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Symmetry-breaking density profiles in confined liquids
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Density profiles of a liquid confined between two parallel plates are studied near a liquid-gas transition. The
system is additionally exposed to an external field depending on the coordinate perpendicular to the plates that
possesses a discrete left-right symmetry with respect to the midplane between the plates. It is found that the
equilibrium density profiles can be symmetry breaking, i.e., they do not possess the discrete left-right symme-
try of the external field. Explicit results are obtained within a simple double-slit model consisting of two layers
of two-dimensional Lennard-Jones systems using both computer simulation and density-functional theory.
Such symmetry-breaking profiles should be observable in confined colloidal suspensions.
[S1063-651X%96)10112-4

PACS numbe(s): 64.70.Fx, 64.60-i, 82.70.Dd

I. INTRODUCTION 1
p(2)= 35 expln—Ved2)/ksT}, 3
If a classical fluid is exposed to an external field with a
given symmetry, it is an interesting question whether or nok,T denoting the thermal energy, the thermal de Broglie
the resulting equilibrium one-particle density profile respectsyavelength, angs the chemical potential. The density pro-
the symmetry contained in the external potential. Far awayjle is thus always respecting the symmetry of the external
from any phase transition, the symmetry of the external fielthotential. However, near a liquid-to-vapor transition, it is, at
is expected to carry over to the density profile of the fluid.least in principle, conceivable that the system is in three
Phase transitions, however, can change the picture comifferent states: (1) liquidlike in the two wells,(2) vapor-
pletely. One classic example of symmetry-breaking densityike in the two wells, and3) liquidlike in one and vaporlike
profiles is the fluid freezing transitiofi]. In the absence of in the other well. The last configuration is, of course, twofold
any external potential, the density profile of the stable crystafiegenerate and corresponds indeed to a density profile with
consists of sharp peaks and is thus violating the full continuproken discrete symmetry.
ous translational symmetry of thganishing field. In order to reduce the complexity of the problem it is
While the freezing transition is connected with a brokenreasonable to introduce a simpler model by considering only
continuoussymmetry the present paper is concerned with thewo discrete values of thecoordinate. We discuss a double-
possibility of breaking aliscretesymmetry near the liquid-  sjit model of two parallel plane layers of a two-dimensional
gas transition. Our model is motivated by the fOIIOWing Con-"quid exh|b|t|ng a |iquid-gas phase transition in the two-
siderations:  One of the simplest external poten¥al{z),  dimensional2D) bulk. This system can be thought of as the
z being a linear spatial coordinate, is that of an “inverted|imit of a double-well potential with infinitely deep minima.

sombrero,” well known from quantum-field theofg] The two layers are coupled by an interlayer potential. One
. ) very familiar example is the two-dimensional Lennard-Jones
Vex(2) =Pl (Z/N)"—(2/N)“], (1) liquid that exhibits a liquid-gas transition in the 2D bulk case

[3,4] at a (temperature dependenthemical potentialu .
where®, sets an energy and a length scale. This double- The possibility of discrete symmetry breaking near the
well potential possesses the discrete inflection, or |eft-rightiquid_gas transition is analyzed using density-functional
symmetry theory and computer simulation. Within both approaches we

establish the following results.

Vex{ —2) = Vex(2). 2 (i) If the net interactionV, between the two layers is
attractive,V,<<0, then there is no symmetry breaking.
If one considers a classical fluid in this external potential far (i) If the interactionV, is repulsive, both layers are in the
away from the freezing transition, it is strongly expected thatvapourlike phaséi.e., no symmetry breakingf the chemi-
the corresponding equilibrium-density profile reflects thecal potentialw is smaller thanu, .
symmetry of the external field. For instance, an ideal gas in (iii) Symmetry breaking exists if the interlayer interaction
an external potential exhibits a density profile is repulsiveand the chemical potential is larger than that of

coexistence, i.e., fovy,>0 andu>pu, .

