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Density profiles of a liquid confined between two parallel plates are studied near a liquid-gas transition. The
system is additionally exposed to an external field depending on the coordinate perpendicular to the plates that
possesses a discrete left-right symmetry with respect to the midplane between the plates. It is found that the
equilibrium density profiles can be symmetry breaking, i.e., they do not possess the discrete left-right symme-
try of the external field. Explicit results are obtained within a simple double-slit model consisting of two layers
of two-dimensional Lennard-Jones systems using both computer simulation and density-functional theory.
Such symmetry-breaking profiles should be observable in confined colloidal suspensions.
@S1063-651X~96!10112-4#

PACS number~s!: 64.70.Fx, 64.60.2i, 82.70.Dd

I. INTRODUCTION

If a classical fluid is exposed to an external field with a
given symmetry, it is an interesting question whether or not
the resulting equilibrium one-particle density profile respects
the symmetry contained in the external potential. Far away
from any phase transition, the symmetry of the external field
is expected to carry over to the density profile of the fluid.
Phase transitions, however, can change the picture com-
pletely. One classic example of symmetry-breaking density
profiles is the fluid freezing transition@1#. In the absence of
any external potential, the density profile of the stable crystal
consists of sharp peaks and is thus violating the full continu-
ous translational symmetry of the~vanishing! field.

While the freezing transition is connected with a broken
continuoussymmetry the present paper is concerned with the
possibility of breaking adiscretesymmetry near the liquid-
gas transition. Our model is motivated by the following con-
siderations: One of the simplest external potential,Vext(z),
z being a linear spatial coordinate, is that of an ‘‘inverted
sombrero,’’ well known from quantum-field theory@2#

Vext~z!5F0@~z/l!42~z/l!2#, ~1!

whereF0 sets an energy andl a length scale. This double-
well potential possesses the discrete inflection, or left-right
symmetry

Vext~2z!5Vext~z!. ~2!

If one considers a classical fluid in this external potential far
away from the freezing transition, it is strongly expected that
the corresponding equilibrium-density profile reflects the
symmetry of the external field. For instance, an ideal gas in
an external potential exhibits a density profile

r~z!5
1

L3 exp$@m2Vext~z!#/kBT%, ~3!

kBT denoting the thermal energy,L the thermal de Broglie
wavelength, andm the chemical potential. The density pro-
file is thus always respecting the symmetry of the external
potential. However, near a liquid-to-vapor transition, it is, at
least in principle, conceivable that the system is in three
different states: ~1! liquidlike in the two wells,~2! vapor-
like in the two wells, and~3! liquidlike in one and vaporlike
in the other well. The last configuration is, of course, twofold
degenerate and corresponds indeed to a density profile with
broken discrete symmetry.

In order to reduce the complexity of the problem it is
reasonable to introduce a simpler model by considering only
two discrete values of thez coordinate. We discuss a double-
slit model of two parallel plane layers of a two-dimensional
liquid exhibiting a liquid-gas phase transition in the two-
dimensional~2D! bulk. This system can be thought of as the
limit of a double-well potential with infinitely deep minima.
The two layers are coupled by an interlayer potential. One
very familiar example is the two-dimensional Lennard-Jones
liquid that exhibits a liquid-gas transition in the 2D bulk case
@3,4# at a ~temperature dependent! chemical potentialmc .
The possibility of discrete symmetry breaking near the
liquid-gas transition is analyzed using density-functional
theory and computer simulation. Within both approaches we
establish the following results.

~i! If the net interactionV0 between the two layers is
attractive,V0,0, then there is no symmetry breaking.

~ii ! If the interactionV0 is repulsive, both layers are in the
vapourlike phase~i.e., no symmetry breaking! if the chemi-
cal potentialm is smaller thanmc .

~iii ! Symmetry breaking exists if the interlayer interaction
is repulsiveand the chemical potential is larger than that of
coexistence, i.e., forV0.0 andm.mc .

Hence, symmetry breaking does occur. An experimental
verification of this prediction is still ahead. Suitable samples
are mesoscopic dispersions confined between parallel glass
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plates with added salt and added polymer@5#. In this system
one can tailor the interparticle interaction by varying the salt
concentration, the concentration of added polymer, and the
quality of the solvent. Since our model is quite general one
can expect that symmetry breaking does also occur in real
samples.

