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Structural relaxation in an undercooled liquid confined between two parallel structureless plates is in-
vestigated by molecular dynamics simulations. It is found that the system exhibits a kinetic glass transi-
tion, detected as a crossover from hydrodynamic relaxation to a relaxation dominated by hopping pro-
cesses. The kinetic transition occurs at significantly smaller densities than that of the bulk glass transi-
tion. In particular, the dependence of this density shift on the plate distance L is studied for systems in-
volving 3 to 16 microscopic layers in between the plates. As a result, the density shift scales approxi-
mately proportionally to exp(—L /I,) where /, is a microscopic length scale. Furthermore, the kinetic
glass transition is a collective effect that occurs simultaneously in each layer.

PACS number(s): 64.70.Pf, 61.20.Ja

I. INTRODUCTION

A liquid confined between two parallel plates exhibits a
marked layering on a molecular length scale. In such a
confining geometry, the freezing transition is shifted to
significantly higher temperature or lower pressure with
respect to the bulk freezing point. In a thin confined
liquid film dynamical and transport quantities also differ
strikingly from their bulk values. This gives a first hint
that also the kinetic glass transition [1], which is inti-
mately connected with the temporal decay of dynamical
correlations, may be drastically affected by a confining
geometry. One may expect that the glass transition tem-
perature T, shifts to higher (and the density to smaller)
values with respect to the bulk glass transition since the
effective free volume per particle is reduced.

Although structural and dynamical properties of
sheared confined liquid films have been extensively inves-
tigated during the past years using both experiments [2,3]
and computer simulations [4~7], it is only recently that
the nature of the liquid-to-glass transition in a finite
geometry has been studied. The only substantial infor-
mation stems from experiments on organic liquids
confined in pores of a glassy material. These measure-
ments offer, however, a rather puzzling picture: A finite-
size-induced decrease of T, was reported for o-terphenyl,
benzyl [8], propylene [9], and for other organic liquids
[10]. On the other hand, in accordance with intuition,
quite a number of experiments report an increase of T,
[11-13]. Recently, the glass transition was also investi-
gated for a liquid film [14] where again a depression of
T, was found.

Although there is an increasing theoretical understand-
ing of the bulk glass transition using computer simula-
tions [15,16] and mode coupling theory [17], no theoreti-
cal attempt was made to study a confined liquid near the
glass transition until now. The only exception is the
computer simulation of Ref. [18], where the influence of
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the finite box size with periodic boundary conditions on
the glass transition was studied. However, this is of
course not a suitable model for a situation where the
liquid is confined by pores and between plates. The aim
of the present paper is to introduce and to discuss a sim-
ple model of a binary liquid mixture confined between
two parallel plates. Using extensive molecular dynamics
simulations, we study how the bulk glass transition is
influenced and altered by the presence of the walls. The
motivation in doing so is twofold. First, since the model
is relatively simple, one may expect to see the physically
relevant principles of the shift in the glass transition tem-
perature directly. Second, the bulk glass transition of the
model is already known with high precision from exten-
sive computer simulation studies by Hansen and cowork-
ers [19-21]; see also [22]. Consequently, deviations from
their results have to be attributed solely to confinement
effects.

One of the main results of our computer simulation
studies is that the kinetic glass transition in a highly lay-
ered liquid between parallel plates is a collective effect,
i.e., each layer exhibits a dynamical anomaly at the same
temperature and the glass transition does not occur layer
by layer for a series of different temperatures. The
dynamical anomaly consists in a sharp crossover from
hydrodynamic relaxation to a relaxation dominated by
thermal activated jump processes in each layer. This
crossover is not connected to any discontinuity in the
static structure; hence the glass transition is a pure
dynamical effect. Another main result is that the glass
transition temperature T, shifts to significantly higher
values compared to the bulk glass transition temperature.
The results can also be translated into a reduction of the
average density along an isotherm with respect to the
bulk glass transition density. The density shift scales ap-
proximately proportionally to exp(—L /I,), where L is
the plate distance and [ is a constant.

