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Abstract. We apply density-functional theory lo study the expanded-Foc-to-condensed-sCC
transition of a system of hard, spherical pasticles with a short-ranged attractive interaction,
predicted recently by the simslations of Bolhuis and Frenkel. Our approach is based on a
non-perturbative treatment of the repulsive hard-core part of the potential, using the modified
weighted density approximation (MwDA}, and a mean-field approximation for the attractive part.
We confirm by means of this simple theoretical treatment the existence of an isostructural
solid-to-sotid transition which terminates at a critical point. in quantitative agreement with
the simutation data. We obtain, within this approximation, classicai critical exponents fer the
conlinuous transition.

1. Introduction

One of the most important and best known phase transitions is the freezing of a fluid
into a regular crystalline lattice accompanied by a spontaneous breaking of the continuous
translational symmetry. Although many empirical facts have accumulated during the last
century, it is only since the last decades that microscopic aspects of freezing have been
studied [1].

The best way to get a direct theoretical insight into the molecular freezing mechanism
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solid-to-solid transition for hard spheres with a very short-ranged attractive interaction. In
the temperature—pressure diagram these transitions form a first-order line between two rCC
crystals with different lattice constants which terminates at a critical point of two solid
phases.

In constructing microscopic theories of freezing based on classical statistical mechanics
considerable progress was made using density-functional methods, which are based on
the fluid state and view freezing as a condensation of fluid density modes. Different
approximations of the free-energy density functional have been proposed, for a review
see [4]. As a non-trivial reference system, hard-sphere freezing is obtained without any
parameter fitting, and quantitative agreement between theory and simulation is achieved.
Among the best approximations are the non-perturbative weighted-density approximation
[5} (WDA), and a modified weighted-density approximation (6] (MWDA), by Ashcroft and
co-workers. Frequently the treatment of more complicated potentials v(r) is done via
thermodynamic perturbation theory around a hard-sphere reference system. This approach
has been successfully applied to a Lennard-Jones interaction {7, 8.

In this paper we present a density-functional theory for the isostructural solid-to-solid
transition discovered by Bolhuis and Frenkel [3], for systems composed of particles which
interact by means of a hard-sphere plus a short-range aitractive square-well potential. A
theoretical study of similar systems by Tejero ef af has also recently been published [9], but
the pair potential in this case was taken to be of a double Yukawa form which, for different
choices of the Yukawa parameters, can model long-range potentials (such as Lennard-Jones
[10]) as well as short-range ones. We use hard spheres as a reference system treating them
with the MWDA, The attractive part of the potential is approximated by a simple mean-
field approach. Within this theory we confirm the isostructural solid-to-solid transition
quantitatively. Taking the capability of the theory for granted, we predict the location of
the point at which the solid-solid coexistence disappears altogether, because it is always
preempted by the melting transition. Within our theory we find that the critical exponents are
classical. Qur theory has the further advantage of being relatively simple, and numerically
less involved than a direct simulation. We remark that it is the first density-functional theory
which predicts isostructural solid-to-solid transitions in simple systems. There have been
density-functional studies on sticky hard spheres which however did nm Frmre o o1 1



Solid-to-solid isostructural transitions 10967

In (1), o is the hard-sphere diameter, § is the width of the attractive potential, and —=z is its
depth (¢ > 0). Our goal is to investigate the phase diagram of a system with an interaction
given by (1) for the case of a short-range attraction, for which Bolhuis and Frenkel [3]
have discovered the existence of an isostructural FCC-to-FCC fransition at low temperatures.
The strategy we follow is to separate the interaction (1) into a hard-sphere repulsion and
an attractive part, and treat the former by means of density-functional theory (DFT), and the
latter in the mean-field approximation (MFA). The most natural partition of the interaction
(1) is to write

v(r) = vo(r) + @{r) (2)
where
r) oo O0<r<o @)
¥y =
v 0 rzao
is the hard-sphere (HS) interaction, and
0 0<r <o
d(r)={ —& oSr<o+4$ (4)
0 rzo4d

is the attractive part. Our starting point is the Gibbs-Bogoliubov inequality [13], which
states that the Helmholtz free energy F of a system characterized by the interparticle
interaction v can be related to that of a reference system having interaction vy by

F <P+ {v— ). (3)
In equation (5), Fy is the Helmholiz free energy of the reference system, and {OD)g denotes

the thermodynamic average of the quantity & in the Hamiltonian of the reference system.
Choosing the HS interaction as the referancs Elam o am  mod oo 2 TE ST
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The Gibbs-Bogoliubov inequality is used in most cases in a variational sense: on the
right-hand side, one or more variational parameters are introduced, and these are varied
until an optimal upper bound for the sought-for Helmholtz free energy is obtained. A usual
variational parameter is the diameter of the reference Hs interaction, for example. However,
we do not have this freedom here, since the partition of the potential is determined by the
potential parameters uniquely (equations (2)-(4)). Thus, as a first approximation, we treat
the Gibbs-Bogoliubov inequality as an equality, i.e. we introduce the approximations