Our work is organized as follows: In Sec. II we define
the model. Then we turn to density-functional theory in Sec.
III and to computer simulation of the density-functional in-
put in Sec. IV. Results from density-functional theory are
presented in Sec. V and results from computer simulation are
discussed in Sec. VI. A discussion of a possible experimental
verification of symmetry-breaking density profiles is finally
done in Sec. VII.

II. THE MODEL

As already mentioned in the Introduction, we consider a
double-slit system of two interacting parallel plane layers
each of which contains a two-dimensional liquid. The sepa-
ration of the layers ish and the layer area isA; the system is
at a fixed finite temperatureT and a given chemical potential
m. The setup is schematically shown in Fig. 1. The coordi-
nates of the left plane are labeled by the index 1 and that of
the right plane by index 2. Consequently the mean number
density of particles in the left slit isr15N1/A while it is
r25N2/A in the right one. The possible positions of the par-
ticles arerW1

( i )5(x1
( i ) ,y1

( i ) ,2h/2), i51,...,N1 in the left and
rW2
( j )5(x2

( j ) ,y2
( j ) ,h/2), j51,...,N2 in the right slit.

In each layer, the particles interact via a 2D-pairwise po-
tential V(r ), r denoting the 2D-interparticle distance. The
interslit coupling is described by a radial symmetric pair po-
tential V12(r ), r denoting the distance between a particle
from slit 1 to another particle from slit 2. Although we have
studied cases whereV(r )[V12(r ), we assume, in general,
differentV(r )’s andV12(r )’s resulting in a set of three dif-
ferent models I, II, and III.

In our first model~model I! we take a truncated two-
dimensional Lennard-Jones potential

VLJ~r !5 H4e@~s/r !122~s/r !6#
0

for r<r c
for r.r c

~4!

for both potentialsV(r ) andV12(r ). Here,e sets an energy
ands a length scale andr c[3s is the cutoff distance. This
potential is depicted in Fig. 2. It is a well-known two-
dimensional model potential that was also studied for quite
different topics as local liquid structure@6,7#, freezing
@8–11#, and shear-induced aggregation@4#.

A second model~model II! is defined by adopting the
Lennard-Jones expression~4! for V(r ) and assuming a
Yukawa form forV12(r ):

V12~r !5H e
s

r
exp~2kr /s! for r<r c

0 for r.r c .

~5!

Here the dimensionless parameterk[1 determines the range
of the interlayer coupling.

Finally in a third model ~model III!, we take
V12(r )[V(r ) with

V~r !55
4e@~s/r !122~s/r !6# for <1.8s

e@20.2275~r /s!211.1880~r /s!21.5154#

for 1.8s,r<3s

0 for r.3s. ~6!

This potential, which is also shown in Fig. 2, is a Lennard-
Jones potential with a repulsive parabolic well constructed in
such a way that the potential and its first derivative are con-
tinuous atr51.8s.

Henceforth, we fix the temperature to beT50.45e/kB .
For a truncated two-dimensional Lennard-Jones system~4!,
the triple temperatureTt is aboutTt50.415e/kB and the
critical temperatureTc is aboutTc50.533e/kB @3#. These
parameters are expected not to change drastically if a small
repulsive well is added as in~6!. Consequently, the chosen
temperature guarantees that the system exhibits a first-order
liquid-gas transition well separated from the critical point
such that density fluctuations are rather small.

FIG. 1. Schematic view of the setup. Two two-dimensional slits
with areaA and distanceh and corresponding in-plane potential
V(r ) and interlayer interactionV12.

FIG. 2. Reduced interparticle potentialV(r )/e vs reduced dis-
tance r /s: Lennard-Jones potential of model I~broken line! and
Lennard-Jones potential with a parabolic well from model III~solid
line!. For r,1.8s, the potentials are identical.
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III. DENSITY-FUNCTIONAL THEORY

A. Theoretical framework

If we assume a homogeneous one-particle density distri-
bution in both slits, we can write down a simple expression
for the total Helmholtz free energy of the double-slit system
by using density-functional theory@1#. The total free energy
F is then a function ofr1 and r2 and can be written as
follows:

F~r1 ,r2!5F~r1!1F~r2!1F12~r1 ,r2!, ~7!

whereF~r! is the free energy for a single slit andF12~r1,r2!
describes the interaction between the slits. The quantityF~r!
can be readily obtained by computer simulation or liquid-
state theory of a homogeneous two-dimensional bulk liquid.
In fact we shall determineF~r! by computer simulation in
Sec. IV. The crucial part of the theory is the interaction term
F12~r1,r2!. We perform a mean-field theory@12,1# approxi-
mating

F12~r1 ,r2!'^U12&5r1r2E
A
d2r 1E

A
d2r 2g12

3~ urW12rW2u!V12~ urW12rW2u!. ~8!