The paper is organized as follows. In Sec. II the model
is introduced. Then we describe briefly the simulation
technique in Sec. ITI. Results for the density profiles and
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the key dynamical correlation functions characterizing
the glass transition are given in Secs. IV and V. We finish
with a discussion and conclusion in Sec. VI.

II. MODEL

We consider a binary mixture of classical soft spheres
at a given temperature 7. Each species is characterized
by a mass m,, a soft sphere diameter o,, and a relative
concentration x,=N,/(N,;+N,), N, denoting the total
number of particles (a=1,2). The mutual interaction be-
tween the spheres is explicitly given by
12

, a,BE{1,2}, (1)

o
Vas(r)=e B

where r is the interparticle distance, € sets the energy
scale, and the additive diameter o .5 is defined via

o,5=(0,+t05)/2, a,BE{1,2} . (2)

In order to facilitate a direct comparison with earlier
bulk simulations, we chose the same parameters as in
Refs. [20,21] throughout the paper: m,/m;=2,
0,/0,=1.20, and x,;=x,=0.5. With these parameters
crystallization is practically inhibited completely on the
time scale typically explored by a simulation. Further-
more, the length scale used in the paper is o, and the
time scale is

mo? 172

=

(3)

€

Let us first briefly recapitulate the facts that are known
in the bulk soft sphere mixture. First, all structural prop-
erties depend only on the dimensionless coupling con-
stant I, which is defined as

C=p*(T*)"1/*. @)
Here the scaled particle density p} is

pr¥=(N,+Nyoi/V, (5)
where V denotes the total volume of the system, o, is

given via the relation

2 —

2 3
o2=x%03+2x,x,03,+x%03, (6)

and the scaled temperature T* is
T*=kgT /e, @)

where kjp is Boltzmann’s constant.

Second, in a pioneering computer simulation study of
the bulk glass transition, Roux, Barrat, and Hansen
[20,21] found that the binary soft sphere mixture exhibits
a kinetic glass transition in the supercooled liquid phase
at a coupling constant

r=r®=1.45+0.01, (8)

which readily fixes the bulk glass transition temperature
Tém via (4) and (7). The glass transition was detected by

4017

observing a change in the relaxation mechanism as visu-
alized in the Van Hove correlation functions

{ /VNa \
(a) = 7—7a 7
G;%(r,t) N, <j=§18(r 7 (O)+rj(t))/ ,

a,BE(1,2}, (9

where ?}I(t) denotes the position of particle j of species o
at time ¢ and ) is a canonical average. For tempera-
tures higher than T,°), the relaxation of G!®(r,t) has a
strong hydrodynamic character; this means that the Van
Hove functions reach their hydrodynamic long-time limit

r2

Gy 1) == 4D,
a

exp (10

1
(47Dt )32

quite rapidly. In (10), D, denotes the long-time self-
diffusion coefficient of particle species a. On the other
hand, for T < T, the relaxation in G *(r,¢) occurs main-
ly by thermal activated jumps along a nearest-neighbor
distance a=p~!/?, where p=(N,;+N,)/V is the total
number density, V denoting the total volume of the sys-
tem. The jump processes cause a shoulder in G{*)(r,t) at
r=a for fixed large times ¢. This change in relaxation
occurs in a very narrow temperature interval and is inter-
preted as a kinetic glass transition. Furthermore, the fol-
lowing points were carefully checked in Refs. [20,21], re-
vealing that the glass transition is an intrinsic property of
the supercooled fluid.

(i) As any static correlations, the kinetic glass transi-
tion depends only on T".

(ii) The kinetic glass transition is independent of the
cooling rate provided this rate is gentle enough.

(iii) Freezing in of dynamical correlations occurs for
both types of spheres at the same coupling I".

(iv) The location of the kinetic glass transition does
not depend on the mass ratio m, /m .

Let us now discuss how to introduce a confining wall in
the model. Effects of confinement are most conveniently
described by taking the walls as fixed and inert, acting on
the particles of species a as an external potential
V(7). Of course, in the bulk, V¥ (¥)=0. Two
parallel walls are modeled by choosing

pel(o,+o,)/2]"?
45

1 1
(z+L/2Y° (z—L/2Y

stxt)(;*):

, (11)

where z is the coordinate perpendicular to the plates and
0, is defined via (2). By introducing the external poten-
tial (11), the system is confined to the finite interval
—L /2<z<L/2, where L is the plate distance. This
then causes a strong layering in the liquid between the
plates.