Hence, symmetry breaking does occur. An experimental
*Also at Institut fir Festkaperforschung, Forschungszentrum Ju Verification of this prediction is still ahead. Suitable samples
lich, D-52425 Jlich, Germany. are mesoscopic dispersions confined between parallel glass
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FIG. 1. Schematic view of the setup. Two two-dimensional slits| ennard-Jones potential with a parabolic well from model($blid
with areaA and distanceh and corresponding in-plane potential |ine). Forr<1.80, the potentials are identical.

V(r) and interlayer interactioW ;5.

plates with added salt and added polyrf&k In this system for both potentialsV(r) andV,y(r). Here, e sets an energy
one can tailor the interparticle interaction by varying the sal@nd o a length scale and,=3o is the cutoff distance. This
concentration, the concentration of added polymer, and thBotential is depicted in Fig. 2. It is a well-known two-
quality of the solvent. Since our model is quite general onglimensional model potential that was also studied for quite
can expect that symmetry breaking does also occur in redlifferent topics as local liquid structur6,7], freezing
samples. [8-11], and shear-induced aggregatieh.

Our work is organized as follows: In Sec. Il we define A second modelmodel 1) is defined by adopting the
the model. Then we turn to density-functional theory in SecLennard-Jones expressio@) for V(r) and assuming a
Il and to computer simulation of the density-functional in- Yukawa form forV,,(r):
put in Sec. IV. Results from density-functional theory are
presented in Sec. V and results from computer simulation are
discussed in Sec. VI. A discussion of a possible experimental Ef exp(—«rlo) for r<r
verification of symmetry-breaking density profiles is finally Vior)= r (5)
done in Sec. VII. 0 for r>r.

Il. THE MODEL

. . : . Here the dimensionless paramekerl determines the range
As already mentioned in the Introduction, we consider af the interlayer coupling

double-slit §ystem qf two inter.acting. paral_lel _plane layers Finally in a third model (model Il), we take
each of which contains a two-dimensional liquid. The sepay, (r)=V(r) with

ration of the layers i and the layer area i&; the system is 12

at a fixed finite temperaturk and a given chemical potential

m. The setup is schematically shown in Fig. 1. The coordi- 4€[(olr)2—(o/r)®] for <1.8¢

nates of the left plane are labeled by the index 1 and that of

the right plane by index 2. Consequently the mean numbe\r/( e —0.2275r/0)*+1.188Qr/ o) ~1.5154
density of particles in the left slit ip;=N;/A while it is for 1.80<r<30
p2=N,/A in the right one. The possible positions of the par- 0 for r>30 6)
ticles aref{"=(x{" ,y{),—h/2), i=1,...N; in the left and '

F=(x{ vy h/2), j=1,...N, in the right slit.

In each layer, the particles interact via a 2D-pairwise po-This potential, which is also shown in Fig. 2, is a Lennard-
tential V(r), r denoting the 2D-interparticle distance. The Jones potential with a repulsive parabolic well constructed in
interslit coupling is described by a radial symmetric pair po-such a way that the potential and its first derivative are con-
tential V45(r), r denoting the distance between a particletinuous atr =1.80.
from slit 1 to another particle from slit 2. Although we have  Henceforth, we fix the temperature to Be=0.45/kg .
studied cases whefd(r)=V,,(r), we assume, in general, For a truncated two-dimensional Lennard-Jones sys&®m
differentV(r)’s andV,(r)’s resulting in a set of three dif- the triple temperaturdl, is aboutT,=0.41%/kg and the

ferent models |, Il, and IlI. critical temperatureT .. is aboutT.=0.53%/kg [3]. These
In our first model(model ) we take a truncated two- parameters are expected not to change drastically if a small
dimensional Lennard-Jones potential repulsive well is added as i6). Consequently, the chosen
4 N2 (6] § _ temperature guarantees that the system exhibits_ a first-qrder
V(1) = el(alr)*=(alr)’] for r<r, (4) liquid-gas transition well separated from the critical point
L 0 for r>re such that density fluctuations are rather small.
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with r=/Xx?*+y?. Consequently we get within this mean-
field approximation

