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Dynamical correlations of charged rodlike colloidal particles interacting via a Yukawa segment-segment
potential are investigated using extensive Brownian dynamics computer simulations. The model and the pa-
rameters used in the simulations are particularly designed for aqueous suspensions of tobacco-mosaic viruses.
Over a broad range of rod concentrations we calculate the translational long-time self-diffusion coefficient and
study the orientational motion in the disordered phase. It is found that the relaxation of the orientational
correlation has three different regimes: a diffusive short-time motion, another diffusive motion for intermediate
times, and anondiffusivelong-time relaxation. Also dynamical correlations in the nematic phase and near the
isotropic-nematic transition are calculated. The results are compared with experimental data.

PACS number~s!: 36.30.Ey, 61.30.2v, 66.10.2x, 82.70.Dd

I. INTRODUCTION

Colloidal suspensions of rodlike viruses, such as the
tobacco-mosaic virus~TMV ! and bacterial fd virus, are con-
venient model systems for the study of anisotropic fluids.
Liquid crystalline order was observed in TMV suspensions
as early as 1936@1# and experimental and theoretical work
has continued to the present time@2,3#. These studies have
been done on different levels: The first question concerns the
nature of the effective interactions between the rodlike mac-
romolecules. If the rods are sterically stabilized, an interac-
tion model purely governed by excluded volume effects is
appropriate, while for charged suspensions the bare Coulomb
interrod repulsion is screened by the microscopic counteri-
ons, resulting in an effective segment-segment Yukawa inter-
action @4–7#. Next, based on a simple model with pairwise
interactions between the rods, structural correlations in the
disordered phase have been studied using liquid state theory
or computer simulation@20,21#. The theoretical results can
be compared to scattering experiments@8–10#; see, e.g.,
@11,12#. Third, there is an increasing amount of experimental
data for the phase diagram of rods involving nematic, smec-
tic, and fully crystalline phases, which is currently investi-
gated also by theory and computer simulation@13#.

While there is a growing understanding in these structural
and thermodynamic questions, much less is known aboutdy-
namical correlations. It is fair to say that a purely micro-
scopic theory of dynamical correlations is just beginning.
The major problem one has for highly concentrated rod sus-
pensions is that, unlike molecular liquid crystals, the short-
time dynamics is not known due to the complexity of

solvent-mediated hydrodynamic interactions. For highly di-
lute but strongly interacting rods one may, however, safely
neglect the many-body character of these interactions and the
simple picture of Brownian dynamics is justified at least for
highly charged rods at low concentration of added salt. Ex-
perimentally, more data have accumulated over the past de-
cades: One may use birefringence methods, forced Rayleigh
scattering, or dynamical light scattering to obtain informa-
tion about the long-time decay of dynamical correlations.

Computer simulations with Brownian dynamics for a
given interrod interaction provide a third powerful way to get
direct insight into dynamical correlations since, apart from
the statistical error, the results are exact. There are, however,
only few computer simulations for rodlike suspensions. For
infinitely thin uncharged needles, Doiet al. @14# have studied
long-time self-diffusion. For a different phenomenological
model of the rod interaction, Fixman@15# and subsequently
Bitsanis et al. @16,17# have studied orientational long-time
diffusion. Brownian dynamics simulations for the long-time
translational and orientational self-diffusion for hard sphero-
cylinders have been recently presented by Lo¨wen @18#.

However, for charged suspensions of the TMV or fd, a
many-site Yukawa segment model is a much more realistic
description of the interaction@4–7#. As far as we know there
are no Brownian dynamics~BD! computer simulations for
this model. The only exception is the recent work of Branka
and Heyes@19#, which is, however, confined to two sites, i.e.,
to moderately asymmetric rods. As we shall show, two sites
are not sufficient in the intermediate and high concentration
regimes for TMV and fd samples. Hence the two-site model
is not appropriate for the experimentally relevant suspen-
sions. Consequently, a full study with a many-segment model
is necessary if one has a qualitative and quantitative com-
parison with the experimental data in mind.

In this paper we present extensive BD simulations for a
Yukawa interaction model of five to nine sites, whose param-
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eters are adapted to a TMV suspension, over the whole con-
centration regime where the disordered phase is thermody-
namically stable. In particular, translational and rotational
long-time diffusion as well as the collective effective diffu-
sion coefficient are studied as a function of rod concentra-
tion. We find qualitative agreement with experiments. Fur-
thermore we show that the long-time orientational relaxation
is not a standard diffusion process over the unit sphere. This
is known for reversible Newtonian dynamics@22–24#, rel-
evant for rodlike molecules, but it was not yet recognized for
irreversible Brownian dynamics in previous simulations
@14,16#.

We finally study the isotropic-nematic transition. After
having located it we calculate the corresponding dynamical
correlations. Due to a release of constraints on translational
motion from interference of neighboring particles it is found
that the translational long-time coeffcient increases if one
passes through the isotropic-nematic transition.

The paper is organized as follows. In Sec. II, the model is
described. The algorithm and details of the computer simu-
lation are discussed in Secs. III and IV. Structural and dy-
namical correlations are defined in Sec. V and results are
presented in Sec. VI. Finally, we conclude in Sec. VII.

II. MODEL

We consider an ensemble ofN rods in a volumeV. The
cylindrical rods are monodisperse with a lengthL and a di-
ameterd. For concrete calculations we chose TMV param-
etersL5300 nm andd518 nm. Thermodynamically, the rod
suspension is characterized by its number concentration
c5N/V and the temperatureT. The rod concentrationc is
conveniently measured in terms of the overlap concentration
c*[1/L3. The temperature is taken to be fixed to room tem-
peratureT5298 K. A typical rod configuration can be char-
acterized by its center-of-mass coordinates$r i ,i51, . . . ,N%
and its orientations specified by unit vectors
$ui ,i51, . . . ,N%.