The motivation to take the expression (11) stems from
the fact that V&V (¥) is exactly the potential of a semi-
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infinite homogeneous bulk of fixed spheres with the same
relative concentration and total density p as in the
confined system. This total density p is defined in the
confined system via

p=(N,+N,)/(LL}), (12)

where LLﬁ is the total volume accessible by the particles
and L denotes the system size in lateral direction. In
fact, L, may be thought of as a macroscopic length or the
microscopic size of a finite simulation box with periodic
boundary conditions in lateral directions. In analogy to
the bulk expression (4), we define the coupling parameter
I in the confined system by

T=po3(T*)" /4. (13)

Since the external potential (11) depends only on z, the
walls do not carry any lateral structure.

III. COMPUTER SIMULATION
OF THE GLASS TRANSITION

The finite-difference version of the Newtonian equa-
tions of motion are integrated using a Verlet scheme of
standard constant-temperature molecular dynamics [23].
The simulation box was rectangular, consisting of a
square with periodic boundary conditions in lateral direc-
tions. The total number of particles used in the simula-
tion was N;+N,=500, i.e., N;=250 and N,=250. It
was carefully checked that the time step At was small
enough; for the parameters used in the simulations
0.0057= At =0.0157 was chosen to be slightly depending
on temperature.

For a given wall separation L the system was gently
cooled down from high temperatures to temperatures in
the neighborhood of the kinetic glass transition while
keeping the total density fixed to po;=1. Near the glass
transition one run typically involved 103 equilibration
time steps and 10° steps to collect statistics for static and
dynamic correlations. One typical cooling rate is shown
in Fig. 1, where the coupling parameter I is plotted
versus total time 7. In fact, in Fig. 1, one sees a whole
series of runs defining one cooling history. The end
configuration of a run was successively used as a starting
configuration of a slightly cooled run. Three different
cooling curves are shown: The dashed line corresponds
to the temperature prescribed in the framework of
constant-7' molecular dynamics. As it should be, the
temperature that is actually realized by the system (solid
line) is then very close to the prescribed temperature. Fi-
nally, the dash-dotted line is the corresponding coupling
I' in one layer lying near z =0 in between the walls.
Since there are large fluctuations in the particle number
within one single layer (the precise definition of this quan-
tity will be given later in Sec. IV), the effective averaged
coupling in this layer can significantly deviate from the
global system-averaged value prescribed within the simu-
lations.

Generally, it was found that a larger equilibration time
is needed for a confined system than that needed for bulk
equilibration. Consequently, the cooling rate had to be
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FIG. 1. Cooling history for series C of the simulation. The
coupling parameter I" is shown versus reduced time ¢/7:
prescribed value, dashed line; actual average value of the cou-
pling in the total simulational box, solid line; coupling in one
layer in between the walls, dash-dotted line.

significantly smaller than that in Refs. [20,21]. Also the
sensitivity of the results to a different cooling rate was
checked by enhancing and lowering it by a factor 2. No
changes were observed for the location of the glass transi-
tion and the static correlations while the long-time
dynamical correlations were qualitatively similar but
differ quantitatively due to lack of statistics. This fact,
however, will not affect any conclusion in the paper.

Altogether five different sets 4 —E of runs were done
for different plate separations L; their parameters are
summarized in Table I. These series involve wall separa-
tions ranging from L =50 to 14.60,. Each series corre-
sponds to one cooling history comprising 15-30 single
runs of different temperature [24].

IV. DENSITY PROFILES BETWEEN THE WALLS

Before discussing dynamical relaxation, let us first
focus on results for static quantities. The microscopic lay-
ering in a liquid confined between two parallel plates
manifests itself directly as oscillations in the one-particle
density profiles of both particles species, which are
defined via

TABLE I. Lateral box length L, /o, plate distance L /o,
number of microscopic layers n;, and coupling parameter of the
glass transition I', for the different series of runs 4 —E.