1 1
Flo) = Fy(p) + ENﬁ;fQ')(f)d'l“ + ENplfho(f; pe(r)dr (&

for the homogeneous phase, and
i
Flptri} = Rlp@) + 3 [ strotiptin - vy drar

1
3 f R (s Lo p () p () — 7)) d di’ ©)

for the inhomogeneous one. The last term in equations (8) and (9) describes the effect on
the internal energy from the correlations that arise due to Hs repulsions alone. As a last
approximation, (which greatly simplifies the implementation of the theory), we treat the
attractive part in the mean-field approximation, i.c. we completely ignore this last term for
both the liquid and the solid. Thus, our final approximation reads

1
F{p) = Folen) + §Nﬁif¢(r)d’r' (10)

for the liquid, and

1
Fle(r)l = Rlp(r)] + 3 f p)p(r)(ir — ') dr dr’ an
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where {R] is the set of lattice vectors of the given Bravais lattice. The limit « — 0
corresponds to completely delocalized Gaussians, and it will be taken to correspond to
the uniform liquid, whereas the Gaussians become more and more localized as a grows,
Denoting by py the Fourier components of p(r), and by ug = pi/p, the dimensioniess
Fourier components, the parametrization (13) immediately implies

px =e K/ (14)
where {K'} is the set of reciprocal lattice vectors (RLVs) of the given lattice, and K = | K}

The ideal part of the free energy of the solid is known exactly, and it is given by the
expression

BF
N

= %fp{r)[ln(p(r)a% - 1] dr + 3In(A/e). (15)

For the excess free energy of the non-uniform system, we adopt the modified weighted
density approximation (MWDA) of Denton and Ashcroft [6], which is known to give excellent
results for HS systems, and which is computationally straightforward, Denoting by £i(p)
the free encrgy per particle of the uniform system at density o, the MWDA approximates the
excess free energy of the non-uniform system by that of a uniform system, but evaluated at
a specified weighted density p, i.e.

BE ()] = Nfi(p). (16)

The weighted density 3 is evaluated self-consistently as a weighted average over po(r); in
the Gaussian approximation, p is determined by solving the implicit equation

Hlos, ) = ps[l — T%‘.— N ek 2 2, g, 6\-‘ Fa B 2%
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Figure 1. Heal free energy Fi, excess free energy Fi,, Mra internal energy U at temperature
kT /e = 1.0, and total free energy Fio per unit volume V of an rec solid against the localization
parameter ao?, The values of the parameters are here po? = 1.00 for the average density, and
3 = 0.06 for the range of the attractive part of the potential. The competition between the three
terms results in a minimum for the total feee energy for a non-zero value of the localization
parameter,

The total free energy of the Foc solid is the sum of the ideal, excess, and Mean-
Field parts. For any given average solid density po?, this sum has to be minimized with
respect 1o the localization parameter ¢. In figure 1, we show the typical behaviour of
F§L, FE, and U as functions of the localization parameter. An important point is that the
very dense FCC solids which we have to consider in order to investigate the possibility
of isostructural transitions are characterized by an extremelv hioh wale L. 1. e 7
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the usual case of two fiuid phases and one solid phase for large values of 8.

In figure 3, we show again our results, but now we put on the same plots the simulation
data of Bolhuis and Frenkel [3]. It can be seen that our mean-field approach has the
usual characteristics of all mean-field theories: the critical temperature T, is overestimated
(by about 17%). However, the critical density p. is rather insensitive to the approximation,
Unfortunately, no simulation data are available for the triple temperature T;, so a comparison
cannot be made at present. Nevertheless, we expect that the triple temperature from our
MFA is not too far from the true one, and in particular that the deviation for 7, is smaller
than for the 7. The reason is that at 7, the fluctuations, which are ignored in the MFA, and
which are responsible for the overestimation of T, are much more strongly suppressed than
at criticality. We have also calculated the critical exponent § defined by the scaling relation
(p = po) ~ (T — T)P for T close to T, obtaining the classical exponent 8 = 1/2. (See
figure 3(b), inset.}

Other than the expected overestimation of 7., it can be seen from figures 2 and 3 that
the theory reproduces all the qualitative and quantitative features of the simulations. A
summary of the results is given in table 1, where also a comparison is made for the critical
density with the simulations [3] and the predictions from the cell model [3]. Referring to
figures 2, 3, and to the entries of table 1, the following remarks can be made.