The essential input of any statistical mechanics descrip-
tion are the interrod interactions. We rely on a simple but
realistic picture of the interrod forces and torques. The
screened electrostatic interaction among suspended rods is
described by a Yukawa segment model@4–6,25#. In this
model, the total rod chargeQ is distributed equally among
n segments located along the rod axis. The segments belong-
ing to different rods interact through the repulsive part of the
standard Derjaguin-Landau-Verwey-Overbeek~DLVO! po-
tential, which is of Yukawa type. Since the interaction is
assumed to be pairwise, the total potential energy in a given
rod configuration is

U tot5 (
i51,j. i

N

U~r i2r j ,ui ,uj !, ~1!

where the orientation-dependent interrod potential
U(r i2r j ,ui ,uj ) is the sum of all segment-segment interac-
tions

U~r i2r j ,ui ,uj !5
~Q/n!2

4pee0
(

a,b51

n
e2krab

i j

r ab
i j , ~2!

with the interrod segment distance

r ab
i j 5ur i2r j1uidn~2a212n!/22ujdn~2b212n!/2u,

~3!

dn denoting the distance between two neighboring segments
along a rod

dn5
L

A~n11!~n21!
. ~4!

This expression ensures that the quadrupolar moment of the
segmented rod is that of a homogeneous line charge of length
L. Furthermore, the Debye-Hu¨ckel screening constantk is
given by

k25
cQe1( iciqi

2

ee0kBT
. ~5!

e is the elementary charge,cQ/e the concentration of coun-
terions ~assumed as single valenced!, andci the concentra-
tion of additional salt ions with chargesqi . Finally, e0 is the
dielectric constant ande the relative dielectric constant of the
solvent; we take henceforthe578 ~water at room tempera-
ture!.

Let us note three points concerning this Yukawa segment
model. First, the static properties of the fd virus and the
TMV suspensions as measured by dynamic light scattering
experiments@8–11# could be reproduced well by Monte
Carlo~MC! simulations@11#, taking the total rod chargeQ as
one fit parameter.

Second, the general Yukawa form was recently justified in
the framework of the ‘‘primitive model,’’ taking the count-
erions explicitly into account. Withinab initio calculations
one of us~H.L.! @7# has shown that the Yukawa interaction is
indeed a reasonable fit to the effective many-body forces and
torques. However, the actual rod charge and the screening
constantk entering into the Yukawa description may signifi-
cantly deviate from the DLVO predictions. A cylindrical
Poisson-Boltzmann cell model, which also leads to an effec-
tive Yukawa-segment model, is more appropriate for highly
interacting charged rods. This cell model can be analytically
solved without added salt ions, while for added salt only a
numerical solution is possible@26#. In the following we have
fixed the parameterQ, thus empirically fitting the experi-
mental structural data for a TMV suspension.

Third, since the rods cannot penetrate, one should also
include a hard core in the interaction. However, for the rod
concentrations used in this paper we never observed such a
rod overlap during the simulation. Hence we can safely ne-
glect the excluded volume part completely. It should be
noted, however, that this also depends strongly on the num-
ber of sitesn. If n is small, say,n'223, then rods can cross
in the high concentration regime. Therefore we again stress
the necessity of a high site numbern (n.4) for doing simu-
lations for TMVs.

Next, the short-time dynamics of the rods has to be speci-
fied. As already mentioned, we neglect the solvent-mediated
hydrodynamic interactions, which are due to the velocity
field induced by the motion of all macroparticles. The justi-
fication in doing so is that we are dealing with highly diluted
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systems~i.e., with low volume fraction of the rods!, where
the many-body effects of hydrodynamic interactions can be
considered to be small. Hence only hydrodynamic one-
particle properties are taken into account in describing the
short-time self-diffusion coefficientsD0

' andD0
i @27#. These

coefficientsD0
' ,D0

i have been calculated by Tiradoet al.
@28#:

D0
'5

D0

4p
~ lnp10.83910.185/p10.233/p2!, ~6!

D0
i 5

D0

2p
~ lnp20.20710.980/p20.133/p2!, ~7!

with D05kBT/hsL and the length-to-width ratiop5L/d.
HerekB is Boltzmann’s constant andhs is the shear viscosity
of the solvent. The translational diffusion coefficient of the
center-of-mass coordinate is given for a free rod by

D0
T5

1

3
~D0

i 12D0
'!. ~8!

The short-time motion of the orientational degrees of free-
dom as embodied in the unit vectors$ui% is described by
isotropic Brownian motion on the unit sphere characterized
by an orientational short-time self-diffusion coefficientD0

R

@27#, which is given by@28#

D0
R5

3D0

pL2
~ lnp20.66210.917/p20.050/p2!. ~9!

These diffusion coefficients define typical time scales. An
orientational relaxation time can be defined through

t0
R5

1

2D0
R . ~10!

This is the time it takes a free rod to lose all memory about
its initial orientation. Similarly, a translational relaxation
time can be defined

t0
T5

L2

2D0
T . ~11!

For the case of the TMVt0
R51.5 ms andt0

T510 ms.

III. BROWNIAN DYNAMICS ALGORITHM

For the simulation of the Brownian motion of rods we
adopt an algorithm proposed by Ermak@29# for BD simula-
tions of spheres that is readily generalized to rods@18#. In a
BD simulation the trajectories$r i(t),ui(t)% of the particles
are generated by integrating the corresponding Langevin
equations with a finite time stepDt. To obtain the corre-
sponding finite-difference equations we split the center-of-
mass positionr i(t) of rod i into a part parallel and a part
perpendicular to the rod orientationui(t):

r i~ t !5r i
i~ t !1r i

'~ t !, ~12!

with r i
i(t) given by

r i
i~ t ![@ui~ t !•r i~ t !#ui~ t !. ~13!

