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Dynamical correlations in suspensions of charged rodlike macromolecules
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Dynamical correlations of charged rodlike colloidal particles interacting via a Yukawa segment-segment
potential are investigated using extensive Brownian dynamics computer simulations. The model and the pa-
rameters used in the simulations are particularly designed for aqueous suspensions of tobacco-mosaic viruses.
Over a broad range of rod concentrations we calculate the translational long-time self-diffusion coefficient and
study the orientational motion in the disordered phase. It is found that the relaxation of the orientational
correlation has three different regimes: a diffusive short-time motion, another diffusive motion for intermediate
times, and anondiffusivelong-time relaxation. Also dynamical correlations in the nematic phase and near the
isotropic-nematic transition are calculated. The results are compared with experimental data.

PACS numbd(s): 36.30.Ey, 61.30-v, 66.10—x, 82.70.Dd

[. INTRODUCTION solvent-mediated hydrodynamic interactions. For highly di-
lute but strongly interacting rods one may, however, safely
Colloidal suspensions of rodlike viruses, such as theneglect the many-body character of these interactions and the
tobacco-mosaic virusTMV) and bacterial fd virus, are con- simple picture of Brownian dynamics is justified at least for
venient model systems for the study of anisotropic fluidshighly charged rods at low concentration of added salt. Ex-
Liquid crystalline order was observed in TMV suspensionsperimentally, more data have accumulated over the past de-
as early as 19361] and experimental and theoretical work cades: One may use birefringence methods, forced Rayleigh
has continued to the present tirf33]. These studies have scattering, or dynamical light scattering to obtain informa-
been done on different levels: The first question concerns thtton about the long-time decay of dynamical correlations.
nature of the effective interactions between the rodlike mac- Computer simulations with Brownian dynamics for a
romolecules. If the rods are sterically stabilized, an interacgiven interrod interaction provide a third powerful way to get
tion model purely governed by excluded volume effects isdirect insight into dynamical correlations since, apart from
appropriate, while for charged suspensions the bare Coulonthe statistical error, the results are exact. There are, however,
interrod repulsion is screened by the microscopic counterienly few computer simulations for rodlike suspensions. For
ons, resulting in an effective segment-segment Yukawa intetinfinitely thin uncharged needles, Dei al.[14] have studied
action[4—7]. Next, based on a simple model with pairwise long-time self-diffusion. For a different phenomenological
interactions between the rods, structural correlations in thenodel of the rod interaction, Fixmdri5] and subsequently
disordered phase have been studied using liquid state theoBitsanis et al. [16,17] have studied orientational long-time
or computer simulatio20,21]. The theoretical results can diffusion. Brownian dynamics simulations for the long-time
be compared to scattering experimefi8-10]; see, e.g., translational and orientational self-diffusion for hard sphero-
[11,12. Third, there is an increasing amount of experimentalcylinders have been recently presented byven[18].
data for the phase diagram of rods involving nematic, smec- However, for charged suspensions of the TMV or fd, a
tic, and fully crystalline phases, which is currently investi- many-site Yukawa segment model is a much more realistic
gated also by theory and computer simulatias]. description of the interactio —7]. As far as we know there
While there is a growing understanding in these structurahre no Brownian dynamicéBD) computer simulations for
and thermodynamic questions, much less is known athput this model. The only exception is the recent work of Branka
namical correlations. It is fair to say that a purely micro- and Heye$19], which is, however, confined to two sites, i.e.,
scopic theory of dynamical correlations is just beginning.to moderately asymmetric rods. As we shall show, two sites
The major problem one has for highly concentrated rod susare not sufficient in the intermediate and high concentration
pensions is that, unlike molecular liquid crystals, the shortregimes for TMV and fd samples. Hence the two-site model
time dynamics is not known due to the complexity ofis not appropriate for the experimentally relevant suspen-
sions. Consequently, a full study with a many-segment model
is necessary if one has a qualitative and quantitative com-

:Electronic address: Thomas.Kirchhoff@uni-Konstanz.de parison with the experimental data in mind.
Present address: Heinrich-Heine-Universiaisseldorf, Institut In this paper we present extensive BD simulations for a
flir Theoretische Physik Il, D-40225 Bseldorf, Germany. Yukawa interaction model of five to nine sites, whose param-
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eters are adapted to a TMV suspension, over the whole convith the interrod segment distance

centration regime where the disordered phase is thermody-

namically stable. In particular, translational and rotational az=|ri—r;+Ujdn(2a—1—n)/2—u;d,(28—1—n)/2],
long-time diffusion as well as the collective effective diffu- €)

sion coefficient are studied as a function of rod concentra- ) , ) )

tion. We find qualitative agreement with experiments. Fur-dn dénoting the distance between two neighboring segments
thermore we show that the long-time orientational relaxatior?!ond @ rod

is not a standard diffusion process over the unit sphere. This

is known for reversible Newtonian dynami€82-24, rel- d.— L (4
evant for rodlike molecules, but it was not yet recognized for " Jn+1)(n-1)°

irreversible Brownian dynamics in previous simulations

[14,16. This expression ensures that the quadrupolar moment of the

We finally study the isotropic-nematic transition. After segmented rod is that of a homogeneous line charge of length
having located it we calculate the corresponding dynamical.. Furthermore, the Debye-ldkel screening constam is
correlations. Due to a release of constraints on translationgjiven by
motion from interference of neighboring particles it is found
that the translational long-time coeffcient increases if one
passes through the isotropic-nematic transition. K

The paper is organized as follows. In Sec. Il, the model is

described. The algorithm and details of the computer simug is the elementary chargeQ/e the concentration of coun-
lation are discussed in Secs. Ill and IV. Structural and dy+erions (assumed as single valengedndc; the concentra-
namical correlations are defined in Sec. V and results argop, of additional salt ions with charges. Finally, €, is the

cQe+3cq?
 eegkgT

2

®

presented in Sec. VI. Finally, we conclude in Sec. VL. dielectric constant ane the relative dielectric constant of the
solvent; we take henceforté= 78 (water at room tempera-
Il. MODEL ture).