Run Ly/o, L/o, n; r,
A 10.00 5.00 5 1.07+0.01
B 7.94 7.94 8 1.21+0.02
C 6.93 10.40 11 1.25+0.02
D 6.30 12.60 14 1.314+0.02
E 5.85 14.62 16 1.374+0.01
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Na
pw)(z):(za(?—?;‘“’)}, a=1,2. (14)

i=1

In the (inhomogeneous) fluid phase, this quantity depends
only on the coordinate z perpendicular to the plates. An
example is shown in Fig. 2, where the series 4 and
’'=1.070 is taken. One sees that five layers are built up
between the walls while the density distribution of the
large spheres follows closely that of the small spheres, ex-
cept in the outermost layers, which prefer the large
spheres. Strictly speaking the density profile should be
inflection symmetric around z =0; the small asymmetry
stems from the effect that the system has not been com-
pletely equilibrated near the wall contact.

The number of layers is entirely fixed by the wall sepa-
ration and independent of temperature. This is demon-
strated in Fig. 3, where the profile of the total density

p(2)=p(z)+p(z2) (15)

is plotted for different runs from series A4 as a function of
I'. For high temperature (I'=0.499) the third layer in
between the walls is hardly visible, i.e., the system practi-
cally exhibits structural bulk properties around z=0.

For low temperatures close to the kinetic glass transition .

(I'=1.070), the layering is very sharp. This holds true
even for such large wall separations with 15 layers (series
E), the largest value explored in this paper. Consequent-
ly, for the values of L examined in our study, there are
still strong anisotropic correlations near z=0. Of course,
in the extreme limit of large L, these structural anisotro-
pies vanish since the amplitudes of the density profiles de-
cay exponentially as a function of wall distance. The
number of layers n; corresponding to each set of simula-
tions is given in Table I.

It was always observed during the gentle cooling series
of the simulations that the density profiles depend
smoothly on temperature variation. For instance, in Fig.
3, a slight change in " from I'=1.062 to 1.070 (which

small spheres — §
large spheres - }

p(2)o, p(2)o
O =~ N W H O O N O ©

25 -2-15-1-050 05 1 15 2 25
Z/o;

FIG. 2. Partial density profiles of the small spheres p''(z)o}
(dashed line) and for the large spheres p'*/(z)o} (solid line)
versus z /o for series A(I'=1.070).
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FIG. 3. Total density profile p(z)a} belonging to run series A
for three different couplings: ['=0.499 (solid line), I'=1.062
(dashed line), and I'=1.070 (dash-dotted line).

turns out to be very close to the kinetic glass transition in
fact) induces only a small change in p(z). This observa-
tion has two implications. First, it strongly indicates that
there is no sudden in-plane freezing that would manifest
itself as a discontinuity in the density profile as a function
of temperature (see Ref. [25] for a discussion of such a
first-order in-plane freezing in sedimentation density
profiles). Second, we shall see in Sec. V that the dynami-
cal relaxation will drastically slow down for a very small
temperature reduction, which will be interpreted as a
kinetic glass transition. The continuity of p(z) at the
glass transition implies that the transition is of a purely
dynamical nature. This is in agreement with the common
view on the bulk glass transition within mode coupling
theory [17], where continuous liquid structural correla-
tions yield a discontinuous dynamical behavior.

The total density profile p(z) can serve in a natural way
for a definition of the total layer thickness. For a number
of n; layers, let z" <z’ < - - <z,;:'_1 denote the posi-
tions of the minima of the density profile p(z). Then the
thickness of the layer i (1<i=<n;) is z"—z", with
zg=—L/2 and z,:'l' =L /2. On the z axis the ith layer

falls in the interval z», <z <z/". Consequently, the
average number of particles W, per area in the ith layer is
given by
zm
N, /L= fz;‘" ldzp(z) . (16)
During the simulation we did not observe a full segre-
gation or phase separation of the large and small spheres
even for temperatures near the glass transition. This is
based on an analysis of particle configurations during the
simulation. In a typical configuration of the outermost
layers, the particles are distributed on a matrix that local-
ly exhibits the structure of a triangular lattice. Near the
kinetic glass transition such a configuration is depicted in
Fig. 4. Although the snapshot looks like a triangular
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x/o;