The same kind of separation can be done for the total force
Fi(t) acting on the center of rodi due to the interactions with
all other rods:

Fi~ t !5Fi
i~ t !1Fi

'~ t !. ~14!

The update equation forr i
i(t) can be written as

r i
i~ t1Dt !5r i

i~ t !1
Dt

kBT
D0

iFi
i~ t !1~Dr i!ui~ t !. ~15!

Here (Dr i) denotes a Gaussian random displacement with
zero mean and variancê(Dr i)2&G52D0

i Dt, ^&G denoting
the average over the Gaussian distribution. The perpendicu-
lar part r i

'(t) has an analogous update equation

r i
'~ t1Dt !5r i

'~ t !1
Dt

kBT
D0

'Fi
'~ t !1~Dr 1

'!ei1~ t !

1~Dr 2
'!ei2~ t !. ~16!

The random displacements (Dr 1
') and (Dr 2

') are uncorre-
lated Gaussian random numbers with zero mean and vari-
ance 2D0

'Dt. Here the vectorsei1(t) andei2(t) are two or-
thogonal unit vectors, which are both perpendicular to
ui(t).

Note that both update equations can be compactly sum-
marized as

r i~ t1Dt !5r i~ t !1
Dt

kBT
Di
TFi~ t !1Dr i , ~17!

with the diffusion tensor

Di
T5D0

'~12uiui !12D0
i uiui , ~18!

uiui representing the dyadic product ofui and the variance-
covariance matrix given by

^~Dr ia!~Dr ib!&52Diab
T Dt. ~19!

Here Dr i follows has a multivariate Gaussian distribution.
This equation is independent of the coordinate system used,
whereas for computational purposes it is more convenient to
use the above form~15! and ~16! of the update equation,
where the diffusion tensorDT is evaluated in the principal
frame of reference in which it becomes diagonal.

Finally, the orientational update equation forui(t) is

ui~ t1Dt !5ui~ t !1
Dt

kBT
D0
RM i~ t !ui~ t !1x1ei1~ t !1x2ei2~ t !,

~20!

with M i(t) denoting the total center-of-mass torque acting on
rod i and x1 ,x2 being two uncorrelated Gaussian random
numbers with zero mean and variance 2D0

RDt. After appli-
cation of Eq.~20!, ui(t1Dt) has to be renormalized such
that uui(t1Dt)u51. The coupling of rotation and translation
happens through the orientation-dependence ofDT(t). Obvi-
ously, for D0

i 5D0
' , rotation and translation become com-

pletely decoupled.
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The BD algorithm presented up to now is exact to order
Dt, its error is ofO(Dt2). It can easily be modified such that
the error introduced in each time step is ofO(Dt3) @30–32#.
For the translational part, we obtain via Eq.~17! a first-order
estimate of the position denoted byr i8(t1Dt). Then the time
step is repeated using the mean of the forces at positions
r i(t) and r i8(t1Dt). We thus have

r i~ t1Dt !5r i~ t !1
Dt

kBT
H 12 @Di

T~ t !Fi~ t !

1D8 i
T~ t1Dt !Fi8~ t1Dt !#J 1Dr i , ~21!

where

^~Dr ia!~Dr ib!&52H 12 @Diab
T ~T!1D8 iab

T ~ t1Dt !#J Dt,

~22!

written in the compact notation of Eq.~17!. The orientational
second-order update equation is

ui~ t1Dt !5ui~ t !1
Dt

kBT
D0
RH 12 @M i~ t !ui~ t !1M i8~ t1Dt !

3ui8~ t1Dt !#J 1Dui , ~23!

where

Dui52H 12 @x1e~ t ! i11x2ei2~ t !1x18ei1~ t1Dt !

1x28ei2~ t1Dt !#J . ~24!

We have used this algorithm, which requires a doubled CPU
time per step as compared to the first-order algorithm, since
the systematic error is smaller. It was carefully checked that
the time step was small enough by doing runs with different
time steps and comparing the results. It was also checked
that static pair correlation data are in perfect agreement with
Monte Carlo results.

IV. SIMULATION

Most runs were performed usingN5512 rods with
n55 segments. For comparison with former MC results we
usedN5256 rods andn53 segments. For concentrations
c.8c* even 5 segments are not sufficient, especially in the
vicinity of the isotropic-nematic transition, which occurs
around 15c* . For these high concentrations 9 segments were
used. Standard periodic boundary conditions with a cubic
simulation box of lengthLb were applied. All parameters
were chosen to resemble a TMV suspension. In particular,
the rod charge ofQ5390e taken from a comparison of ex-
perimental data and MC simulations for static pair correla-
tions @11# seems to be a reasonable choice for all densities
considered here (0.01c*224c* ).

As a starting configuration we used an ordered configura-
tion with the centers of the rods placed on fcc lattice posi-

tions and the rod axes all pointing into the same direction. To
decide when thermal equilibrium was reached we monitored
the translational order parameter

r~k!5
1

N (
i51

N

cos~k•r i !, ~25!

wherer i is the vector of the center of mass of thei th rod and
k5@(2N)1/3p/Lb#(21,1,21) is a reciprocal lattice vector
of the initial lattice.