Here,U12 is the interlayer potential energy,^•••& denotes a
canonical average and the interlayer pair correlation function
g12(r ) is defined via

g12~r !5
1

r1r2
K (
i51

N1

(
j51

N2

d~x2x1
~ i !!

3d~y2y1
~ i !!d~x2

~ j !!d~y2
~ j !!L ~9!

with r5Ax21y2. Consequently we get within this mean-
field approximation

F12~r1 ,r2!5r1r2AV0 , ~10!

where the important constantV0 embodies the globally aver-
aged interlayer interaction

V052pE
h

r c
dr rg12~r !V12~r !. ~11!

It has to be noted that it is the single parameterV0 that
describes the slit-slit interaction in our theory.

Defining the free energy per particlef (r)5F(r)/N and
the grand canonical free energy per areav~r!5V~r!/A for
the single-slit system, we can write down the following ex-
pression for the total grand canonical free-energy density
v~r1,r2!5V~r1,r2!/A:

v~r1 ,r2!5v~r1!1v~r2!1r1r2V05r1f ~r1!1r2f ~r2!

2m~r11r2!1r1r2V0 . ~12!

The actual values of the slit densities are now determined by
minimizingv~r1,r2! with respect tor1 andr2 at fixedT, A,
andm. Since f ~r! is a highly nonlinear function, in general
the minimization has to be performed numerically. This will
be done further in Sec. V.

B. Conditions for symmetry breaking

Before we proceed further let us do a preliminary analyti-
cal estimation. First we treat the case that the 2D bulk gas
phase is stable which meansm,mc , mc denoting the chemi-
cal potential at liquid-gas coexistence. Ifr1 is a density close
to the bulk gas value andr12 another one close to a liquid
value with

r1,r2 ~13!

we havev~r1!,v~r2!. Assume that a symmetry-breaking
configuration with two different densitiesr1 andr2 is stable.
Then it has lowest grandcanical free energy implying

v~r1!1v~r2!1r1r2V0,2v~r1!1r1
2V0 ~14!

and

v~r1!1v~r2!1r1r2V0,2v~r2!1r2
2V0 . ~15!

Then we show that there is a contradiction. Indeed with
Dv[v~r2!2v~r1!.0 we get from Eqs.~14! and ~15!

2
r1
r2

,
V0r1~r22r1!

Dv
,21, ~16!

FIG. 3. Reduced pressureP*5Ps2/e vs reduced density
r*5rs2 for a small system containingN536 particles. The solid
line is an eighth-order polynomial fit to the simulation data. The van
der Waals loop can clearly be seen and the coexisting pressure
Pc* and the coexisting densitiesrg* and r f* are indicated by the
dotted lines. The open squares are data obtained from a grand ca-
nonical ensemble showing consistency with that from the canonical
ensemble.
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which necessarily impliesr1.r2 in contradiction to our as-
sumption ~13!. This consideration proves that there is no
symmetry breaking within our theory form,mc .

Next, in the casem.mc where the liquid is stable a simi-
lar consideration withDv,0 yields

2
r1
r2

.
V0r1~r22r1!

Dv
.21. ~17!

Hence, oncer1, r2, and Dv are given, there is a certain
range of positive values forV0 where these conditions are
satisfied while they can never be satisfied for negativeV0.

To summarize: Symmetry-breaking density profiles can
only occur form.mc and for repulsive interlayer couplings
V0.0. This establishes the first important result of our paper.
The only approximations are the mean-field approach~8!
which ignores entropy contributions to the free energy stem-
ming from a fluctuating liquid-gas interface inside the layers
and the assumption that there is no freezing transition. In-
deed the symmetry-breaking region inmV0 space can be
preempted by a further phase transition~e.g., freezing! which

is not incorporated into our model. We shall check the va-
lidity of these two assumptions later on by computer simu-
lation. In fact, while the mean-field theory always seems to
be justified, it is possible that an underlying freezing transi-
tion spoils the relative simplicity of our theory.