) . Let us note three points concerning this Yukawa segment
We consider an ensemble Nfrods in a volume). The 46| First, the static properties of the fd virus and the
cylindrical rods are monodisperse with a lengttand a di- 11y suspensions as measured by dynamic light scattering
ameterd. For concrete calculations we chosg T™MV param-gyneriments[8—11 could be reproduced well by Monte
etersL =300 nm andd= 18 nm. Thermodynamically, the rod 410 (MC) simulationg 11], taking the total rod charg® as
suspension is characterized by its number concentratiog,e fit parameter.
c=N/€ and the temperaturé. The rod concentration is  ggcond, the general Yukawa form was recently justified in
conveniently measured in terms of the overlap concentratiofhe framework of the “primitive model,” taking the count-
c*=1/L° The temperature is taken to be fixed to room tem-rions explicitly into account. Withirab initio calculations
peratureT =298 K. A typical rod configuration can be char- gne of ug(H.L.) [7] has shown that the Yukawa interaction is
acterized by its center-of-mass coordinafesi=1,... N}  jndeed a reasonable fit to the effective many-body forces and
and its orientations specified by unit vectors torques. However, the actual rod charge and the screening
{ui,i=1,... N} constantx entering into the Yukawa description may signifi-
The essential input of any statistical mechanics descripcanﬂy deviate from the DLVO predictions. A cylindrical
tion are the interrod interactions. We rely on a simple butpgisson-Boltzmann cell model, which also leads to an effec-
realistic picture of t.he_ mterrqd forces and torques. Thetive Yukawa-segment model, is more appropriate for highly
screened electrostatic interaction among suspended rods jigeracting charged rods. This cell model can be analytically
described by a Yukawa segment modéi6,23. In this  golyed without added salt ions, while for added salt only a
model, the total rod charg® is distributed equally among numerical solution is possib[@6]. In the following we have
n segments located along the rod axis. The segments belongged the paramete®, thus empirically fitting the experi-
ing to different rods interact through the repulsive part of themental structural data for a TMV suspension.
standard Derjaguin-Landau-Verwey-Overbe@dVO) po-  Thjrd, since the rods cannot penetrate, one should also
tential, which is of Yukawa type. Since the interaction isincjude a hard core in the interaction. However, for the rod
assumed to be pairwise, the total potential energy in a giveRoncentrations used in this paper we never observed such a
rod configuration is rod overlap during the simulation. Hence we can safely ne-
N glect the excluded volume part completely. It should be
Uee S UG —r 0 u) 1 noted, however, that this also depends strongly on the num-
o, &~ R A T ber of sitex. If n is small, sayn~2—3, then rods can cross
in the high concentration regime. Therefore we again stress
where the orientation-dependent interrod  potentiath® necessity of a high site numbe(n>4) for doing simu-

U(ri—r;,u;,u;) is the sum of all segment-segment interac-lations for TMVs. _ _
tions Next, the short-time dynamics of the rods has to be speci-

fied. As already mentioned, we neglect the solvent-mediated
5> n i hydrodynamic interactions, which are due to the velocity
_(Q/n) e (2y field induced by the motion of all macroparticles. The justi-
4meey ap-1 rL{B ’ fication in doing so is that we are dealing with highly diluted

U(rl_rJ Ui !uj)
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systems(i.e., with low volume fraction of the rodswhere el =[ui(t) - ri(t) Ju;(t). (13)

the many-body effects of hydrodynamic interactions can be

considered to be small. Hence only hydrodynamic oneThe same kind of separation can be done for the total force
particle properties are taken into account in describing thé;(t) acting on the center of raddue to the interactions with
short-time self-diffusion coefficient®; and Dﬂ, [27]. These all other rods:

coefficientsDé,Dﬂ) have been calculated by Tiradet al. I N
[28]: Fi(t)=F(t)+F(1). (14

Do The update equation fcﬂﬁ(t) can be written as
Dé=E(Inp+0.839+0.185;b+0.233/p2), (6)

At
rL‘(t+At)=r'i|(t)+kB—TD‘(‘)FL‘(tH(ArH)ui(t). (15)
D

I==2(np— — 2
Do 27T(Inp 0.207+0.980p—0.133p", ™ Here (Ar”) denotes a Gaussian random displacement with
_ _ _ zero mean and variano(e{Ar”)2>G=2Dﬂ,At, ()¢ denoting
with Do=kgT/7sL and the length-to-width ratip=L/d.  the average over the Gaussian distribution. The perpendicu-

Herekg is Boltzmann's constant angk is the shear viscosity |ar partri (t) has an analogous update equation
of the solvent. The translational diffusion coefficient of the

center-of-mass coordinate is given for a free rod by N N At N
ri (t+AY)=ry(tH)+ kB_TDOFi ()+(Arp)eq(t)
1
T_"/pll 1
Do=3(Do*2Dg)- @® +(Arb)es(t). (16)

The short-time motion of the orientational degrees of freeThe random displacementd(;) and (Ar3) are uncorre-
dom as embodied in the unit vectofs;} is described by lated Gaussian random numbers with zero mean and vari-

isotropic Brownian motion on the unit sphere characterizedance Dy At. Here the vectorg(t) ande,(t) are two or-
by an orientational short-time self-diffusion coefficielDf  thogonal unit vectors, which are both perpendicular to