To detect rotational order we monitor the quantity

P1~ t !5
1

N (
i51

N

P1„ui~0!•ui~ t !…, ~26!

whereP1(x)5x is the first Legendre polynomial@33#. In the
disordered~fluid! phase,r(k) andP1(t) start out at 1 and
finally fluctuate around zero, at which point we start to take
ensemble averages. We have also monitored the nematic or-
der parameter as given by Allenet al. @34#. The nematic
order parameter is given through the largest eigenvaluel1

of theQ tensor

Q5
1

N (
i51

N S 32 uiui2 1

2
1D . ~27!

uiui denotes the dyadic product of the orientation vectors of
particle i .

The equilibration phase takes about 100 000 steps, de-
pending upon density. For production runs we used a time
step ofDt50.000 64t0

R. For densitiesc.8c* , Dt was taken
as 0.000 32t0

R. The number of time steps used for taking
statistics was between 1.43106 at 0.1c* to 0.63106 at
18c* .

V. CORRELATION FUNCTIONS

A. Static correlation functions
The main static correlation functions are the structure fac-

tor and the pair distribution function. In the case of rods they
are related by a Hankel transform@4,6#. The pair distribution
function is defined via

g~r12r2 ,u1 ,u2!5K (
i , j51;iÞ j

N

d~r i2r1!d~r j2r2!

3d~ui2u1!d~uj2u2!L , ~28!

where^& is a canonical average. It can be expanded@5# in the
space fixed coordinate frame as

g~r ,u1 ,u2!5 (
l 1 ,l 2 ,l

gl 1l 2l ~r !F l 1l 2l
~u1 ,u2 , r̂ !, r̂5

r

r
,

~29!

where the angular part can be decomposed into spherical
harmonics
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F l 1l 2l
5 (

m1 ,m2 ,m
C~ l 1l 2l ;m1m2m!Yl 1m1

3~u1!Yl 2m2
~u2!Yl m~ r̂ !. ~30!

Here C(l 1l 2l ;m1m2m) is a Clebsch-Gordan coefficient
andYl m(u) a spherical harmonic. The physical meaning of
the first few coefficents in Eq.~29! is the following: The
function

gcc~r ![^g~r ,u1 ,u2!&u1u25~4p!23/2g000~r ! ~31!

is the usual center-center distribution function,r being the
distance between the centers of mass of two rods. The aver-
age ^ &u1u2 is defined as the unweighted average over all
directions

^ &u1u2[
1

~4p!2
E du1du2•••. ~32!

The angular correlations can be described through the ex-
pression

gP2~r ![
^g~r ,u1 ,u2!P2~cosu12!&u1u2

^g~r ,u1 ,u2!&u1u2
5

1

A5
g220~r !

g000~r !
. ~33!

HereP2(x)5(3x221)/2 denotes the second Legendre poly-
nomial andu12 is the angle betweenu1 andu2 . The function
gP2(r ) is positive when rods tend to stay parallel, whereas it

is negative if two rods with center-of-mass distancer are on
average perpendicular. For a fully aligned parallel configu-
ration we havegP2(r )[1, while for a perpendicular arrange-

mentgP2(r )[21/2. For completely uncorrelated configura-

tionsgP2(r )[0.

Similarly, the coefficientg202(r ) has a negative value if
on average the connection vectorr̂ of the center of mass of
two rods is perpendicular to the orientation vectoru of one
of the rods.g202(r ) is positive if r̂ and u are parallel on
average. For completely uncorrelated configurations
g202(r )[0.

The static structure factorS(k) can directly be measured
in laser light scattering experiments. It is defined by@6#

S~k!5
1

F~k!NK (
i , j51

N

eik•~r i2r j !

3
sin~k•uiL/2!

k•uiL/2

sin~k•ujL/2!

k•ujL/2
L . ~34!

The functionF(k) is the form factor of a rod; it depends only
on the shape of the particles and is given by

F~k!5 K S sin~k•uiL/2!

k•uiL/2
D 2L , ~35!

which can be written as@35#

F~k!5S 2

kLE0
kL/2

dx j0~x! D 2@ j 0~kL/2!#2, ~36!

with j 0(x) being the first spherical Bessel function.

B. Dynamical translational correlation functions
As regards dynamical correlations, we concentrate mainly

on single-particle properties considering the autocorrelation
functions

WT~ t !5
1

N (
i51

N
^@Dr i~ t !#

2&
6

[DT~ t !t, ~37!

Wi~ t !5
1

N (
i51

N
^@Dr i

i~ t !#2&
2

[D i~ t !t, ~38!

W'~ t !5
1

N (
i51

N
^@Dr i

'~ t !#2&
4

[D'~ t !t, ~39!

with

Dr i~ t !5r i~0!2r i~ t !, ~40!

Dr i
i~ t !5@Dr i~ t !•ui~0!#ui~0!, ~41!

Dr i
'~ t !5Dr i~ t !2Dr i

i~ t !. ~42!

By these equations we have defined time-dependent dif-
fusion coefficientsDT(t), D i(t), andD'(t). The function
WT(t) is the ordinary mean-square displacement of the
center-of-mass coordinate for a single rod, averaged over an
ensemble of trajectories. From the slope of this function we
obtain the long-time limit of the translational self-diffusion
coefficientDL

T ,

DL
T[ lim

t→`

WT~ t !

t
5 lim

t→`

dWT~ t !

dt
. ~43!

The quantitiesWi(t) andW'(t) measure the displacement of
the center-of-mass coordinate relative to the orientation that
the rod had at timet50. It is expected that the memory
about the initial orientation is lost after some time such that
the slopes ofWi(t) andW'(t) become the same and equal to
the slope ofWT(t).

C. Dynamical orientational correlation functions
The orientational dynamics of an ensemble ofnon-

interacting rods can be cast into a diffusion equation on the
unit sphere for the conditional probability density
P(u0 ,u;t) to have orientationu at time t when att50 the
orientation wasu0 . If we chooseu05(0,0,1) andu andf to
be the azimuthal and polar angles of the unit vector
u5(sinu cosf,sinu sinf,cosu), then this Debye rotational
diffusion equation@36# reads

]P~u0 ,u;t !