(i) The critical temperature 7, is rather insensitive to the range of the interaction §, and
it shows a slight decrease as & is lowered.

(i) The shape of the FCC—FCC coexistence lines is asymmetric, and this asymmetry
becomes stronger for smaller 8, i.e. as the right part of the coexistence curves approaches the
close-packing limit. The theoretical curves also reproduce the ‘shifting’ of the coexistence
curves to the right, as well as the ‘narrowing’ of the typical width of the curves as §
decreases.

(i) The critical density p, is very close to the simulation result, albeit also slightly
overestimated by the theory. It is particularly interesting that the actual simulation result is
for the cases considered here intermediate between the MFA value and the prediction of the
celt model, p.o® = poc(1 + §/0)2, where ppo® = /2 is the close-packing limit of the
density.

Faery XA 7 4l it 2l e wmrmm e B Lt 1 e
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Table 1. The triple temperature T, critical femperature T, and critical density p. for the Foo-
FCC transition predicted by this work, for different values of 5. For the fast quantity, we also
show the results from simulation, and the predictions of the cell model, for comparison.

kaTije  keTefe (0™ (o™’ (pod)

3/ =0.04 [.337 2.083 1.289 1.265 1.257
§/o = 0.06 L.700 2.095 1.219 1.205 [.187
8/ = 0.08 2.065 2.106 1.1535 — 1.122
# This work.

™ Simulation results (Rgure 2 in {3]).
© Prediction of the cell model: p.o® = v2(1 + 5/0)3 (see [3]).

4, Conclusions

We have presented a simple density-functional theory of solid-to-solid isostructural
transitions, which confirms the existence of the expanded-to-condensed FCC transition
terminating at a critical point, and is in quantitative agreement with the predictions from
the simulations. The existence of the transition is clearly due to the attractive part of the
interaction, which is treated in the mean-field approximation in our theory. A straightforward
improvement of the theory, which should improve the estimate of the critical temperature,
would be, therefore, the inclusion of the correlation effects (the last terms in equations (8)
and (9)) which we have ignored in this approach. Moreover, as a further improvement,
we can treat the full interaction in a non-perturbative fashion, without any splitting into a
hard-sphere and an attractive interaction. Indeed, most non-perturbative density-functional
approaches are based on a thermodynamic mapping of the solid phase into a homogeneous
phase at the same temperature, but having a ‘coarse-grained’ weighted density. The main
problem in the implementation of such theories in systems with attractive, long-range
potentials {e.g. Lennard-Jones) is that the fluid phase displays, below the liquid—gas critical
temperature, a spontaneous separation into a dense liquid and a dilute gas, and in this region
the thermodynamic functions of the fluid are not well defined. However, the systems with
a short-range attraction are free of such difficulties, since a single fluid phase exists, and

+r - ..«
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‘We now choose a one-parameter integration path:
ve = 0(r, 7, @) = v(r, ) + a@ir, ) ~ volr, 7)) (A2)

where vy s a reference potential (the hard-sphere interaction in our case}, and the parameter
o varies from zero to unity. With this choice, equation (A1) can be functionally integrated
to give

1
F[P(T‘)]=F0[P(T)]+% f doc f f PO (s 7, 7Y, ) — o, P drdr’ (A3)
0

where p@ (v,; 7, ') is the two-body density corresponding to the interaction v,. Clearly, the
quantity v{r, r)—ve(r. r") in {A3) is just the attractive part ¢ (| —r']) of the potential. Now
we make the following approximation: we replace the two-particle density p®(uy; r, 7')
by the distribution at the reference interaction:

PP (e v, ) & pPug: 7, 1) = p(P)p(e)(1 + b (r, 7). (A4)

Now the o integration in (A3) ts trivial, and we obtain eguation (9) of the main text for the
non-uniform phase, and equation (8) for the uniform one.

References

[t] For a review see
Lowen H 1994 Phys. Rep. 237 249
[2] Robbins M O, Kremer X and Grest G § 1988 J. Chem. Phys. 88 3286
[3] Bolhuis P and Frenkel D 1994 Phys. Rev. Lerr. 72 2211
[4] Evans R 1992 Fundamentals of Inhomogeneous Fluids ed D Henderson (New York: Dekker)
[5] Cartin W A and Ashcroft N W 1985 Phys. Rev. A 32 2090

[6] Dentonn A R and Ashcroft N W 1989 Phys. Rev. A 39 4701
M1 Cuartin W A and Acheraft N W 1ORE Phue Rew Foifr &b 27785




