-mass of the two particles. 

Furthermore, Arc = 21Z/q I point-like counterions are in the box carrying an oppo- 
site charge -qe. Within the PM one assumes the following pair interaction potentials 
Vmm(r), Vine(r), V~(r) between macroions and cotmterions, r denoting the corresponding 
interparticle distance: 

oc for r < a ,  
Vmm(r) = Z2e 2 (4) 

for r~>a,  
g r  

oo for r < a/2, 
Vine(r) = Z2e 2 (5) 

for r/> a /2 ,  
g r  

q2e2 
V~(r) -- (6) 

g r  

The counterions represent a one-component classical plasma (OCP) with the Coulomb 
repulsion (6) containing a further length scale, the so-called Bjerrum length E = 
eZ/~kBT. For water at room temperature (T = 293 K) f = 7.29 A. 

The effective forces Fl, F2 acting onto the two macroions have the same magnitude 
but an opposite sign due to symmetry reasons, i.e., FI = -F2.  With {Ri; i = 1,2} 
being the positions of the two macroions we define the magnitude of the forces as 
follows: 

F(R) = FI(R) . (Rl - R2)/R , (7) 

where R = IR2 - R 1  I. Hence F(R) is positive for repulsion and negative for attraction. 
Obviously, F(R) consists of a trivial positive part ZZeZ/gR 2 stemming from the direct 

Coulomb repulsion (4). The non-trivial additional term results from nonlinear counte- 
rion screening and can exactly be expressed [17] as a counterion-averaged force from 
the macroion-counterion-interaction (5): 

Z 2 e 2 ( k V R 1 V m c ( I R , - r i , ) ) c . ( R 1 - R z ) / R .  (8) 
F(R) = ~ \ i=1 

Here, {rj; j = 1 . . . . .  No} are the counterion positions and the canonical average (--")c 
over an {rj}-dependent quantity ag is defined via 

(~({rk}))c - ~<rNc! A3Nc d3rl "'" d3rN~sC({rk})exp - k ~  ' (9) 
v v 

where A is the de Broglie thermal wavelength of the counterions and 

2 Nc N~ 
1 

Vc: Z Z Vmc(lRj-ril)+ 2 Z Vcc(lr '-rJl)  (10) 
j = l  i=l  i , j=l ;  iT~j 
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is the total counterionic part of the potential energy. Furthermore, the classical partition 
function ~e guarantees the correct normalization (1)c = 1. 

In linear screening theory (1), we get the following approximation for F(R) 

F(R),~ ,VRV(R)[ = V(R) ( R  + X ) . ( l l )  

We finally mention that there are modified Yukawa expression in the literature with 
screening constants K and effective charges Z* differing from (1), see e.g. [18,19]. 
These theories yield quantitatively different but still repulsive results for F(R). 

3. Results of the Monte Carlo simulation 

In our simulations we use the standard Monte Carlo scheme [20]. Note that we 
can avoid Ewald sums in the present set-up since there are no image charges. We 
start with an arbitrary counterion configuration which does not penetrate into the two 
fixed macroion cores. Typically 1.5 × 104 Monte Carlo steps per counterion are used 
to equillibrate the counterions and then the canonical average (8) is performed from 
2 × 104 Monte Carlo steps per particle. By comparing the results with that corresponding 
to a periodically repeated cubic box containing two macroions with the same distance 
R, we have checked that effects due to the finite box are not relevant, at least for the 
range of R explored in our work. 

The results for four different macroion distances R are summarized in Fig. 1. The 
parameters are chosen as in Ref. [11]: Z = 280, q = 1, T = 293 K, e = 78, a = 
1108/~, Pm = 3.3 × 10 -12 z~k -3. As is clear from Fig. 1, the forces are repulsive over 
the broad range of distances explored. A comparison with linear screening (dashed 
line) shows that linear screening gives the correct sign of  the force, but overestimates 
its magnitude a bit. If the theory of Alexander et al. [18] as developed for strongly 
interacting charged colloids is invoked (dotted line), the results become better. In this 
theory V(R) = Z~B e2 exp(-xesR)/eR with Zps = 264 and xps~r = 0.294. The data 
agree surprisingly well near macroion contact but again overestimate the forces for 
larger macroion separation R. Thus, one can conclude that these two variants of linear 
screening theory provide at least a semi-quantitative description of counterion screening. 
We finally note that any size correction, as embodied in the factor exp(xa)/(1 + xa/2) 2, 
is practically of no importance here since xa is small both in DLVO and in Alexander's 

theory. 
Recently, a theory was proposed by Allahyarov et al. [11] based upon a cumulant 

expansion of the primitive model. For the same combination of  parameters and in the 
same range of R, they found an effective attraction between macroions. In the light 
of  our exact data, however, the attraction has to be an artifact of the approximations 
made. 
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Fig. 1. Reduced total effective force F(R) = F(R)E/kBT between two macroions versus their reduced distance 
= R/{. The parameters are Z = 280, q = 1, T = 293 K, e = 78, a = 1108,~, pm= 3.3 × 10 -12 ~-3. 

Macroion contact is at /~ = 152 while the mean macroion distance at R = pml/3E = 920. The diamonds 
are the exact Monte Carlo data; the absolute statistical error in P is of the order of 0.003, i.e., it is much 
smaller than the size of the symbol. The dashed line is the result from DLVO theory (Eq. (1)), the dotted 
line is from the theory of Alexander et al. 

4. Outlook 

In conclusion, we have calculated the effective macroion forces starting from the 

primitive model  within a Monte Carlo computer simulation. While  a cumulant expan- 

sion fails in predicting the correct sign o f  the force, our result is in semi-quantitative 

agreement with linear screening theory and variants of  it. Our fu~re  activities will  

be in the following directions: First, we plan to investigate, in more detail, a slightly 

changed set-up by adopting a cubic box with periodic boundary conditions. The ad- 

vantage one gains here is that the macroionic configuration then really corresponds 

to a many-body configuration o f  a distorted bcc crystal and effects due to the finite 

size o f  the counterion box are avoided. Also more parameter combinations should be 

addressed which should be related to a strongly-coupled case where an attraction was 

found between two parallel plates [21-26].  It would be interesting to check whether 

such an attraction is also present for other topologically different situations involving 

two spheres. Third, the forces can be compared to the results o f  Car-Parr inel lo- type 

simulations [19,17] in order to check the validity of  the pseudo-potential  assumption. 

Finally, a finite counterion core should be also considered and incorporated in the 

simulations. 
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