]t
5D0

RF 1

sinu

]

]u S sinu ]P

]u D1
1

sin2u

]2P

]f2G , ~44!
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whereD0
R is the short-time orientational diffusion coefficient.

Hence the orientation vectoru(t) performs a random walk
on the unit sphere. The solution of this diffusion equation can
be expanded in terms of Legendre polynomialsPl (x),

P~u0 ,u;t !5 (
l 51

` S 2l 11

4p DPl „u~0!•u~ t !…e2D0
R
l ~ l 11!t,

~45!

resulting in the orientational correlation functions

^Pl „u~0!•u~ t !…&5e2D0
R
l ~ l 11!t. ~46!

In the case of aninteracting system we define the rota-
tional correlation functionWl (t) and a set of corresponding
time-dependent orientational diffusion coefficients as

Wl ~ t !5^Pl „u~0!•u~ t !…&[e2D l
R

~ t !l ~ l 11!t. ~47!

If D l
R(t) becomes independent oft andl for long times, the

orientational long-time motion is diffusive on the unit sphere
with an orientational long-time self-diffusion coefficientDL

R

defined as

DL
R[2 lim

t→`

1

l ~ l 11!
lnWl ~ t ! for all l . ~48!

In particular, this is valid for noninteracting rods where
DL
R5D0

R . On the other hand, if the long-time behavior of
D l
R(t) depends onl , the motion doesnot correspond to

standard diffusion on the unit sphere. Then the two basic
assumptions of Debye theory, namely, uncorrelated and
small jumps in orientation space, are not fulfilled. For more
details, we refer to the extensive discussion in Ref.@16#.

D. Collective dynamical correlation functions
The dynamic structure factor of a solution of interacting

Brownian particles can be directly measured through dy-
namical light scattering experiments. For rodlike particles,
S(k,t) can be written as@6,27#

S~k,t !5
1

NF~k!K (
i , j51

N

eik•@r i ~0!2r j ~ t !#

3
sin@k•ui~0!L/2#

k•ui~0!L/2

sin@k•uj~ t !L/2#

k•uj~ t !L/2
L . ~49!

FromS(k,t) one can define an effective short-time collective
diffusion coefficient

Deff~k!5
G1~k!

k2
52

1

k2
] lnS~k,t !

]t
U
t50

, ~50!

G1(k) denoting the first cumulant of the dynamic structure
factor. If hydrodynamic interactions are neglected~as we did
in our model! it can be shown@21# that the first cumulant of
an interacting system,G1,int(k), is related to the first cumu-
lant for the corresponding noninteracting system,G1,0(k),
and to the static structure factorS(k) of the interacting sys-
tem:

G1,int~k!5
1

S~k!
G1,0~k!. ~51!

For anisotropic translational diffusionG1,0(k) is given ana-
lytically by @21#

G1,0~k!5 (
l 50
l even

` H @ l ~ l 11!D0
R1D0

'k2#al
2

1~D0
i 2D0

'!k2~2l 13!S j l 11~kL/2!

kL/2 D 2J ,
~52!

where the coefficientsal (kL) are given by integrals over
spherical Bessel functionsj l (x),

al ~kL!5H 0 for l odd

i l A2l 11
2

kLE0
kL/2

dx jl ~x! for l even.

~53!

At this stage two points can be concluded. First, one can
calculate the static structure factor using two routes: either
using the initial slope of the dynamical structure factor or
implementing its static definition given by Eq.~34!. A com-
parison of the results obtained by these different routes may
be used as a consistency check of the simulation. Second, by
comparing the first cumulant to experimental data, one can
get hints about the importance of hydrodynamic interactions
among suspended rodlike particles.

VI. RESULTS

A. Static correlations
First we have calculated different coefficients of the pair

correlation function, namely,gcc(r ), g202(r ), and gP2(r ),
defined in Sec. V A. The results are shown in Fig. 1. In order
to check the program we have also tested them against pre-
viously published MC data@11,21#. Figure 1~a! gives data for
the density regions of 0.28c* up to 1.4c* . Figure 1~b! ex-
tends the comparison to higher concentrations, where 5.6c*
represents the upper limit of the concentration regime, which
has been simulated with the MC program. As it should be,
the results coincide. We note that the positions of the first
peaks ingcc(r ), g202(r ), andgP2(r ) coincide for the highest

concentration (5.6c* ). This fact was previously unnoticed
and its interpretation is that at higher concentration neighbor-
ing rods tend to stay parallel, whereas at rather low concen-
trations neighboring particles tend to orient perpendicularly,
which is energetically more favorable.

In order to fix the number of segments necessary to simu-
late even higher concentrations we compared the static out-
put of three BD runs withn53, 5, and 7 segments in Fig. 2.
It can be seen thatn53 segments are clearly not enough to
simulate our rod suspension at such high densities as 8c* ,
but 5 segment results are indistinguishable from the results
obtained from 7 segment runs. We therefore use 5 segments
in our dynamical simulations for densities up to 8c* . For
c.8c* the situation becomes more difficult. We found that
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if we use 9 segments the system undergoes an isotropic-
nematic phase transition at a concentration between 14c*
and 16c* . This is shown in Fig. 3~a!. The nematic order
parameterl1 is monitored for about 400t0

R. At c.14c* it
does not decay any more but fluctuates around some fixed
positive value. This transition cannot be observed with fewer
than 9 segments. For the concentration regime between
8c* and 24c* we therefore used 9 segments. We checked
that with 11 segments the results are within the same statis-
tical error as with 9 segments.