[27], which is given by[28] u;(t).
Note that both update equations can be compactly sum-
= 3Do ) marized as
Dozm(lnp—0.662+0.917/p—0.050/p ). 9)
At
e . . o r(t+At) =ri(t)+ —=DF;(t) + Ar;, 1
These diffusion coefficients define typical time scales. An '( )=t kgT i(®) : (7
orientational relaxation time can be defined through ) o
with the diffusion tensor
g 1 T_Ri |
0= 5pR- (10 D; =Dy (1—u;u;) +2Dgju;u;, (18
0

o . u;u; representing the dyadic product af and the variance-
This is the time it takes a free rod to lose all memory about.gyariance matrix given by

its initial orientation. Similarly, a translational relaxation

time can be defined ((Ari)(Arip))=2D{,4At. (19
T L2 Here Ar; follows has a multivariate Gaussian distribution.
TO_ZDE' 1D This equation is independent of the coordinate system used,

whereas for computational purposes it is more convenient to
For the case of the TM\t§=1.5 ms andry=10 ms. use the above fornil5) and (16) of the update equation,
where the diffusion tensdD' is evaluated in the principal
IIl. BROWNIAN DYNAMICS ALGORITHM frame of reference in which it becomes diagonal.
Finally, the orientational update equation fg(t) is
For the simulation of the Brownian motion of rods we
adopt an algorithm proposed by Ermg@] for BD simula-
tions of spheres that is readily generalized to rd. In a
BD simulation the trajectorie$r;(t),u;(t)} of the particles (20
are generated by integrating the corresponding Langevin ) )
equations with a finite time stept. To obtain the corre- Wlth'Mi(t) denotlnglthe total center-of-mass torque acting on
sponding finite-difference equations we split the center-offd i andxy,x; being two uncorrelated Gaussian random
mass positiorr;(t) of rod i into a part parallel and a part numbers with zero mean and varianc®gAt. After appli-

A
u(t+At) =u(t)+ ﬁDB‘Mi(t)ui(t) +X161(1) +X26(1),
B

perpendicular to the rod orientatian(t): cation of EQ.(20), u;(t+At) has to be renormalized such
that|u;(t+ At)|=1. The coupling of rotation and translation
ri(t)zr‘i‘(t)ﬂﬁ(t), (12)  happens through the orientation-dependend@'¢f). Obvi-

ously, for D%=DL, rotation and translation become com-
with r‘i‘(t) given by pletely decoupled.
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The BD algorithm presented up to now is exact to ordertions and the rod axes all pointing into the same direction. To
At, its error is ofO(At?). It can easily be modified such that decide when thermal equilibrium was reached we monitored
the error introduced in each time step is@fAt®) [30-323.  the translational order parameter
For the translational part, we obtain via Efj7) a first-order
estimate of the position denoted by(t+ At). Then the time
step is repeated using the mean of the forces at positions p(K=y 21 cogk-ry), (29
ri(t) andr/(t+At). We thus have o

N

At wherer; is the vector of the center of mass of thk rod and
(A =ri(t)+ — [ =[D[(H)F;(t) k=[(2N)¥**7/L,](—1,1,—1) is a reciprocal lattice vector
of the initial lattice.

To detect rotational order we monitor the quantity
+D'[(t+AOF/ (t+AD) ]} +Ar,  (21)
1 N
where Pi(t)= 2 Pa(i(0)-ui(1)), (26
<(Aria)(Ariﬁ)>:2[ |aB(T)+D,|aB(t+At)]}At' whereP,(x) = x is the first Legendre polynomiB3]. In the
(22 disordered(fluid) phase,p(k) and P,(t) start out at 1 and

finally fluctuate around zero, at which point we start to take
ensemble averages. We have also monitored the nematic or-
der parameter as given by Alleet al. [34]. The nematic
order parameter is given through the largest eigenvalue

of the Q tensor

written in the compact notation of E¢L7). The orientational
second-order update equation is

At
U(t+AD) =u () + — [|v| (OU;(1)+ M/ (t+At)

kg T
1 L
Q=3 E U iui— (27)
Xu/(t+At)] | +Au;, (23) N = 2!
u;u; denotes the dyadic product of the orientation vectors of
where S
particlei.
1 The equilibration phase takes about 100 000 steps, de-
Auy=2 E[xle(t)i1+x2q2(t)+x1q1(t+At) pending upon density. For production runs we used a time
step ofAt=0.000 645 . For densities>8c*, At was taken
. as 0.000 325. The number of time steps used for taking
TXo€o(t+A)] . (24 statistics was between 40P at 0.k* to 0.6x10° at
18c*.
We have used this algorithm, which requires a doubled CPU
time per step as compared to the first-order algorithm, since V. CORRELATION FUNCTIONS
the systematic error is smaller. It was carefully checked that . . .
the time step was small enough by doing runs with different A. Static correlation functions

time steps and comparing the results. It was also checked The main static correlation functions are the structure fac-
that static pair correlation data are in perfect agreement witkor and the pair distribution function. In the case of rods they

Monte Carlo results. are related by a Hankel transfoff#h,6]. The pair distribution
function is defined via
IV. SIMULATION N
Most runs were performed usingl=512 rods with 9(ri=rp,Ug,Up)= i’j:;#j O(ri—ry)&(rj—rp)

n=5 segments. For comparison with former MC results we
usedN=256 rods andh=3 segments. For concentrations
c>8c* even 5 segments are not sufficient, especially in the X 8(Ui—uy)6(uj—uy) ), (28
vicinity of the isotropic-nematic transition, which occurs
around 18*. For these high concentrations 9 segments were : .
used. Standard periodic boundary conditions with a cubiéNhereo. IS acanomcal average. It can be expantigdn the
simulation box of lengthL, were applied. All parameters space fixed coordinate frame as
were chosen to resemble a TMV suspension. In particular,
the_rod charge 0Q=390e tf_:lken f_rom a comparison of ex- g(r,up,uy) = 2 9, (DD, , (U, Uy f), F=
perimental data and MC simulations for static pair correla- 172 2 r
tions[11] seems to be a reasonable choice for all densities (29
considered here (0.81—24c*).