FIG. 4. Snapshot of the particle positions in an outermost
layer (xy plane) near the wall for series C (I’'=1.274). The in-
plane coordinates of small spheres are depicted by open circles,
those of the large spheres by full dark circles. The size of the
square is the lateral box length L of the simulation.

crystal, there is no full translational long-range order
within the finite lateral box cell of the simulation, i.e., the
system does not freeze into a laterally structured phase.
Still, Fig. 4 shows that there are considerable static in-
plane correlations within one layer. One also sees a
significant clustering within the plane, but no complete
phase separation.

V. SLOWING DOWN
OF DYNAMICAL CORRELATIONS

A. Van Hove correlation functions

As discussed earlier, a sensitive dynamical diagnostics
for the kinetic bulk glass transition is provided by the re-
laxation mechanism as visualized in the Van Hove func-
tions G{*(r,t), which are defined by Eq. (9) [20]. We
have also investigated this key quantity for the confined
liquid. In order to resolve the dynamical behavior layer
by layer, it is convenient to introduce the Van Hove func-
tions (_?S(a)(r,zl,zz,t) projected onto the planar coordi-
nates x and y (r=Vx2+yp?) for particle trajectories
whose z coordinates start and end in the interval
z; =z <z,. These functions have also been analyzed in
the context of the kinetic glass transition in strictly two-
dimensional fluids [26,27]. Their explicit definition is
given by

Gs(a)(r,zl,zz,t)

_ Lﬁal il (@) (@)
= —:——ZS(x‘—xj (0)+x;%(1))

a j=1
X 8(y —y}“’(0)+y}“>(t))> ; (17)
where the sum in (17) is restricted to
2, <z{*0), z}®(t)<z,, a=1,2. (18)
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In (17), N, denotes the actual number of terms in the re-
stricted sum. The projected Van Hove function of the ith
layer is then obtained by setting z, =z~ and z, =z/".
For the run series C where the density profile consists
of 11 layers, the projected Van Hove function for the
small particles is shown in Figs. 5(a)-5(c) for different

0.4
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FIG. 5. Van Hove correlation functions Gil)(r,zg",zg”,t) for
the third to ninth layer versus r/o, for different times
t /7=50,100, 150,200,250 (run series C). The hydrodynamic
limit for ¢z /7=250 is also shown (solid line). (a) I'=1.173, (b)
I'=1.217, and (c) I'=1.248.
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couplings I' at various times ¢.. The z coordinate is re-
stricted between the third and the ninth layer. For a
large time ¢, the hydrodynamic limit

2
exp 4 } (19)

1
47D (2)t 4D (1)t

is also shown with a self-diffusion coefficient D,(¢) ob-
tained from the corresponding mean-square displacement
by Einstein’s formula in two dimensions

1/ 1 Na
=—(— (@)(4)— 5 (@) 2
D (1) 4t<Na jél{[xj (#)—x;*(0)]

+[y;a><t>—y,‘-“’(0)]2}> . 20

For I'=1.173 [Fig. 5(a)], the relaxation quickly
reaches its hydrodynamic limit within the time explored
by the simulation (¢ =2507). It is thus still a fluid. If T’
is enhanced to I'=1.217 [Fig. 5(b)], there is a secondary
peak visible for smaller time, indicating that jump pro-
cesses do play already a role and that the system is close
to the kinetic glass transition. Still the system reaches its
hydrodynamic limit at ¢ =~2507, however, within a much
larger relaxation time than that in Fig. 5(a). A clear-cut
distinction between the two peaks is seen for '=1.248 in
Fig. 5(c), where the system does not relax towards its hy-
drodynamic limit within a large time of several hundreds
of . This implies that the relaxation time has dramati-
cally increased upon a slight change in temperature and
that the kinetic glass transition has occurred. If T is
again slightly enhanced, the system is completely frozen
on the time scale explored by the simulation. From the
given data we can thus estimate the kinetic glass transi-
tion to occur in a relatively narrow temperature interval
at '=I",=1.24+0.02. This value is significantly smaller
than its bulk value F(g°)=l.45i0.01, which means that
the glass transition temperature is shifted to higher values
with respect to the bulk.