Hence an isotropic-nematic phase transition is observed
for rodlike particles interacting through a Yukawa potential.
To create more evidence to support this fact than just show-
ing nondecaying order parameter curves, we conducted the
following experiment: Atc518c* and with a concentration
of 0.05 mmol of monovalent salt, we equilibrate the system
until the nematic order parameter settles around a constant
value of about 0.6. Note that this arises because the weaker
interrod interaction lowers the value of the nematic order
parameter compared to its value without salt. Then we re-
move the salt from the system. What is to be expected, if the
observed nematic phase is really thermodynamically stable,
is that the value of the nematic order parameter starts rising
to a new equilibrium value. That this is indeed the case is
shown in Fig. 3~b!. After the time of salt removal the order
parameter rises quickly to a value of around 0.7. For much
longer simulation time one can expect it to reach the value it
has in Fig. 3~a! of about 0.8. This gives strong evidence for
a thermodynamically stable nematic phase. Of course, in or-

FIG. 1. Comparison of BD and MC pair distribution functions.
Shown are the coefficientsgcc(r ), (4p)23/2g202(r ), and gP2(r ).
The symbols denote BD data, the lines MC data. The system pa-
rameters are as follows:N5256 rods,n53 segments,Q5390e,
L5300 nm, andd518 nm.~a! Low and intermediate concentration
regimes,c50.28c* , 0.56c* , and 1.4c* . ~b! High concentration
regimec52.8c* and 5.6c* .

FIG. 2. Comparison of pair distribution function coefficients for
different segment numbersn53, 5, and 7 at a density ofc58c* .
Data for 7 segments are indistinguishable from those for 5 seg-
ments.
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der to ensure the global stability of the nematic phase a full
thermodynamic calculation has still to be performed.

B. Dynamical correlations
Before presenting explicit results for dynamical correla-

tion functions, we will perform two consistency checks of
the program. First, in Fig. 4,Deff(k) is shown for an un-
charged TMV suspension (Q50). The points correspond to
BD data, whereas the solid line is obtained from the exact
expression of Eqs.~50! and ~52!. For low values ofkL, the
statistical error is largely due to the finite simulation box. In
the intermediate-k range the agreement is excellent. For
kL*18 the simulation data systematically fall somewhat be-
low the exact values. This is not due to a principal deficiency
but to the numerical evaluation:S(k,t) drops as
exp(2k2D0t) and the slope of lnS(k,t) at t50 has been ob-
tained as 1/S(k)@S(k,Dt)2S(k)#/Dt, which is only a very
crude estimate of the first time derivative. It would be better

to fit some higher-order polynomial to the first few data
points ofS(k,t) and to obtain the derivative from it.

The second check of the program is shown in Fig. 5. Here
we calculate the static structure factorS(k) both from static
and dynamical data according to Eq.~51! for interacting
rods. The agreement is quite good, except for high-k values
(kL*50), where the same explanation as in Fig. 4 applies.
For the sake of completeness, alsoDeff(k) is shown for an
interacting system withQ5300e in Fig. 6.Deff(k) is mainly
dominated by the reciprocal of the static structure factor and
thus approaches theDeff(k) of the noninteracting system for
high-kL values, sinceS(k→`)51. For small-kL values
Deff(k) shows a strong increase, since for smallk, S(k) is a
very small quantity. This increase ofDeff(k) with decreasing
kL is in qualitative agreement with@21#, where an expression
is derived forDeff(k) @Eqs. ~50!–~52!# using a mean-field
ansatz.

We now turn to self-properties as given by the expressions
for WT(t), W'(t), Wi(t), andWl (t). In Fig. 7 results are
shown for WT(t), W'(t), and Wi(t) at three densities
(0.5c* , 8c* , and 18c* ).

For low concentration (c50.5c* ) it takes aboutt055
ms, after which the slopes of all three curves coincide. This
is due to the aforementioned effect of rotation-translation
coupling. Because of the Brownian rotational motion the rod

FIG. 4. Deff(k) for a system of noninteracting rods.d are BD
simulation data, and the solid line corresponds to the analytical
expression of Eq.~52!.

FIG. 5. Static structure factor obtained directly from its defini-
tion ~solid line! and from the first cumulant of the dynamical struc-
ture factor (d). Parameters:Q5300e andc55c* . The other pa-
rameters are as in Fig. 1.

FIG. 3. ~a! Nematic order parameter vs time for a salt-free TMV
system for different densities.~b! Nematic order parameter vs time
for c518c* and a salt concentration of 0.05 mmol/l. Att5120 ms
the salt is removed.
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orientation is completely decorrelated to its initial orientation
after t0 . For high concentration (8c* ), rotational diffusion
slows down strongly due to entanglement effects. Hence the
slopes of the three mean square displacement functions be-
come equal only after the significantly larger time of about
t0525 ms. Atc518c* , which is well above the isotropic-
nematic phase transition, the behavior of the three mean
square displacement functions is quite different from that at
concentrations below the critical concentration. Since the rod
orientation at timet is always strongly correlated to its initial
orientation at timet0 , the slopes of the three mean square
displacement functions do not coincide after any time as in
parts~a! and~b!, but will remain different. Thus it is possible
to define long-time translational diffusion coefficients paral-
lel and perpendicular to the rod axis.