Fidp1,p2)=p1p2AVy, (10

where the important consta¥t, embodies the globally aver-
aged interlayer interaction

e
V0=2wf dr rgqo(r)Vo(r). 1y
h
L It has to be noted that it is the single parameétgyrthat
0 A 02 0.4 06 p 0B describes the slit-slit interaction in our theory.
P Defining the free energy per particfép)=F(p)/N and

the grand canonical free energy per ate@)=Q(p)/A for
FIG. 3. Reduced pressur@* =Pg?/e vs reduced density the Single-slit system, we can write down the following ex-
p*=po® for a small system containin =36 particles. The solid pression for the total grand canonical free-energy density
line is an eighth-order polynomial fit to the simulation data. The vanw(py,02)=Q(p1,p)/A:
der Waals loop can clearly be seen and the coexisting pressure
Pt and the coexisting densitigs; and p7 are indicated by the  @(p1,p2) = @(p1)+ w(p2)+p1p2Vo=p1f(p1) +p2f(p2)
dotted lines. The open squares are data obtained from a grand ca-
nonical ensemble showing consistency with that from the canonical —u(p1tp2)+p1paVo. (12

ensemble. . e .
The actual values of the slit densities are now determined by

minimizing w(p,,p,) With respect top; and p, at fixed T, A,
and . Sincef(p) is a highly nonlinear function, in general
A. Theoretical framework the minimization has to be performed numerically. This will

If we assume a homogeneous one-particle density distr?® done further in Sec. V.

bution in both slits, we can write down a simple expression

for the total Helmholtz free energy of the double-slit system B. Conditions for symmetry breaking

by using density-functional theofil]. The total free energy  pgefore we proceed further let us do a preliminary analyti-

F is then a function ofp; and p, and can be written as .4 estimation. First we treat the case that the 2D bulk gas

follows: phase is stable which meaps<u,, . denoting the chemi-

cal potential at liquid-gas coexistencepilfis a density close

Flp1.p2) =F(p1) T F(p2) +F 1l p1.p2), D o tfle bulk gas (\q/alueganﬂlz another (;)rlle close to);l liquid

value with

I1l. DENSITY-FUNCTIONAL THEORY

whereF(p) is the free energy for a single slit afd ,(p1.,p,)

describes the interaction between the slits. The quaRtipy pP1<p2 (13
can be readily obtained by computer simulation or liquid- )
state theory of a homogeneous two-dimensional bulk liquidWe have w(p)<w(p,). Assume that a symmetry-breaking
In fact we shall determin& (p) by computer simulation in ~ configuration with two different densitigs andp, is stable.
Sec. IV. The crucial part of the theory is the interaction termThen it has lowest grandcanical free energy implying

F12(p1,02). We perform a mean-field theofit2,1] approxi-
mating w(p1)+o(py) +p1pVo<2w(py)+piVo (14

and

F p2)~(Up)= szrfdzr
12p1.p2)=(U12) = p1p2 A tla 2012 w(p1)+ w(py)+p1p2Vo<2w(p,) + p3Vo. (15

X ([F1= o)Vl |F1=T2]). ®  Then we show that there is a contradiction. Indeed with
Aw=w(p,)—w(p;)>0 we get from Eqgs(14) and(15)
Here, U, is the interlayer potential energy,--) denotes a
canonical average and the interlayer pair correlation function B &<V0P1(P2—P1)< 1 (16)
015(r) is defined via P2 Aw '
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FIG. 4. Equipotential lines for the grand canonical free enesy; ,p,) in the space spanned by the reduced densitfes p,0® and
p% =p,a? for models | and Il. A darker region corresponds to a lower free endayLiquid-liquid situation,Vy=0.25, Au=0.4e. (b)
Gas-gas situationyy=—0.25, Au=—0.1e. (c) Situation with broken symmetryy,=0.7¢, An=0.4e. (d) Coexistence situatiorV,=0,
Au=0.

which necessarily impliep;>p, in contradiction to our as- is not incorporated into our model. We shall check the va-
sumption (13). This consideration proves that there is nolidity of these two assumptions later on by computer simu-

symmetry breaking within our theory fQr<u. ~lation. In fact, while the mean-field theory always seems to
Next, in the case.>pu, where the liquid is stable a simi- be justified, it is possible that an underlying freezing transi-
lar consideration witl\w<0 yields tion spoils the relative simplicity of our theory.