IV. COMPUTER SIMULATION
FOR THE DENSITY-FUNCTIONAL INPUT

The main requisite for our theory is a knowledge of the
function f ~r! depending on the interparticle forces~4! and
~6!. This is achieved using Monte Carlo~MC! simulation of
one slit in the canonicalNAT ensemble. We use a square
with periodic boundary conditions containing a small num-
ber ofN536 particles. At least 63105 MC steps per particle
were done to perform statistical averages. Using the virial
expression in two dimensions@13#, the pressureP was ob-
tained for varying particle number densitiesr. Looking for a
van der Waals loop inP~r!, the gas-liquid phase transition
was located by performing a Maxwell construction. Finally

FIG. 4. Equipotential lines for the grand canonical free energyv~r1,r2! in the space spanned by the reduced densitiesr1*5r1s
2 and

r2*5r2s
2 for models I and II. A darker region corresponds to a lower free energy.~a! Liquid-liquid situation,V050.25e, Dm50.4e. ~b!

Gas-gas situation,V0520.25e, Dm520.1e. ~c! Situation with broken symmetry,V050.7e, Dm50.4e. ~d! Coexistence situation,V050,
Dm50.
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the free-energy densityf ~r! was obtained by integratingP~r!
along an isotherm as

f ~r!5E
r0

r

dr8
P~r8!

r82
1 f ~r0!. ~18!

Here the constantf 0 was determined by matching the result
to the well-known dilute ideal-gas limit

f ~r!5kBT@ ln~L3r!21# ~19!

asr→0,L denoting the de Broglie thermal wavelength. The
reason to take a relatively small system~N536! was to avoid
internal liquid-gas phase boundaries in the system that re-
duces the magnitude of the van der Waals loop. Since we
shall usef ~r! as a density-functional input where such fluc-
tuations are ignored, one has to enforce this by simulating a
small system size. In fact, simulations with a higher number
of particles~N5256! shows that the loop magnitude is re-
duced although the values of the coexisting densities and
pressures did not change. In order to check consistency of
our simulations, we have also used the grand canonicalmAT
ensemble where the chemical potentialm is prescribed using
the method of Mezei@14# with a neighbor-list method@15#.
Indeed, we found consistency with the simulations in the
canonical ensemble. For more details, we refer to@16#.

Explicit results for the truncated Lennard-Jones potential
~4! relevant for models I and II are shown in Fig. 3. Note that
the pressures occurring during the van der Waals loop can be
negative although the physical coexisting pressures have to
be positive. Also it is demonstrated that the data obtained
from the grand canonical ensemble~open squares! coincide
with that from the canonical ensemble showing consistency
of our simulations in different ensembles. The coexisting
pressure isPc50.017e/s2 while the coexisting gas and liquid
densities turn out to berg50.074/s2 and rf50.71/s2. Fur-
thermore, the chemical potential at coexistence,

mc5 f ~rg!1rg
d f~rg!

dr
[ f ~r f !1r f

d f~r f !

dr
, ~20!

is 21.715e provided the de Broglie thermal wavelengthL is
set tos. For the slightly changed potential~6! in model III,
we obtainPc50.029e/s2, rg50.182/s2, rf50.683/s2, and
mc521.516e again withL[s.