By an extensive analysis of the Van Hove functions we
find the following results.

(i) The kinetic glass transition occurs for the large
spheres and for the small spheres at the same tempera-
ture and value, respectively, of the coupling constant I'.
This result was also obtained for the bulk simulation [20]
and carries over simply to the confined-fluid case.

(i) The kinetic glass transition as detected by a dynam-
ic anomaly in the Van Hove correlation functions occurs
at the same temperature for each layer. This important
result implies that the transition is not a series of transi-
tions starting from the outermost layers and then grow-
ing layer by layer into the bulk, but contrarily is a collec-
tive effect. Though the layers are well separated, they
still interact with each other and freeze at the same tem-
perature into a glass. This is demonstrated in Figs.
6(a)-6(c), where the Van Hove function for the outer-
most layer is shown for the same parameters as in Figs.
5(a)-5(c). Generally speaking, the relaxation in the
outermost layer is considerably slower than that in the in-
termediate layer. However, the dramatic change in the
relaxation time towards the hydrodynamic limit occurs at
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the same value of the coupling. In Fig. 6(a) the outer-
most layer is fluidlike, while for Fig. 6(c) it is nearly com-
pletely frozen in. This corresponds completely to the re-
laxation in the intermediate layers as visualized in Figs.
5(a)-5(c).

(iii) The glass transition temperature increases for de-
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FIG. 6. Same as Fig. 5 but now for the outermost layer. The
Van Hove correlation function G; (r,zf',z7,t) is shown versus
r /o, for different times ¢ /7=50, 100, 150,200,250 (run series C)
including the hydrodynamic limit (solid line). (a) I'=1.173, (b)
I'=1.217, and (c) I'=1.248.
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creasing wall separation L. The results are discussed in
detail in Sec. V D.

(iv) The glass transition becomes sharper (i.e., it occurs
in a smaller temperature interval) if the distance L be-
tween the plates decreases. In order to see this, we have
plotted the Van Hove correlation function of the series A
in Figs. 7(a) and 7(b), corresponding to the intermediate
(third) layer. From I'=1.063 [Fig. 7(a)] to T'=1.070
[Fig. 7(b)] there is a sudden frozen-in process visible
where the relaxation mechanism in the layer changes
from hydrodynamic behavior to that mediated by
thermal activated jump processes. The jumps manifest
themselves as a strong secondary peak at r /o ;~1. This
implies that particle exchange processes between neigh-
boring particles in the layer are the dominant contribu-
tions to the relaxation. For large times in Fig. 7(b), there
is even a third peak at about /0 ;==2, which is composed
of two such nearest-neighbor jumps.

I 7. hydrodynamic limit — |
a) A t=501

L t=100t :

: t=1507 -

t=2007 -

0 .‘.r" " " 3 2 2 2 i s .-»..
0 05 1 15 2 25 3 35 4 45
r/'o;

(r,23,25,1)0;

a
S

2nrG

r/'o;,

FIG. 7. Same as Fig. 5 but now for the run series 4 and the
intermediate third layer. The Van Hove correlation function
(_?Sa (r,z3',z5',t) is shown versus r/o; for different times
t /7=50,100,150,200,250 including the hydrodynamic limit
(solid line). (a) I'=1.063 and (b) "'+ 1.070.
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B. Particle trajectories

A further direct diagnostics for the dominant relaxa-
tion mechanism is a study of particle trajectories. Doing
this near the kinetic glass transition, the following picture
has emerged by our simulations. In the fluid case, the
particles diffuse hydrodynamically within the layers and
occasionally jump in z direction from one layer to anoth-
er one. At the glass transition the jumps in z direction
are highly suppressed and in the layer parallel to the
walls activated jump processes are visible. In Fig. 8 one
particle trajectory projected to the yz plane as well as to
the xy plane is shown a bit below the glass transition tem-
perature. While jump processes with a typical nearest-
neighbor spacing are seen in the xy plane, the motion is
practically frozen in the z direction, i.e., hopping in the z
direction is a very rare event.