_p1_Vopalpa=py) 17
P2 Aw IV. COMPUTER SIMULATION
FOR THE DENSITY-FUNCTIONAL INPUT
Hence, oncep,, p,, and Aw are given, there is a certain ) . .
range of positive values fov, where these conditions are "€ main requisite for our theory is a knowledge of the
satisfied while they can never be satisfied for negalye  function f(p) depending on the interparticle forcé$) and
To summarize: Symmetry-breaking density profiles can(6). This is achieved using Monte CarMC) simulation of
only occur foru>u. and for repulsive interlayer couplings oneslit in the canonicaNAT ensemble. We use a square
V>0. This establishes the first important result of our paperwith periodic boundary conditions containing a small num-
The only approximations are the mean-field appro&@h ber of N=36 particles. At least 810° MC steps per particle
which ignores entropy contributions to the free energy stemwere done to perform statistical averages. Using the virial
ming from a fluctuating liquid-gas interface inside the layersexpression in two dimensiorjd3], the pressurd® was ob-
and the assumption that there is no freezing transition. Intained for varying particle number densitiesLooking for a
deed the symmetry-breaking region jr\V, space can be van der Waals loop iP(p), the gas-liquid phase transition
preempted by a further phase transitiery., freezingwhich ~ was located by performing a Maxwell construction. Finally
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FIG. 5. Phase diagram in the plane of reduced chemical poten- FIG. 6. Same as Fig. 5 but now for model III.

tial difference Au* =(u—uc)/e and reduced interlayer coupling

V§ =V, /e for models I and Il. The solid lines are the phase bound-is —1.715% provided the de Broglie thermal wavelengthis

aries as obtained from density-functional theory. The vertical dottedset to . For the slightly changed potentiés) in model Il1,

line corresponds tx=0. we obtain P,=0.02%/0”, p,=0.182b% p;=0.683b% and
me=—1.516 again withA=o.

the free-energy densitly(p) was obtained by integrating(p)

along an isotherm as V. RESULTS FROM DENSITY-FUNCTIONAL THEORY
o P(p') Once we have determined the Helmholtz free energy per
f(p)=f dp’ —5 +f(pg). (18 particle f(p) in the homogeneous bulk phases, we can evalu-
Po P ate explicitly our density-functional theory from Sec. Ill.

Plotting the key quantitys(p;,p,) which has to be minimized
Here the constarfty was determined by matching the result with respect top; andp,, we get qualitatively different situ-

to the well-known dilute ideal-gas limit ations for different values oft andV,. For models | and I
we have shown four cases in Figgaj-4(d) in the p;-p,
f(p)=kgT[IN(A3p)—1] (190 plane. The darker the region the smaller is the value of

(p1,p2)- In Figs. 4a) and 4b), the minimum occurs on the

. : diagonal meaning that it occurs fpr=p,, i.e., there is no
asp—0, A denoting the de Broglie thermal wavelength. Thesymmetry breaking. In fact, in Fig.(# (Vo=0.25 A

reason to take a relatively small systé=36) was to avoid o I s B
- - L =0.4¢) the minimum corresponds to a liquid-liquid situation
internal liquid-gas phase boundaries in the system that re the two slits with a density that is close to the coexisting

duces the magnitude of the van der Waals loop. Since w iquid density. This shows that the necessary conditions for

shall usef(p) as a density-functional input where such fluc- . :
: : : : : ymmetry breaking/,>0 andAu>0 as obtained from Sec.
tuations are ignored, one has to enforce this by simulating | B are indeed not sufficient. On the other hand, in Fign)4

small system size. In fact, simulations with a higher numbe (Vo= —0.25, Ap=—0.1e) there is a gas-gas situation as ex-

of particles(N=256) shows that the loop magnitude is re- ; ; . X
duced although the values of the coexisting densities an ected from our_conglderqtlons in Sec. Il B. In Flgc)élw_e
ve shown a situation with/;=0.7¢ and Au=0.4¢, again