V. RESULTS FROM DENSITY-FUNCTIONAL THEORY

Once we have determined the Helmholtz free energy per
particle f ~r! in the homogeneous bulk phases, we can evalu-
ate explicitly our density-functional theory from Sec. III.
Plotting the key quantityv~r1,r2! which has to be minimized
with respect tor1 andr2, we get qualitatively different situ-
ations for different values ofm andV0. For models I and II
we have shown four cases in Figs. 4~a!–4~d! in the r1-r2
plane. The darker the region the smaller is the value of
v~r1,r2!. In Figs. 4~a! and 4~b!, the minimum occurs on the
diagonal meaning that it occurs forr1[r2, i.e., there is no
symmetry breaking. In fact, in Fig. 4~a! ~V050.25e, Dm
50.4e! the minimum corresponds to a liquid-liquid situation
in the two slits with a density that is close to the coexisting
liquid density. This shows that the necessary conditions for
symmetry breakingV0.0 andDm.0 as obtained from Sec.
III B are indeed not sufficient. On the other hand, in Fig. 4~b!
~V0520.25e, Dm520.1e! there is a gas-gas situation as ex-
pected from our considerations in Sec. II B. In Fig. 4~c! we
have shown a situation withV050.7e andDm50.4e, again
fulfilling the necessary conditions for symmetry breaking
from Sec. III B. Here we really see that the minimum is
off-diagonal, which implies a symmetry-broken density. Fi-
nally, in Fig. 4~d!, the situation of coexistence is shown
~V0[0, Dm50! where the two symmetric situations coexist
with the symmetry-broken situation.

The whole phase diagram is shown in Fig. 5 for more
models I and II and in Fig. 6 for model III showing the
stability of the three situations, gas-gas, liquid-liquid, and
gas-liquid versusDm andV0. As predicted from our estima-
tion in Sec. III B the symmetry-broken situation occurs only
for V0.0 andDm.0. Furthermore, the topology of the phase
diagrams of the I and II models and of the III model are quite
similar.

We finally remark that it isa priori unclear whether the
full V0 scale is realized in a concrete model. As is clear from
the definition~11!, this depends on the explicit form of the
interlayer potentialV12(r ) as well as on the pair correlation
function g12(r ). Since a calculation ofg12(r ) requires a de-
tailed liquid-state analysis for the coupled two-slit model, we

FIG. 5. Phase diagram in the plane of reduced chemical poten-
tial difference Dm*5~m2mc!/e and reduced interlayer coupling
V0*5V0 /e for models I and II. The solid lines are the phase bound-
aries as obtained from density-functional theory. The vertical dotted
line corresponds toDm50.

FIG. 6. Same as Fig. 5 but now for model III.
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henceforth approximate further by assuming

g12~r !'Q~r2h!, ~21!

Q(x) denoting the unit step function. ThenV0 is directly
given as the lateral integral of the interactionV12(r ).

VI. RESULTS FROM COMPUTER SIMULATION
OF THE MODEL

We have done Monte Carlo simulations for the full
coupled two-slit model in the grand canonical ensemble us-
ing the cavity-biased method of Mezei@14,16#. The system
was a square with periodic boundary conditions with an area
ranging between 81s2 and 3600s2. The length of a simula-
tion run after equilibration was typically 43106 Monte Carlo
steps per particle. The three different models were subse-
quently studied.

A. Results for model I

Three different runs~a!, ~b!, and~c! were performed, the
parameters of which are summarized in Table I. The corre-
sponding value ofV0 was calculated using the approximation
~21! and is also included in Table I. The theory predicts a
symmetric profile for runs~a! and ~b! and a broken symme-
try for run ~c!. In fact, the resulting slit densities are in good
agreement with the simulation data in the symmetric case but
fail completely for run~c!, see Table I.

In order to explore the microscopic reason for this dis-
crepancy we have first checked the assumption~21!. The
simulated interlayer pair correlation functionsg12(r ) are
shown in Fig. 7. While the approximationg12(r )'1 turns
out to be valid in the symmetric case, there are strong corre-
lations for run~c! proving that the approximation~21! breaks
down. In fact, if one recalculatesV0 based upon Eq.~11!
with the simulatedg12(r ) one getsV0520.581e for run ~a!
andV0520.504e for run ~b! which are close to20.5e as
predicted by the approximation~21!. For run ~c!, however,
one getsV0524.52e instead of the old valueV05e, i.e.,
even the sign changes. Now if one recalculates the slit den-
sities with this new value ofV0 one gets a symmetric situa-
tion with r15r250.890s2, which is still not in agreement
with the simulation. The microscopic reason for that be-
comes clear if one plots a typical particle configuration of the
MC simulation, see Fig. 8. One sees a clear ordering into two
intersecting triangular lattices in the two slits. Two neighbor-
ing particles from different slits are basically located in the
Lennard-Jones minimum ofV12(r ) that is also reflected by
the high peak ing12(r ). This finally results in freezing. Since
the freezing transition is not incorporated into our simple

density-functional approach, the theory fails in predicting the
correct slit densities.