As a starting configuration we used an ordered configurawhere the angular part can be decomposed into spherical
tion with the centers of the rods placed on fcc lattice posi-harmonics
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, ; 2 (kU2 _
V= 2 C o immem)Y F<k>=(ﬂ fo dXJo(X))—[Jo(kL/Z)]Z, (36)
1,M2,
X (UDY om,(U2) Y /(T B0 with jo(x) being the first spherical Bessel function.

Here C(/1/»/;m;m,m) is a Clebsch-Gordan coefficient
andY ,,(u) a spherical harmonic. The physical meaning of
the first few coefficents in Eq29) is the following: The

B. Dynamical translational correlation functions
As regards dynamical correlations, we concentrate mainly
on single-particle properties considering the autocorrelation

function functions
9ee(N)=(9(r, Uy, Up))y,u,= (4m) " ¥goodr) (3D 1 3 ([Ar(h)7T?
cc upup WT(t)= N E <[ |6( )] >EDT('[)'[, (37)
=1
is the usual center-center distribution functionbeing the
distance between the centers of mass of two rods. The aver- 1 Y qarlmpP
age( )y,u, is defined as the unweighted average over all wiit)== > ! =Dl(t)t, (38)
directions N=1 2
N 1 2
1 Lo 1 (A
O™ oz | dindu 32 WH=5 S =Dt (39
The angular correlations can be described through the eith
pression
Ari(t)=r;i(0)=ri(t), (40)
- (9(r,ug, U Pa(COF12)uu, 1 gopr) =3 Atk =[Ar()-u(0)]u (0) a1
r)y= =— . ri(t)=[Ar;(t)-y u;(0),
9, (9(r,ug,Uz))y,u, \/5 Yood 1) ' I I I
Art(t)=Ar(tH)—Arl(b). (42)

HereP,(x)=(3x?—1)/2 denotes the second Legendre poly-
nomial andé,, is the angle betweem, andu,. The function gy these equations we have defined time-dependent dif-
gpz(r) is positive when rods tend to stay parallel, whereas fusion coefficientsD(t), D”(t), andD*(t). The function

is negative if two rods with center-of-mass distancge on  W'(t) is the ordinary mean-square displacement of the

average perpendicular. For a fully aligned parallel configucenter-of-mass coordinate for a single rod, averaged over an
ration we haveyp,(r)=1, while for a perpendicular arrange- ensemble of trajectories. From the slope of this function we

mentgpz(r)z —1/2. For completely uncorrelated configura- obtain the long-time limit of the translational self-diffusion

tionsgp_(r)=0. coefficientD/ ,
2
Similarly, the coefficienig,or) has a negative value if W) AWT(t)
on average the connection vecfoof the center of mass of D/ =lim = lim . (43)
two rods is perpendicular to the orientation veatoof one e L e At

of the rods.g,oAr) is positive if f and u are parallel on
average. For completely uncorrelated configurationsThe quantitieV!(t) andW! (t) measure the displacement of

U20A1)=0. the center-of-mass coordinate relative to the orientation that
The static structure factd®(k) can directly be measured the rod had at time=0. It is expected that the memory
in laser light scattering experiments. It is defined[By about the initial orientation is lost after some time such that

the slopes ofM (t) andW* (t) become the same and equal to
the slope oW'(t).

1 N
(ON} 7= C. Dynamical orientational correlation functions
sin(k-u;L/2) sin(k-u;L/2) The orientational dynamics of an ensemble mdn-
k-uL/2 k-u,L/2 (34 interactingrods can be cast into a diffusion equation on the
unit sphere for the conditional probability density
P(ug,u;t) to have orientationu at timet when att=0 the
orientation wasl,. If we chooseuy,=(0,0,1) andd and ¢ to
be the azimuthal and polar angles of the unit vector
u=(sind cosp,sind sing,cod)), then this Debye rotational

The functionF (k) is the form factor of a rod; it depends only
on the shape of the particles and is given by

sin(k-u;L/2)\? e -
F(k)=<( k~u-LI/2 ) > (35) diffusion equatior{36] reads
]
IP(ug,uit) [ 1 d( gaP . 1 &P "
which can be written ag35] ot ~Polsing 90\ %" 30 T sirde ap?|’ (44)




5016 TH. KIRCHHOFF, H. LONEN, AND R. KLEIN 53

whereD? is the short-time orientational diffusion coefficient. 1

Hence the orientation vectar(t) performs a random walk Uy k)= _k)Fl,O(k)- (52)
on the unit sphere. The solution of this diffusion equation can

be expanded in terms of Legendre polynomigjgx), For anisotropic translational diffusiofi; (k) is given ana-

> os41 lytically by [21]
P(uo,u;t): 2 <_) P/(U(O)-u(t))e_Dg/(/+l>t,

=1\ 4w * ‘
(45) k=2 {[/</+ 1)Dg+Dgk’JaZ
/‘even
resulting in the orientational correlation functions ) )
; +(D)—D§)KA(2/ +3) —'”1(kL/2))
(P,(u(0)-u(t)))=e " Po” "+, (46) o "o ’ KL/2 '