C. Self-diffusion

Using Einstein’s formula (20) we can define a time-
dependent diffusion coefficient D,(¢) (a,f=1,2). The
corresponding generalization for diffusion in the ith layer
is

N

a

i 1 1
D=1 (53 (70 -5
4\ N, EI J J

FOO-y@OP]), e
where the sum is again restricted by the condition (18).
The quantity D> (¢) is plotted for a fixed large time ¢
versus I' in Fig. 9 for series 4. As expected, near the
kinetic glass transition, the diffusion drastically drops to
very small values (note the logarithmic scale for D' (z)
in Fig. 9). The location of the glass transition may there-
fore also be determined by a drastical reduction of long-
time diffusion. Figure 9 shows that this definition is
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FIG. 8. Trajectory of a small sphere projected to the xy and

the yz plane from series C with I'=1.274. The total amount of
time in generating this trajectory was 2257.
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FIG. 9. Diffusion coefficient D{3(¢.) in the third layer of
series 4 versus coupling constant I" for a fixed time ¢z, =2507.
Both cases a=1,2 are shown. Note the logarithmic scale for
DX (z).
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equivalent to that formerly discussed with the help of the
Van Hove correlation functions. In both cases,
', =1.070=£0.005.

The layers near the wall exhibit a much slower
diffusion [24]. However, the change in the diffusion
coefficient happens at the same coupling as that belong-
ing to an intermediate layer.

D. Shift of the glass transition

Using the same diagnostics as in Sec. V A and V C, the
glass transition temperature was determined for five
different wall separations L (series 4 —E). The results for
the coupling I'y, where a slowing down of the dynamical
correlations was observed, are summarized in Table I. In
any case there was a shift towards higher temperatures
(lower density) with respect to the bulk glass transition
temperature (density). In order to evaluate these data
quantitatively we have tried to fit them by relatively sim-
ple laws. A good one-parameter fit was obtained using an
inverse power law

=10) _ —
AT, =r"-Tr,=I/L, (22)

where /=2.000, is a microscopic length scale. Admit-
ting two fit parameters 4, and [/, we found that an ex-
ponential law fits the data well

ATg =T —T,= A4, exp(—L/l,) , 23
g 4

with 4,=0.818 and /;=7.090 ;.

In Fig. 10 we have plotted AT, versus L together with
the fits of (22) and (23). While the one-parameter fit fails
to describe all data within the error bars, the exponential
law (23) fits the data quite well. Since the glass transition
only depends on I', (23) implies that the density reduction
scales with exp(—L /1,). Of course, as our data set is
limited, this does not rule out other relations between
AT, and L.
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FIG. 10. Shift of the glass transition density I'\”’—T", versus
plate distance L /o;. The data of the simulation including their
error bars are shown together with the one-parameter fit pro-
portional to 1/L and the two-parameter exponential fit propor-
tional to exp(—alL).

It is instructive to compare our numerical data with re-
cent theoretical predictions. Bocquet and Barrat have
proposed a phenomenological hydrodynamic approach
for correlation functions of confined fluids [28,29]. On the
other hand, a relatively simple mode coupling theory for
the bulk glass transition was proposed some years ago by
Geszti [30], who viewed the glass transition as mediated
by a viscosity-feedback mechanism. If Geszti’s theory is
combined with the hydrodynamic approach of Bocquet
and Barrat, one gets a simple theory for the glass transi-
tion in a confined liquid [31]. Within this theory the shift
in the glass transition temperature with respect to the
bulk value scales with the plate distance L in the form

AIn(L/o)+B
L b
where 4 >0 and B are constants that can be related to
bulk correlations and o is an arbitrary microscopic
length scale. One should note that the expression (24) is
only valid asymptotically for very large L. In particular,
the oscillations in the density profiles between the plates
should have been decayed to zero in between the plates
near z =0, which implies that both plates are practically
decoupled. Since in our simulations even for the largest
plate distance there are still strong oscillations in the den-
sity profile, one cannot directly compare (24) with our re-
sults. However, it is tempting to check whether the ex-
pression (24) remains valid for smaller L. In order to per-
form this check, we have plotted L(T, — T;O)) versus
In(L /o) in Fig. 11. If (24) would be true, all the data
should fall on a straight line. The plot of Fig. 11, howev-
er, reveals that the expression (24) breaks down for
lengths L of few microscopic spacings, but a linear rela-
tion seems to be valid for larger L. Hence Eq. (24) can be
used only to describe the data for relatively large L
comprising roughly at least ten microscopic layers.