pressures did not change. In order to check consistency ulfilling the necessary conditions for symmetry breakin
our simulations, we have also used the grand canopiéal from Sgec 1B, Here ywe really see tha): the rT?linimum ig
ensemble where the chemical potentia prescribed using off-diagonal, which implies a symmetry-broken density. Fi-

the method of Mez€ji14] with a neighbor-list method15]. 2 o> . .
Indeed, we found consistency with the simulations in thena”y’ in Fig. 4d), the situation of coexistence is shown

canonical ensemble. For more details, we referl@l. (VOEO’ Ap=0) where the two sy_mmetric situations coexist
Explicit results for the truncated Lennard-Jones potentia\’\”t_rllhtge Sg(;?eme:g-zr%kgnrzgqua“onﬁo A in Fia. 5 for more
(4) relevant for models | and Il are shown in Fig. 3. Note that odelsv}l and FIJI a?]d r|1 ?: 6ISfoSr mvt\;dell i I%ho ina the
the pressures occurring during the van der Waals loop can ability of the three Isitualtgi]bns as-aas. i uid-IiWIuig and
negative although the physical coexisting pressures have 0 y » gas-gas, 1iq quid,

be positive. Also it is demonstrated that the data obtainegas'IIqUId versusiu andV,. As predicted from our estima-

: - on in Sec. lll B the symmetry-broken situation occurs only
from the grand canonical ensemlilgpen squargscoincide
with that from the canonical ensemble showing consistencfor V>0 andAn>0. Furthermore, the topology of the phase

of our simulations in different ensembles. The coexistingéi';%;arms of the | and Il models and of the il madel are quite

ggsssi'ttij;i I:jﬁn: 21121:06/%;@360?&50;?&32n_gog?i/? dFlhquId We finally remark that it isa priori unclear whether the
e o ' © full V,scale is realized in a concrete model. As is clear from
thermore, the chemical potential at coexistence, the definition(11), this depends on the explicit form of the
interlayer potentiaV,,(r) as well as on the pair correlation
—f(pg) + df(pg) —f(pg)+ df(p) (20) function g45(r). Since a calculation ofj;,(r) requires a de-
Ke™=1Pg) T Py dp pe)T Pt dp ’ tailed liquid-state analysis for the coupled two-slit model, we
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TABLE |I. Parameters and results for three different ruas (b), and (c) for model I. Given are the
system sizeA* = A/g?, the reduced chemical potential = u/e, the reduced plate distant& =h/co, the
reduced interlayer couplingg =V, /e obtained from Eqs(11) and(21), as well as the reduced densities in
the two slits as obtained from simulatigkiC) and density-functional theoryDFT).

Run A* w* h* Vo pi MC)  p3 (MC)  p7 (DFT)  p; (DFT)
@ 3600 2.1 1811 -05 0.0113 0.0113 0.0144 0.0144
(b) 576 —-1.32 1.811 -05 0.816 0.807 0.790 0.790
(¢ 576 -1.32 0.848 1.0 0.831 0.830 0.0149 0.7624
henceforth approximate further by assuming density-functional approach, the theory fails in predicting the
correct slit densities.
91r)=06(r—h), (21) To summarize: There is no symmetry breaking in model

| since it was preempted by the freezing transition. As long
as one is in a symmetric situation, liquid-liquid or gas-gas,
the slit densities are in quantitative agreement with the
theory.

O(x) denoting the unit step function. Thew, is directly
given as the lateral integral of the interactigp,(r).

VI. RESULTS FROM COMPUTER SIMULATION

OF THE MODEL B. Results for model Il

We have done Monte Carlo simulations for the full |n model II, the interlayer interactiot6) is purely repul-
coupled two-slit model in the grand canonical ensemble ussjve. Hence it is expected that a freezing transition due to
ing the cavity-biased method of Mezgi4,16. The system particle aggregation in the minima d,,(r) is suppressed.

was a square with periodic boundary conditions with an areghdeed, our theoretical analysis was completely confirmed by
ranging between 8# and 360@°. The length of a simula- computer simulation.