In the case of arnnteracting system we define the rota- (52

t!onal correlation fl_Jnctior\N/(t) .and_a set of.cprresponding where the coefficients, (kL) are given by integrals over
time-dependent orientational diffusion coefficients as spherical Bessel functidr]'s(x)

W, (1) =(P,(u(0) - u(t)y=e DX/ 1t (47 0 for / odd

If .DF}(t). becomes indepenqlen'g bh.nd/’_for long time_s, the a (kL)= i’ 2/ + 1£fk”2dxj/(x) for / even.
orientational long-time motion is diffusive on the unit sphere kL

with an orientational long-time self-diffusion coefficied{l (53
defined as . . .
At this stage two points can be concluded. First, one can
R . 1 calculate the static structure factor using two routes: either
DLE_t“mmmw/(t) forall /. (48 using the initial slope of the dynamical structure factor or

implementing its static definition given by E(B4). A com-
parison of the results obtained by these different routes may
. . . be used as a consistency check of the simulation. Second, by
R_ R ’
D =Dg. On the other hand, if the long-time behavior of comparing the first cumulant to experimental data, one can

R y -
D7(t) depends on/, the motion doeot correspond to _get hints about the importance of hydrodynamic interactions
standard diffusion on the unit sphere. Then the two bas'%mong suspended rodlike particles.

assumptions of Debye theory, namely, uncorrelated and
small jumps in orientation space, are not fulfilled. For more
details, we refer to the extensive discussion in RES).

In particular, this is valid for noninteracting rods where

VI. RESULTS

A. Static correlations
D. Collective dynamical correlation functions First we have calculated different coefficients of the pair
The dynamic structure factor of a solution of interacting correlation function, namelyg..(r), g-0Ar), and gpz(r),
Brownian particles can be directly measured through dydefined in Sec. VV A. The results are shown in Fig. 1. In order
namical |Ight Scattering experiments. For rodlike particles,to check the program we have also tested them against pre-

S(k,t) can be written a$6,27] viously published MC datpl1,21]. Figure 1a) gives data for
N the density regions of 0.28 up to 1.4*. Figure 1b) ex-
S(k,t) = 1 < 2 el k- [ri(0)=rj(1)] tends the comparison_to_ higher concentrat@ons, vv_here*S.E_S
' NF(k)\ii=1 represents the upper limit of the concentration regime, which

has been simulated with the MC program. As it should be,
sinfk-u;(0)L/2] sinfk-u;(t)L/2] the results coincide. We note that the positions of the first
. (49 : A -
k-u;(0)L/2 k-uj(t)L/2 > peaks ingc(r), g20Ar), andgp (r) coincide for the highest
concentration (56"). This fact was previously unnoticed
FromS(k,t) one can define an effective short-time collective and its interpretation is that at higher concentration neighbor-
diffusion coefficient ing rods tend to stay parallel, whereas at rather low concen-
trations neighboring particles tend to orient perpendicularly,
Fy(k) 1 dInS(k1) (50  Which is energetically more favorable.
K K at =0 In order to fix the number of segments necessary to simu-
late even higher concentrations we compared the static out-
I'1(k) denoting the first cumulant of the dynamic structureput of three BD runs witm=3, 5, and 7 segments in Fig. 2.
factor. If hydrodynamic interactions are neglectad we did It can be seen that=3 segments are clearly not enough to
in our mode) it can be showri21] that the first cumulant of simulate our rod suspension at such high densitiescds 8
an interacting systend, ; j,(k), is related to the first cumu- but 5 segment results are indistinguishable from the results
lant for the corresponding noninteracting systdm,«(k), obtained from 7 segment runs. We therefore use 5 segments
and to the static structure fact8(k) of the interacting sys- in our dynamical simulations for densities up t@*8 For
tem: c>8c* the situation becomes more difficult. We found that

D el k)=
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FIG. 1. Comparison of BD and MC pair distribution functions.
Shown are the coefficientg.(r), (47) *?gyAr), and 9p,(1)-

The symbols denote BD data, the lines MC data. The system p

rameters are as followd\l=256 rods,n=3 segmentsQ=390e,

L =300 nm, andd=18 nm.(a) Low and intermediate concentration
regimes,c=0.2&*, 0.5&*, and 1.4*. (b) High concentration
regimec=2.8c* and 5.&*.
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FIG. 2. Comparison of pair distribution function coefficients for
different segment numbers=3, 5, and 7 at a density af=8c*.
Data for 7 segments are indistinguishable from those for 5 seg-
ments.

if we use 9 segments the system undergoes an isotropic-
nematic phase transition at a concentration betweect* 14
and 1&*. This is shown in Fig. @). The nematic order
parametei . is monitored for about 40@. At c>14c* it
does not decay any more but fluctuates around some fixed
positive value. This transition cannot be observed with fewer
than 9 segments. For the concentration regime between
8c* and 24* we therefore used 9 segments. We checked
that with 11 segments the results are within the same statis-
tical error as with 9 segments.