— 7(0) =
T,—T\"= (24)
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FIG. 11. Shift in the glass transition temperature times plate
distance Lk (T, —T{")/eo versus L /o,.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have investigated the glass transition
for a fluid confined between parallel plates. It occurs at
significant higher temperatures (lower densities) than the
bulk glass transition. For example, if the system consists
of five layers, the shift ATg / T&(,O’ is about 3.3, which cor-
responds to a density reduction of 26%. Furthermore,
we presented evidence that the glass transition between
plates is a collective effect of all layers between the plates.

We close with some remarks on the possibility of an ex-
perimental observation of the glass transition in a
confined fluid. First of all, we remark that the present
model is designed for fragile glass formers carrying only
very weak chemical bonds in the fluid phase. An excel-
lent experimental realization of such a fragile glass form-
er on a mesoscopic length scale are colloidal suspensions
of spherical macromolecules [16]. The effective interac-
tion between sterically stabilized index-matched suspen-
sions is governed by excluded-volume effects and a hard-
sphere model is appropriate to describe the interaction.
The bulk glass transition in sterically stabilized suspen-
sions has been extensively studied by dynamical light
scattering (see, e.g., [32]) and good overall agreement was
obtained by comparing the results with that obtained
from mode coupling theory for hard spheres. Colloidal
suspensions can also be confined between parallel glass
plates [33—36] and watched directly in real space by opti-
cal microscopy and digital image processing [37]. In par-
ticular, it should be possible to watch the glass transition
by resolving the long-time dynamics. The distance be-
tween the plates can be varied easily and thus the
structural and dynamical correlations can be studied as a
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function of L. Of course one should bear in mind that
the interaction between colloids is not well described by
the inverse power law (1), but is rather hard-sphere-like
for sterically stabilized suspensions and Yukawa-like for
charge-stabilized suspensions [38]. Also the dynamics are
Brownian rather than Newtonian. Recent studies
[39,40], however, indicate that the long-time dynamics
relevant for the location of the kinetic glass transition is
not affected by the short-time dynamics. Therefore all
qualitative features of the glass transition in a confined
fluid obtained by our simulation should persist for col-
loidal suspensions. In particular, the scaling of the densi-
ty reduction with exp(—L /1) [i.e., Eq. (23)] can be test-
ed using sterically stabilized suspensions between glass
plates. Hence experiments on several layers of colloidal
particles confined between parallel plates are highly desir-
able in order to check our theoretical predictions.

The experiments mentioned in the Introduction use or-
ganic complex liquids. It is obvious that these liquids are
not well described by our soft-sphere model. The shift of
the glass transition in the confined liquid towards lower
temperature with respect to the bulk can be explained by
the complex nature of the liquids and/or by details of the
wall or the interface built up on the porous medium. A
wall roughness may again influence the glass transition
and it is conceivable that for a more complicated wall-
particle interaction a depression of 7, is achieved. One
simple example, again in the context of simple liquids,
may help to understand this. Consider a wall-particle in-
teraction that is strongly repulsive but also has an attrac-
tive part near the wall. In the attractive well, a dense lay-
er of particles will accumulate (and even freeze into a tri-
angular crystal) in equilibrium. Hence the rest of the sys-
tem becomes less dense. It is now strongly expected that
in this remaining layers the glass transition is shifted to
lower temperature since the density is smaller. Hence, at
least in principle, a depression of T, is also conceivable
for simple liquids with an attractive wall-particle interac-
tion.

As a final remark we would like to stress the necessity
of constructing microscopic mode coupling theories for
the glass transition in fluids confined between two parallel
plates that go beyond the simple law (24). Of course this
is much more complicated than for the bulk problem
since the structural input correlations are also more com-
plicated. But, at least in principle, a construction of such
a microscopic theory should be possible.
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