tion run after equilibration was typlca||y>4106 Monte Carlo In order to check the theoretical predictionS, we per-
steps per particle. The three different models were subsgprmed a set of MC simulations in thA .V, plane. We
quently studied. remark that the simulations were done for differéntV,
was then determined by adopting E¢&1) and(11). A sys-
A. Results for model | tem size ofA=5760° was used. We started with three dif-

ferent initial configurations corresponding to liquid-liquid,
gas-gas, and liquid-gas situations in order to check consis-
tency of the final result and to see effects of hysteresis di-
rectly. The results are summarized in Fig. 9. An open square
in Fig. 9 means that the system relaxes to the same situation
d irrespective of the initial configuration. This gives strong
upport that equilibrium was reached within the duration of
the simulation. In fact, if the final situation was unique, it did
agree with the theoretical predictipagain withV, obtained
from Eg. (21)]. A cross in Fig. 9 means that the system
exhibited hysteresis effects during the simulation. This can
be interpreted as bars of the statistical error in the location of

Three different runga), (b), and(c) were performed, the
parameters of which are summarized in Table I. The corre
sponding value 0¥y was calculated using the approximation
(21) and is also included in Table I. The theory predicts a
symmetric profile for runga) and(b) and a broken symme-
try for run (c). In fact, the resulting slit densities are in goo
agreement with the simulation data in the symmetric case b
fail completely for run(c), see Table I.

In order to explore the microscopic reason for this dis-
crepancy we have first checked the assumpt@®h. The
simulated interlayer pair correlation functiorgg,(r) are
shown in Fig. 7. While the approximatiogy,(r)~1 turns
out to be valid in the symmetric case, there are strong corre-
lations for run(c) proving that the approximatiof21) breaks — ————
down. In fact, if one recalculateg, based upon Eq(ll) ir f 7
with the simulatedy;,(r) one getsv,=—0.581¢ for run (a) [ l ]
and V,=—0.50% for run (b) which are close to-0.5¢ as .
predicted by the approximatiof21). For run(c), however, i ¥
one getsVy=—4.52% instead of the old valu&/,=¢, i.e., C
even the sign changes. Now if one recalculates the slit den-
sities with this new value 0¥, one gets a symmetric situa-
tion with p;=p,=0.89®?, which is still not in agreement
with the simulation. The microscopic reason for that be- r
comes clear if one plots a typical particle configuration of the i AN
MC simulation, see Fig. 8. One sees a clear ordering into two 05 1 2 3
intersecting triangular lattices in the two slits. Two neighbor- r/o
ing particles from different slits are basically located in the
Lennard-Jones minimum of5(r) that is also reflected by ~ FIG. 7. Interlayer pair correlation functiog,(r) vs reduced
the high peak ig,(r). This finally results in freezing. Since distancer/o for model I:  run(a) (solid line), run (b) (dotted ling,
the freezing transition is not incorporated into our simpleand run(c) (dot-dashed ling

g.,(r)
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FIG. 8. Particle positions projected onto tkg-slit plane for
model I[run (c)]. The particles of slit 1 are black while that of slit
2 are represented by open circles. In this snapdipt486 and

N,=487.

the phase boundary. At least for the series of runs presented, h
the phase boundaries of the theory were excellently repro- s
duced by the simulation. In particular, symmetry-breaking
density profiles do occur as predicted by theory. In Fig. 10 a
typical snapshot of particle positions is shown, clearly exhib-
iting a gas-liquid situation. Moreover, we have compared the
slit densities with the theoretical values in Figs. 11 and 12.

Again, the agreement was quantitatively correct.

Finally we have investigated the stability of a coexisting
situation in one slit for the liquid-gas situation. As an initial
configuration, we have chosen a liquid drop surrounded by
its gas in one slit and the complementary setuas bubble
surrounded by a liquidin the other slit. Of course creating
an interface in a slit costs a line tension but igipriori not
clear whether the higher entropy of fluctuating islands can
result in a symmetric situation. In other terms, such an effec;
would imply that our mean-field approximati@8) has bro-
ken down. We have taken a very large sample with an areg
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FIG. 10. Snapshot of a configuration, the symmetry-breaking
egime. Particle position in they plane for(a) the left slit and(b)
the right slit. The parameters age=—1.32¢ andVy=1.0e (model

).

of A=17645? and monitored snapshots during the simulation
in Fig. 13. We observed that the drop was not stable but
disappeared. This demonstrates that interface fluctuations, at
least on the length scale prescribed by the system size, do not
change symmetry-breaking density profiles. This is, in fact,
expected since the underlying liquid-gas transition is
strongly first order and fluctuations are expected not to play
any role. The situation, of course, may drastically change for
temperatures close to the critical point.