Hence an isotropic-nematic phase transition is observed
for rodlike particles interacting through a Yukawa potential.
To create more evidence to support this fact than just show-
ing nondecaying order parameter curves, we conducted the
following experiment: Atc=18c* and with a concentration
of 0.05 mmol of monovalent salt, we equilibrate the system
until the nematic order parameter settles around a constant
value of about 0.6. Note that this arises because the weaker
interrod interaction lowers the value of the nematic order
parameter compared to its value without salt. Then we re-
move the salt from the system. What is to be expected, if the
observed nematic phase is really thermodynamically stable,
is that the value of the nematic order parameter starts rising
to a new equilibrium value. That this is indeed the case is
shown in Fig. 8b). After the time of salt removal the order
parameter rises quickly to a value of around 0.7. For much
longer simulation time one can expect it to reach the value it
has in Fig. 8a) of about 0.8. This gives strong evidence for
a thermodynamically stable nematic phase. Of course, in or-
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(a) 18 c* 14 .
!
0.8 nm ‘wm ‘ | ) 1.2
5 ; m I by 16 c* s
£ w(" M" “‘ * _%1'0 @ BD simulation
Eosf 15¢ | % exact
=4 Ros| |
5
- 4cr 06} .
@ 04 ] . .
k5] 0 10 20
g kL
= 12¢*
02 -100* 1 FIG. 4. Dg(k) for a system of noninteracting rod®. are BD
VWL, simulation data, and the solid line corresponds to the analytical
expression of Eq(52).
%% 100 200 300 400 500 600
¢ (ms) to fit some higher-order polynomial to the first few data
points of S(k,t) and to obtain the derivative from it.
T T T y The second check of the program is shown in Fig. 5. Here
(b) we calculate the static structure fac®(k) both from static
and dynamical data according to E(1) for interacting
08 continued without salt | rods. The agreement is quite good, except for Higralues

0.05 mmol/l salt continued with salt

nematic order parameter

(kL=50), where the same explanation as in Fig. 4 applies.
For the sake of completeness, aBg:(k) is shown for an
0.6 ] interacting system witlQ =300Ce in Fig. 6. Dx(k) is mainly
dominated by the reciprocal of the static structure factor and
thus approaches tHe.4(k) of the noninteracting system for
04 7 highkL values, sinceS(k—x)=1. For smallkL values
Dqs(k) shows a strong increase, since for snkal5(k) is a
very small quantity. This increase Bf.4(k) with decreasing

02 ] kL is in qualitative agreement wiff21], where an expression

salt removed

0 50 100 150 200 250

is derived forD.x(k) [Egs. (500—(52)] using a mean-field
ansatz.
We now turn to self-properties as given by the expressions

t (ms) for WT(t), WH(t), W(t), andW/(tR. In Fig. 7 results are

shown for WT(t), W.(t), and W
(0.5c*, 8c*, and 1&%*).

FIG. 3. () Nematic order parameter vs time for a salt-free TMV
system for different densitiegb) Nematic order parameter vs time
for c=18c* and a salt concentration of 0.05 mmol/l. ¢ 120 ms
the salt is removed.

(t) at three densities

For low concentration {=0.5c*) it takes aboutty=>5

ms, after which the slopes of all three curves coincide. This
is due to the aforementioned effect of rotation-translation

coupling. Because of the Brownian rotational motion the rod

der to ensure the global stability of the nematic phase a full
thermodynamic calculation has still to be performed.

B. Dynamical correlations

Before presenting explicit results for dynamical correla-
tion functions, we will perform two consistency checks of
the program. First, in Fig. 4D4(k) is shown for an un-
charged TMV suspensior)d=0). The points correspond to
BD data, whereas the solid line is obtained from the exact
expression of Eq950) and (52). For low values okL, the
statistical error is largely due to the finite simulation box. In
the intermediatdc range the agreement is excellent. For
kL= 18 the simulation data systematically fall somewhat be-
low the exact values. This is not due to a principal deficiency
but to the numerical evaluation:S(k,t) drops as

—— $(k) from statics
@ S(k) from dynamics

0 20 40 60
kL

FIG. 5. Static structure factor obtained directly from its defini-

e>$p(—k2D0t) and the slope of Igkt) at t=0 has been ob- tjon (solid line) and from the first cumulant of the dynamical struc-
tained as 13(k)[ S(k,At)—S(k)]/At, which is only a very ture factor @). ParametersQ=300e andc=5c*. The other pa-
crude estimate of the first time derivative. It would be betterrameters are as in Fig. 1.
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FIG. 6. Dgg(k) for an interacting system®@). The lines are a “g3[ (besser - _=
guide to the eye. The single solid line again shows the analytical m: ,,,,,, ==
expression Eq(52) for D.x(K) in the noninteracting case. = ar ’;, ’/_ W) ’
Sl = - W'y ]
= P ——- W |
orientation is completely decorrelated to its initial orientation 0 0’ — 20 20 20
afterty. For high concentration (&), rotational diffusion t (ms)
slows down strongly due to entanglement effects. Hence the
slopes of the three mean square displacement functions be-
come equal only after the significantly larger time of about 120 T T T T T
to=25 ms. Atc=18c*, which is well above the isotropic- — 100 | (c)c=18c* I
nematic phase transition, the behavior of the three mean E 80 | W:(t) el .
square displacement functions is quite different from thatat =g 0| =77 wi) el ]
concentrations below the critical concentration. Since the rod = ——- W .
orientation at time is always strongly correlated to its initial & 40 [ -7 ]
orientation at timety, the slopes of the three mean square & 20} =" _—7_ __—==""" 1
displacement functions do not coincide after any time as in -
parts(a) and(b), but will remain different. Thus it is possible 0 20 40 60 80 100 120
t (ms)

to define long-time translational diffusion coefficients paral-
lel and perpendicular to the rod axis.