Figure 8 shows the ratio of short-time and long-time
translational self-diffusion coefficientsDL

T/D0
T , as obtained

by calculating the long-time slope of the mean square dis-
placementWT(t) versus concentrationc over a broad range
of densitiesc50.01224c* . First the salt-free case was in-
vestigated~black circles!. Here it turns out thatDL

T(c) is
nonmonotonicin c. This can be understood qualitatively by
the fact that the strength of the interaction is also density
dependent since the density-dependent Debye-Hu¨ckel
screening lengthk enters. This effect also occurs for suspen-
sions of spherical particles interacting via the DLVO poten-
tial. Second, when a sufficient amount of single-valenced salt
(0.05 mmol/l! is added so thatk is nearly constant with
varyingc, DL

T/D0
T is monotonically decreasing with increas-

ing concentration~full squares in Fig. 8!. The increase of
DL
T/D0

T with added salt with respect to the salt-free case is
also known from suspensions of spherical particles@37#. For
the density approaching its critical value where the system
undergoes the isotropic-nematic phase transition the transla-
tional diffusion increases slightly and then stays constant be-
tween 16c* and 24c* . This can be explained by the fact that
topological contraints for the translational movement of the
rods are relaxed once they are all approximately parallel.
Here we note that the concentration regime explored in this
study is significantly larger than that previously investigated
by MC studies@11,21#, where the maximum concentration
was 5.6c* .

The rotational autocorrelation functionsWl (t) are shown
in Fig. 9~a! for l 51,2,3 andc50.5c* . We have plotted
@2/l (l 11)# lnWl (t) versus time. For comparison the data
for a free particle are shown as the dash-dotted line. By
examining the data carefully, one can distinguish between
three time regimes. For extremely short times (t!t0

R) the
rods rotate essentially freely. Because of the growing influ-
ence of the interaction with increasing time, the curves start
to bend at a time of about 0.05 ms. Until aboutt0

R;1.5 ms
all threeWl (t) curves lie on top of each other. This implies
that, on this time scale, the motion practically corresponds to
standard diffusion on the unit sphere. However, for longer
times (t*t0

R), theWl (t) curves start to deviate from each
other. At long times (t@t0

R) they clearly exhibit different
slopes. Forl 51,2 a linear fit to the data at these long times
is possible, implying an exponential decay of orientational
correlations. Forl 53 the statistical error is too high to ex-
tract a unique linear slope, but the curve certainly deviates
significantly from the results forl 51,2. Hence the long-

FIG. 6. Deff(k) for an interacting system (d). The lines are a
guide to the eye. The single solid line again shows the analytical
expression Eq.~52! for Deff(k) in the noninteracting case.

FIG. 7. Mean-square displacementsWT(t), W'(t), andWi(t)
@see Eqs.~37!# versus timet for three different densities. Units on
the Y axis are 103 nm2. ~a! c50.5c* , ~b! c58c* , and ~c!
c518c* . For runs~a! and ~b! we have chosenN5512 rods and
n55 segments; for run~c! n59 segments. The other parameters
are as in Fig. 1.
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time orientational self-diffusion coefficient isl dependent.
As explained in Sec. V C, the orientational relaxation is
therefore not diffusive, i.e., it is not described by the Debye
equation on the unit sphere. The same conclusion applies for
Fig. 9~b!, whereWl (t) data forc58c* are shown. In this
case, due to the strong interaction, the splitting of the three
Wl (t) curves occurs much later. We have also performed the
calculations for very low (0.01c* ) and intermediate concen-
trations. Qualitatively, we found the same behavior. For
c50.01c* this is surprising, since one would expect the sys-
tem to behave essentially gaslike. To verify that this is not
the case requires an extreme amount of CPU time, since the
correlation functions decay very quickly at this concentration
and in order to get any statistical accuracy one needs quite a
long trajectory along which to sample. At concentrations
above the critical concentration of around 15c* the behavior
of the rotational correlation functions changes again. In Fig.
9~c! the concentration is 18c* . At time t560 ms the slope
for l 52,3 appears to saturate. The slope is zero within the
limit of statistical accuracy. The slope of thel 51 curve has
not yet saturated, which might be due to the separation of
time scales among different values ofl . Due to finite CPU
time resources we could not go to significantly longer mea-
surement times to validate the expected saturation of the
l 51 curve. However, it seems reasonable that the rotational
diffusion constant vanishes in a nematic phase. We hence
reach the important conclusion thatthe orientational relax-
ation is not diffusive for long times.This statement is true for
the isotropic phase with densities ranging from very dilute
(c50.01c* ) to fairly concentrated (c514c* ). For densities
above the isotropic-nematic transition it is found that there is
no true rotational diffusion anymore. For the isotropic phase
this point, which was controversially discussed in the litera-
ture, needs some further discussion and clarification: There is

by now general agreement about the behavior of the long-
time rotational relaxation, governed by reversible Newtonian
dynamics relevant for simple molecular fluids such as
H2O, CS4 or MeCN. In this case, several authors~see, e.g.,
@22–24#! have confirmed by simulation that the orientational
relaxation isnot diffusive for long times. For Brownian dy-
namics, nondiffusivity is in principle conceivable@16#, but
based on actual BD simulation data it was claimed@14,16#
that the long-time orientational motion is diffusive for long
times. Our results disagree with this conclusion. Since the
nondiffusivity we found occurs on time scales~in units of
t0
R) that are considerably larger than that explored in the
previous BD simulation, we believe that the time scales ex-
plored in Refs.@14,16# were not large enough to decide about
diffusivity or nondiffusivity.

Long-time orientational motion was also studied for a sys-
tem of hydrodynamically interacting hard spheres by Jones
@38# solving the Smoluchowski equation in an approximate
way. He also reached the conclusion that the long-time be-
havior of the rotational motion is nondiffusive. Although his
system is different from ours, the fundamental reason for the

FIG. 8. Long-time translational diffusion coefficientDL
T mea-

sured in terms of its short-time limitDL
T versus concentrationc.

Black squares (j) are for a salt-free system, while black circles
(d) correspond to a system with a high added monovalent salt
concentration of 0.05 mmol/l. The lines are a guide to the eye. The
other parameters are as in Fig. 7.