C. Results for model Il

Once we have established symmetry breaking in model I,

FIG. 9. Same as Fig. 5 but now with the results of computeroneé may ask whether it also occurs in a more realistic model

simulation. The open square means a unique final configuration thathereV(r)=V,(r). In fact, adopting model Ill, we found,
coincides with that predicted by density-functional theory. A crossagain, that symmetry breaking occurred. The results of com-

means that the final configuration depends on the initial guess.

puter simulations again coincided with that gained from
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FIG. 11. Reduced densitigs) in the first slitp7, (b) in the . 05 1

second slip3 , vs reduced chemical potentjaf for constant value %
of Vog=e. The open squares are the results of the MC simulation 0
while the solid lines are that obtained from density-functional

theory. FIG. 12. Same as Fig. 11 but now for fixed chemical potential

pu=—1.32 and varyingV,.
density-functional theory. The only difference was that fluc-
tuations were a bit more pronounced since the temperatur@ch similar to that assumed in our model Ill. An explicit
was a bit closer to the critical one. For the explicit results anjitference betwee(r) andV,,(r) can be obtained by ap-

for more details, we refer t16]. plying an electric or magnetic field perpendicular to the
plates that induces dipoles in the particles resulting into an
VIl. DISCUSSION AND OUTLOOK anisotropic effective interaction which was assumed in

In order to verify the predicted symmetry-breaking den-model Il. Hence, at least in principle, experimental realiza-
sity profiles in real samples, we suggest observations on mélons of our models are conceivable.
soscopic colloidal particles suspended in a solvent and con- In conclusion, we have established, by computer simula-
fined between two parallel plates. The external potentiation and density-functional theory, that a system confined in
V,(2), z being the coordinate perpendicular to the walls, isa symmetric external potential can exhibit density profiles
governed by the wall-particle interaction. In fact, the van derthat break the symmetry of the external potential. Explicit
Waals attractior{17,5,18 between the walls and the par- results were obtained, near the two-dimensional liquid-to-gas
ticles leads to two deep symmetric minima near wall contacttransition, in a simple two-slit model. We reemphasize that
The strength of this interaction can be tuned by varying théhe discrete symmetry contained in the external potential
nature of the solvent. Assuming that the particles are mainly/,{z) can or cannot be broken depending delicately on the
captured in these two minima, we can justify the applicabil-nature of the interparticle potentid,,(r). Also, it seems
ity of our simple-slit model. Next, the interparticle forces indeed to be possible to verify the predicted discrete symme-
need to have an attraction between particles from the santey breaking experimentally. In an experiment on confined
slit (in order to exhibit a liquid-gas transitiprand a repul- colloids one would notice symmetry-breaking density pro-
sion between particles from different slii® order to avoid files by watching the particle configurations in real space
freezing. Possible realizations are sterically stabilized sususing video microscopysee, e.g.[19]) ending up with pic-
pensions that are additionally low charged with added polytures that are identical to our snapshots gained from the com-
mer in the solution. The steric stabilization induces a strongputer simulation. Another possibility to extract the colloidal
short-ranged repulsion; the added polymer leads to an effedlensity profile is light scatterinfR0].
tive attraction on a slightly longer-ranged length scale and We finish with a couple of remarks: First, it would be
the weakly screened charge finally results in long-ranged reinteresting to explore the disappearance of symmetry-
pulsion. Neglecting the particle-particle van der Waals atbreaking density profiles and the associated scaling behavior
traction, the qualitative structure of the resultiir) is very  if the temperature is enhanced towards the critical point.
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Second, we would like to point out that the freezing transi- ACKNOWLEDGMENTS
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