Figure 8 shows the ratio of short-time and long-time FIG. 7. Mean-square displacemeM# (t), W*(t), andWI(t)
translational self-diffusion coefficien®/D], as obtained [see Eqs(37)] versus timet for three different densities. Units on
by calculating the long-time slope of the mean square disth® Y axis are 18 nm* (8 c=0.5¢*, (b) c=8c*, and (c)
placement\(t) versus concentratioa over a broad range ¢~ 18" For runs(@ and(b) we have choseiN=512 rods and
of densitiesc=0.01— 24c* . First the salt-free case was in- "> S€gments; for ruiic) n=9 segments. The other parameters
vestigated(black circles. Here it turns out thaD[(c) is are as in Fig. 1.
nonmonotonidn c. This can be understood qualitatively by
the fact that the strength of the interaction is also density
dependent since the density-dependent Debyekeiu The rotational autocorrelation functiokg,(t) are shown
screening length enters. This effect also occurs for suspen-in Fig. 9@ for /=1,2,3 andc=0.5c*. We have plotted
sions of spherical particles interacting via the DLVO poten-[2// (7 +1)]InW,(t) versus time. For comparison the data
tial. Second, when a sufficient amount of single-valenced safor @ free particle are shown as the dash-dotted line. By
(0.05 mmol/) is added so thak is nearly constant with €xamining the data carefully, one can distinguish between
varyingc, D]/DJ is monotonically decreasing with increas- three time regimes. For extremely short timés< to) the
ing concentration(full squares in Fig. 8 The increase of rods rotate essentially freely. Because of the growing influ-
D[/Dg with added salt with respect to the salt-free case i€NC€ of the |n.teract|on with increasing tlme, the curves start
also known from suspensions of spherical partigg®. For  to bend at a time of about 0.05 ms. Until abegt-1.5 ms
the density approaching its critical value where the systendll threeW,(t) curves lie on top of each other. This implies
undergoes the isotropic-nematic phase transition the transi#2at, on this time scale, the motion practically corresponds to
tional diffusion increases slightly and then stays constant bestandard diffusion on the unit sphere. However, for longer
tween 16* and 24* . This can be explained by the fact that times (= 175), the W,(t) curves start to deviate from each
topological contraints for the translational movement of theother. At long times (> 75) they clearly exhibit different
rods are relaxed once they are all approximately parallelslopes. For'=1,2 a linear fit to the data at these long times
Here we note that the concentration regime explored in thiss possible, implying an exponential decay of orientational
study is significantly larger than that previously investigatedcorrelations. For”=3 the statistical error is too high to ex-
by MC studies[11,21], where the maximum concentration tract a unigue linear slope, but the curve certainly deviates
was 5.6*. significantly from the results for’=1,2. Hence the long-
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FIG. 8. Long-time translational diffusion coefficiem[ mea- 10 0 10 20 30 40
sured in terms of its short-time IimlD[ versus concentration. t (ms)
Black squares W) are for a salt-free system, while black circles
(@) correspond to a system with a high added monovalent salt
concentration of 0.05 mmol/l. The lines are a guide to the eye. The 1.0 T 7 T T T
other parameters are as in Fig. 7. Q e e e e
B
- c) c=18¢c* =1
. . . e L = -——-1=2
time orientational self-diffusion coefficient s dependent. 3 —_—— =3
As explained in Sec. V C, the orientational relaxation is §
therefore not diffusive, i.e., it is not described by the Debye = 05 . . , , ,
equation on the unit sphere. The same conclusion applies for 0 20 40 60 80 100 120
Fig. 9Ab), whereW ,(t) data forc=8c* are shown. In this t (ms)

case, due to the strong interaction, the splitting of the three
W (1) curves occurs much later. We have also performed the FIG. 9. Orientational correlation functiond/, (t)(/=1,2,3)

calculations for very low (0.02*) and intermediate concen- [Eq. (47)] for the same parameters as in Fig.(d) c=18c*. We

trations. Qualitatively, we found the same behavior. Forplotted[ZI/(/+ 1)]InW,(t) versus timg measured in units of ms.

¢=0.01c* this is surprising, since one would expect the sys—he gash-dotted line corresponds to the case of a freely diffusing
tem to behave essentially gaslike. To verify that this is notgg.

the case requires an extreme amount of CPU time, since the

correlation functions decay very quickly at this concentration

and in order to get any statistical accuracy one needs quitelsy now general agreement about the behavior of the long-
long trajectory along which to sample. At concentrationstime rotational relaxation, governed by reversible Newtonian
above the critical concentration of aroundct&he behavior dynamics relevant for simple molecular fluids such as
of the rotational correlation functions changes again. In FigH,0O, CS, or MeCN. In this case, several authdsee, e.g.,
9(c) the concentration is 8. At time t=60 ms the slope [22-24) have confirmed by simulation that the orientational
for /'=2,3 appears to saturate. The slope is zero within theelaxation isnot diffusive for long times. For Brownian dy-
limit of statistical accuracy. The slope of the=1 curve has namics, nondiffusivity is in principle conceivablé6], but

not yet saturated, which might be due to the separation dbased on actual BD simulation data it was clainjéd,16|
time scales among different values 4f Due to finite CPU that the long-time orientational motion is diffusive for long
time resources we could not go to significantly longer meatimes. Our results disagree with this conclusion. Since the
surement times to validate the expected saturation of theondiffusivity we found occurs on time scalés units of
/=1 curve. However, it seems reasonable that the rotationalg) that are considerably larger than that explored in the
diffusion constant vanishes in a nematic phase. We henggrevious BD simulation, we believe that the time scales ex-
reach the important conclusion thidie orientational relax- plored in Refs[14,16 were not large enough to decide about
ation is not diffusive for long timeJhis statement is true for diffusivity or nondiffusivity.

the isotropic phase with densities ranging from very dilute Long-time orientational motion was also studied for a sys-
(c=0.01c*) to fairly concentratedd=14c*). For densities tem of hydrodynamically interacting hard spheres by Jones
above the isotropic-nematic transition it is found that there i§38] solving the Smoluchowski equation in an approximate
no true rotational diffusion anymore. For the isotropic phasevay. He also reached the conclusion that the long-time be-
this point, which was controversially discussed in the litera-havior of the rotational motion is nondiffusive. Although his
ture, needs some further discussion and clarification: There isystem is different from ours, the fundamental reason for the
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data of Doiet al.[14]. As a general remark, the time window