FIG. 9. Orientational correlation functionsWl (t)(l 51,2,3)
@Eq. ~47!# for the same parameters as in Fig. 7.~c! c518c* . We
plotted@2/l (l 11)# lnWl (t) versus timet measured in units of ms.
The dash-dotted line corresponds to the case of a freely diffusing
rod.
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nondiffusive character of rotational motion in both systems is
really the compactness of the unit sphere on which the rota-
tional degree of freedom moves. To construct a random walk
with uncorrelated jumps at long times one ends up with
rather large angular displacements, which are not small on
any scale with respect top. Therefore a description in terms
of one modified rotational diffusion coefficient is not pos-
sible.

We finally remark that it is difficult to see nondiffusive
behavior in a birefringence experiment since one only mea-
suresD l

R for fixed l [2 and cannot compare with results for
other l ’s. Moreover, it would be necessary to have data for
an extended time regime, considerably larger thant0

R, to
detect nondiffusive behavior.

Finally, in Fig. 10 we show the long-time limit
DL
R :5 limt→`D l

R(t) for l [1 in terms of its short-time limit
D0
R versus concentrationc. The parameters are as in Fig. 8,

but the plot is on a double-logarithmic scale. Full circles
correspond to a salt-free situation, while the full squares are
for a massive added salt concentration of 0.05 mmol/l so that
k is essentially determined by salt. Both data are clearly
monotonically decreasing for increasing concentration.

In Fig. 10, we have also included the results of Doiet al.
@14# for hard rods~full diamonds! and experimental data
~open diamonds and open circles! obtained by Krameret al.
@39,40# for a suspension of fd viruses. They are based on
birefringence decay experiments at minimal ionic strength
~no salt, open circles! and for a high concentration of added
salt ~open diamonds!. In the latter case, one may model the
interrod interaction solely by excluded volume effects. In-
deed the open diamonds agree quite well with the simulation

data of Doiet al. @14#. As a general remark, the time window
considered in the experiment is too small to see the nondif-
fusive behavior of the orientational motion. In fact, the rota-
tional correlation functions obtained in the experiment could
be fitted well by a single exponential. Hence it is consistent
to compare our long-time data forD1

R(t) to the experimental
data forD2

R(t).
As regards further comparison of the salt-free data with

our results there are several caveats. First, we have used
TMV parameters and the data are for an fd suspension. One
may hope to scale the basic features out by comparing the
ratio DL

R/D0
R . But the fd virus has some flexibility that was

not accounted for at all in our calculations. Second, it is
found experimentally@39# that at the concentration of
0.44c* the measured rotational diffusion coefficient was in-
distinguishable from the free diffusion coefficientD0

R,
whereas the static structure factor was found to have a peak.
These observations are not in agreement with the present
results. After these remarks it is clear that one can at most
expect a qualitative agreement. Indeed the general behavior
is similar to our results. However, details differ much from
our data: The simulation data decrease slowly from the value
DL
R/D0

R'1 at the lowest concentration, whereas the experi-
mental data decrease abruptly around 1c* and nearly ap-
proach a constant value at about 8c* . At the critical concen-
tration of 15c* simulation data decrease sharply and the
second derivative appears to change sign. But this could be
due to the above-mentioned possibility of not using a suffi-
ciently long measurement time forD1

R(t). At least the point
of phase transition can be identified from this plot. Clearly,
for a full direct comparison, experimental data of careful
birefringence measurements for well-prepared TMV suspen-
sions over a broad range of concentrations are needed.

VII. CONCLUSION

We presented some results of the Brownian dynamics of
large anisotropic rodlike particles interacting through a
Yukawa segment-segment potential. The system has been
simulated over the range of densities from 0.01c* up to
24c* . It was found that the translational motion of the center
of mass can be described as a diffusion process similar to the
case of spherical macroparticles. In contrast to previous re-
sults, it was found that the rotational motion of charged rod-
like particles is not a diffusive process at long times. How-
ever, there is an intermediate time regime where the motion
is practically diffusive.

Future studies plan to address the following questions.

~i! We have so far calculated only one transition point
from the isotropic towards a nematic phase. However, the
full phase diagram of the Yukawa segment model is not
known as a function of rod density and added salt concen-
tration. One may use computer simulation methods@41,42#
or density-functional methods@43# to get information about
it. Further detailed studies should also investigate the depen-
dence of the phase coexistence lines on the numbern of
segments.

~ii ! As already mentioned, more experiments~birefrin-
gence, dynamical light scattering! for carefully prepared and

FIG. 10. Long-time orientational diffusion coefficient
DL
R :5 limt→`D l

R(t) for l [1 in terms of its short-time limitD0
R

versus concentrationc on a double logarithmic scale.j, BD simu-
lationD l 51,L

R /D0
R with 0.05 mmol/l added salt.d, same asj, but

in salt-free solution. The other BD parameters are as in Fig. 7.
l, MC simulation by Doiet al. @14#; L, experiments with fd virus
solutions by Kramer@40# with a completely screened Coulomb in-
teraction by the addition of salt;s, experiments with fd virus
~same asL, but under conditions of minimal ionic strength.
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well-characterized suspensions of rigid rodlike particles are
needed to get a more comprehensive picture of the relaxation
of rod correlations.

~iii ! Theoretically, it would be interesting to include flex-
ibility in the model in order to access the fd virus and other
ÿsuspensions of charged semiflexible polymers.

~iv! Finally, hydrodynamic interaction should be included.
Indeed, most of the dynamical quantities discussed here are
sensitive to such generic many-body interactions and it
would be interesting to see how the relaxation of the corre-

lation is affected by hydrodynamic interactions for high con-
centrations.
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