To summarize: There is no symmetry breaking in model
I since it was preempted by the freezing transition. As long
as one is in a symmetric situation, liquid-liquid or gas-gas,
the slit densities are in quantitative agreement with the
theory.

B. Results for model II

In model II, the interlayer interaction~5! is purely repul-
sive. Hence it is expected that a freezing transition due to
particle aggregation in the minima ofV12(r ) is suppressed.
Indeed, our theoretical analysis was completely confirmed by
computer simulation.

In order to check the theoretical predictions, we per-
formed a set of MC simulations in theDmV0 plane. We
remark that the simulations were done for differenth; V0
was then determined by adopting Eqs.~21! and~11!. A sys-
tem size ofA5576s2 was used. We started with three dif-
ferent initial configurations corresponding to liquid-liquid,
gas-gas, and liquid-gas situations in order to check consis-
tency of the final result and to see effects of hysteresis di-
rectly. The results are summarized in Fig. 9. An open square
in Fig. 9 means that the system relaxes to the same situation
irrespective of the initial configuration. This gives strong
support that equilibrium was reached within the duration of
the simulation. In fact, if the final situation was unique, it did
agree with the theoretical prediction@again withV0 obtained
from Eq. ~21!#. A cross in Fig. 9 means that the system
exhibited hysteresis effects during the simulation. This can
be interpreted as bars of the statistical error in the location of

FIG. 7. Interlayer pair correlation functiong12(r ) vs reduced
distancer /s for model I: run~a! ~solid line!, run ~b! ~dotted line!,
and run~c! ~dot-dashed line!.

TABLE I. Parameters and results for three different runs~a!, ~b!, and ~c! for model I. Given are the
system sizeA*5A/s2, the reduced chemical potentialm*5m/e, the reduced plate distanceh*5h/s, the
reduced interlayer couplingV0*5V0 /e obtained from Eqs.~11! and~21!, as well as the reduced densities in
the two slits as obtained from simulation~MC! and density-functional theory~DFT!.

Run A* m* h* V0* r1* ~MC! r2* ~MC! r1* ~DFT! r2* ~DFT!

~a! 3600 22.1 1.811 20.5 0.0113 0.0113 0.0144 0.0144

~b! 576 21.32 1.811 20.5 0.816 0.807 0.790 0.790

~c! 576 21.32 0.848 1.0 0.831 0.830 0.0149 0.7624

6628 54MICHAEL MERKEL AND HARTMUT LÖ WEN



the phase boundary. At least for the series of runs presented,
the phase boundaries of the theory were excellently repro-
duced by the simulation. In particular, symmetry-breaking
density profiles do occur as predicted by theory. In Fig. 10 a
typical snapshot of particle positions is shown, clearly exhib-
iting a gas-liquid situation. Moreover, we have compared the
slit densities with the theoretical values in Figs. 11 and 12.
Again, the agreement was quantitatively correct.

Finally we have investigated the stability of a coexisting
situation in one slit for the liquid-gas situation. As an initial
configuration, we have chosen a liquid drop surrounded by
its gas in one slit and the complementary setup~gas bubble
surrounded by a liquid! in the other slit. Of course creating
an interface in a slit costs a line tension but it isa priori not
clear whether the higher entropy of fluctuating islands can
result in a symmetric situation. In other terms, such an effect
would imply that our mean-field approximation~8! has bro-
ken down. We have taken a very large sample with an area

of A51764s2 and monitored snapshots during the simulation
in Fig. 13. We observed that the drop was not stable but
disappeared. This demonstrates that interface fluctuations, at
least on the length scale prescribed by the system size, do not
change symmetry-breaking density profiles. This is, in fact,
expected since the underlying liquid-gas transition is
strongly first order and fluctuations are expected not to play
any role. The situation, of course, may drastically change for
temperatures close to the critical point.

C. Results for model III

Once we have established symmetry breaking in model II,
one may ask whether it also occurs in a more realistic model
whereV(r )[V12(r ). In fact, adopting model III, we found,
again, that symmetry breaking occurred. The results of com-
puter simulations again coincided with that gained from

FIG. 8. Particle positions projected onto thexy-slit plane for
model I @run ~c!#. The particles of slit 1 are black while that of slit
2 are represented by open circles. In this snapshot,N15486 and
N25487.