E considered in the experiment is too small to see the nondif-
fusive behavior of the orientational motion. In fact, the rota-
tional correlation functions obtained in the experiment could
be fitted well by a single exponential. Hence it is consistent
to compare our long-time data fﬁTT(t) to the experimental
data forD5(t).

e As regards further comparison of the salt-free data with
ﬁqw ':::gggm' ::"s_ég‘())Smmo‘/I) our results there are several caveats. First, we have used
] -~ MC hard rods (Doi) TMV parameters and the data are for an fd suspension. One

O expt. (fd, no salt) may hope to scale the basic features out by comparing the
< expt. (fd, high salt)

P

]
1
10° L |l | ratio D{/D§ . But the fd virus has some flexibility that was
‘ not accounted for at all in our calculations. Second, it is
found experimentally[39] that at the concentration of
. . 0.44c* the measured rotational diffusion coefficient was in-
19507 107 10° 10 0 distinguishable from the free diffusion coefficiem§,

c/c* whereas the static structure factor was found to have a peak.
These observations are not in agreement with the present
JFIG.10. _Long-time ~orientational diffusion  coefficient results. After these remarks it is clear that one can at most
Di:=lim_.D}(t) for /=1 in terms of its short-time iMiDF  expect a qualitative agreement. Indeed the general behavior
versus concentration on a double logarithmic scalll, BD simu-  js similar to our results. However, details differ much from
lationD/_,, /Dg with 0.05 mmol/l added sal®, same a#l, but ~ qyr data: The simulation data decrease slowly from the value
in salt-fre_‘e solytlon. Thg other B.D parame_ters are as in _Flg. 7D[{/D§%l at the lowest concentration, whereas the experi-
4, MC simulation by Doiet al.[14]; ¢, experiments with fd virus mental data decrease abruptly arounct land nearly ap-
solutions by Kramef40] with a completely screened Coulomb in- h tant val t abowut's At th itical i
teraction by the addition of salt), experiments with fd virus progc a cons*an. va ug at abo t the critical concen
(same as¢, but under conditions of minimal ionic strength. tration of 15: . simulation data decrea_se Sharp'Y and the
second derivative appears to change sign. But this could be
due to the above-mentioned possibility of not using a suffi-

ciently long measurement time fdi‘r?(t). At least the point

nondiffusive character of rotationgl motion in both' systems isyy phase transition can be identified from this plot. Clearly,
really the compactness of the unit sphere on which the rota o full direct comparison, experimental data of careful
tional degree of freedom moves. To construct a random walkjrefringence measurements for well-prepared TMV suspen-

with uncorrelated jumps at long times one ends up Withsions over a broad range of concentrations are needed.
rather large angular displacements, which are not small on

any scale with respect te. Therefore a description in terms VIl. CONCLUSION
of one modified rotational diffusion coefficient is not pos- '
sible. We presented some results of the Brownian dynamics of

We finally remark that it is difficult to see nondiffusive large anisotropic rodlike particles interacting through a
behavior in a birefringence experiment since one only meaYukawa segment-segment potential. The system has been
suresD® for fixed /=2 and cannot compare with results for simulated over the range of densities from @Dlup to
other/’s. Moreover, it would be necessary to have data for24c*. It was found that the translational motion of the center
an extended time regime, considerably larger thém to of mass can be described as a diffusion process similar to the
detect nondiffusive behavior. case of spherical macroparticles. In contrast to previous re-

Finally, in Fig. 10 we show the long-time limit sults, it was found that the rotational motion of charged rod-
DR:=lim,_..DX(t) for /=1 in terms of its short-time limit like particles is not a diffusive process at long times. How-
Dg versus concentration. The parameters are as in Fig. 8, €Ver there is an intermediate time regime where the motion

but the plot is on a double-logarithmic scale. Full circles's Practically diffusive. _ _
correspond to a salt-free situation, while the full squares are Future studies plan to address the following questions.
for a massive added salt concentration of 0.05 mmol/l so that
k is essentially determined by salt. Both data are clearly (i) We have so far calculated only one transition point
monotonically decreasing for increasing concentration. from the isotropic towards a nematic phase. However, the
In Fig. 10, we have also included the results of Boal.  full phase diagram of the Yukawa segment model is not
[14] for hard rods(full diamonds and experimental data known as a function of rod density and added salt concen-
(open diamonds and open circlesbtained by Krameet al.  tration. One may use computer simulation methpéis42]
[39,4Q for a suspension of fd viruses. They are based oror density-functional method#3] to get information about
birefringence decay experiments at minimal ionic strengtht. Further detailed studies should also investigate the depen-
(no salt, open circlesand for a high concentration of added dence of the phase coexistence lines on the numbef
salt (open diamonds In the latter case, one may model the segments.
interrod interaction solely by excluded volume effects. In- (i) As already mentioned, more experimerttsrefrin-
deed the open diamonds agree quite well with the simulatiogence, dynamical light scatterinfpr carefully prepared and
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well-characterized suspensions of rigid rodlike particles ardation is affected by hydrodynamic interactions for high con-
needed to get a more comprehensive picture of the relaxatiotentrations.

of rod correlations.

(iii) Theoretically, it would be interesting to include flex-
ibility in the model in order to access the fd virus and other
ysuspensions of charged semiflexible polymers.

(iv) Finally, hydrodynamic interaction should be included.
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