FIG. 9. Same as Fig. 5 but now with the results of computer
simulation. The open square means a unique final configuration that
coincides with that predicted by density-functional theory. A cross
means that the final configuration depends on the initial guess.

FIG. 10. Snapshot of a configuration, the symmetry-breaking
regime. Particle position in thexy plane for~a! the left slit and~b!
the right slit. The parameters arem521.32e andV051.0e ~model
II !.
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density-functional theory. The only difference was that fluc-
tuations were a bit more pronounced since the temperature
was a bit closer to the critical one. For the explicit results and
for more details, we refer to@16#.

VII. DISCUSSION AND OUTLOOK

In order to verify the predicted symmetry-breaking den-
sity profiles in real samples, we suggest observations on me-
soscopic colloidal particles suspended in a solvent and con-
fined between two parallel plates. The external potential
Vext(z), z being the coordinate perpendicular to the walls, is
governed by the wall-particle interaction. In fact, the van der
Waals attraction@17,5,18# between the walls and the par-
ticles leads to two deep symmetric minima near wall contact.
The strength of this interaction can be tuned by varying the
nature of the solvent. Assuming that the particles are mainly
captured in these two minima, we can justify the applicabil-
ity of our simple-slit model. Next, the interparticle forces
need to have an attraction between particles from the same
slit ~in order to exhibit a liquid-gas transition! and a repul-
sion between particles from different slits~in order to avoid
freezing!. Possible realizations are sterically stabilized sus-
pensions that are additionally low charged with added poly-
mer in the solution. The steric stabilization induces a strong
short-ranged repulsion; the added polymer leads to an effec-
tive attraction on a slightly longer-ranged length scale and
the weakly screened charge finally results in long-ranged re-
pulsion. Neglecting the particle-particle van der Waals at-
traction, the qualitative structure of the resultingV(r ) is very

much similar to that assumed in our model III. An explicit
difference betweenV(r ) andV12(r ) can be obtained by ap-
plying an electric or magnetic field perpendicular to the
plates that induces dipoles in the particles resulting into an
anisotropic effective interaction which was assumed in
model II. Hence, at least in principle, experimental realiza-
tions of our models are conceivable.

In conclusion, we have established, by computer simula-
tion and density-functional theory, that a system confined in
a symmetric external potential can exhibit density profiles
that break the symmetry of the external potential. Explicit
results were obtained, near the two-dimensional liquid-to-gas
transition, in a simple two-slit model. We reemphasize that
the discrete symmetry contained in the external potential
Vext(z) can or cannot be broken depending delicately on the
nature of the interparticle potentialV12(r ). Also, it seems
indeed to be possible to verify the predicted discrete symme-
try breaking experimentally. In an experiment on confined
colloids one would notice symmetry-breaking density pro-
files by watching the particle configurations in real space
using video microscopy~see, e.g.,@19#! ending up with pic-
tures that are identical to our snapshots gained from the com-
puter simulation. Another possibility to extract the colloidal
density profile is light scattering@20#.

We finish with a couple of remarks: First, it would be
interesting to explore the disappearance of symmetry-
breaking density profiles and the associated scaling behavior
if the temperature is enhanced towards the critical point.

FIG. 11. Reduced densities~a! in the first slit r1* , ~b! in the
second slitr2* , vs reduced chemical potentialm* for constant value
of V05e. The open squares are the results of the MC simulation
while the solid lines are that obtained from density-functional
theory. FIG. 12. Same as Fig. 11 but now for fixed chemical potential

m521.32e and varyingV0.
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FIG. 13. Snapshot of typical particle configurations in the left and right slit during the MC simulations starting from a droplet configu-
ration with interface~model II!. The parameters arem521.32e andV05e. ~a! Initial configuration, the droplet occupies 35% of the total
area.~b! After 1.63106 MC moves.~c! After 3.23106 MC moves. Here the symmetry-breaking equilibrium was nearly reached.
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Second, we would like to point out that the freezing transi-
tion in an external potential of parallel confining walls also
breaks the discrete symmetry if the crystalline phase is buck-
led or unsymmetrically layered@21#.
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