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A model of hard spherocylinders exhibiting Brownian dynamics in a solvent is investigated by Browni-
an dynamics simulations. Long-time translational and rotational self-diffusion coefficients are calculated
in the disordered phase over the whole range of densities and a ratio p of total length to width ranging
from 1 to 6. A simple analytical formula is given to fit the results. The self-diffusion coefficients are also
obtained along the fluid freezing line for arbitrary p. Measured in terms of their short-time limits, both
self-diffusion coefficients are nonmonotonic in p. For 2<p <6, the long-time to short-time rotational
self-diffusion ratio is about 0.12, which constitutes a simple dynamical phase transition rule for the

fluid-nematic and fluid-crystalline transition.

PACS number(s): 61.30.—v, 66.10.—x, 82.70.—y

I. INTRODUCTION

Diffusion processes in concentrated rigid-rod-like sys-
tems are dominated by entangling effects due to the
repulsion of arbitrarily oriented vicinal rods which form
effective cages. Both the mean-square displacement of
the center-of-mass coordinate as well as the rotational de-
gree of freedom exhibit diffusive behavior for long times
whose details depend sensitively on the rod density, the
temperature, and the rod interaction [1]. In order to get
insight into the dynamical relaxation of rods, three
different routes can be followed. First, experimental
methods such as birefringence and forced-Rayleigh
scattering or dynamical light scattering [2—8] can be ap-
plied to measure the long-time diffusive relaxation of the
orientational and translational rod motion. Unfortunate-
ly the experiments are performed on rather complex
supramolecular aggregates whose detailed dynamics and
interactions, required as a necessary input for computer
simulation and theory, are not known exactly. Typical
experimental samples are solutions of rigid-rod-like poly-
mers, ellipsoidal and cylindrical micelles, and suspensions
of colloidal rods such as tobacco mosaic or fd viruses.
Sometimes they suffer also from a high intrinsic po-
lydispersity. Since all these samples are embedded in a
solvent their dynamics is of Langevin rather than of
Newtonian type. If the spatial dimension of the rods is
mesoscopic, a complete time scale separation between
solvent and rod relaxation justifies the picture of Browni-
an dynamics where the solvent exhibits random kicks on
the rods.

Second, self-diffusion in some simple models of rigid
rods was studied by Brownian dynamics computer simu-
lations. The simplest model that was investigated is that
of infinitely thin needles of length L and concentration p;
see Doi, Yanamoto, and Kano [9]. The concentration
dependence of the rotational diffusion constant is by now
well understood even for very long needles. A different
simple phenomenological model for the rod interaction
was proposed and studied by Fixman [10] which was then
further investigated by Brownian dynamics simulations
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[11].

Third, as regards theory, Doi and Edwards have pro-
posed a tube model [12,13] predicting that the rotational
long-time diffusion coefficient scales as (pL*)~2 for high
concentration. This model was later refined by Teraoka,
Ookubo, and Hayakawa [14]. Fixman [10] proposed a
simple analytical formula for the rotational diffusion
coefficient based on the rapid dissipation of cage forces.
Using Brownian dynamics simulations [11] Fixman’s pre-
diction was confirmed for moderate but not for high con-
centrations. More recently, also a Green function formu-
lation [15] as well as a dynamic mean-field theory [16]
were applied to the needle model in order to predict
long-time self-diffusion properties.

The simulations and the theoretical work mainly
focuses on simple models which are, however, not very
realistic to describe the rod interaction and dynamics.
For sterically-stabilized index-matched suspensions is
more realistic than the needle model. Also charged-
stabilized rod-like suspensions with a high concentration
of added salt [17] behave like bodies with finite excluded
volume. In the low-salt-concentration regime, on the
other hand, the interaction between charged-stabilized
colloidal rods can be described in terms of a Yukawa seg-
ment model introduced by Klein and co-workers [18-20]
which was recently confirmed by ab initio simulations
[21].

In this paper, a systematic investigation of the hard-
spherocylinder model with Brownian dynamics is
presented. The motivation to study this model is three-
fold: First, for colloidal suspensions it is a more realistic
model than those studied before. Second, it is still simple
enough insofar as it is characterized by two parameters
only, namely, the length to width ratio and the packing
fraction of the rods. These parameters determine com-
pletely the bulk phase diagram which is known from
Monte Carlo simulation [22] and theory [23,24]. There-
fore the model could, in principle, be addressed also by
theory. Third, in contrast to the needle model where
very long rods are considered, we study moderate length
to width ratios p up to p==6. In particular, the isotropic
case is included and we study how anisotropies of the in-
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teraction influence the long-time dynamics. From this as-
pect the results of this paper are complementary to the
simulation of the needle model [9].

In our simulations, Brownian dynamics of the rods are
characterized by a parallel, a perpendicular, and a rota-
tional short-time diffusion constant. Hydrodynamic in-
teractions are neglected. The long-time diffusion
coefficients are then calculated by computer simulation
over the whole range of packing fraction of the disor-
dered (fluid) phase and a length to width ratio ranging
from 1 (spheres) to 6. There are also molecular dynamics
simulations for hard-rod-like systems which is an ade-
quate dynamics for molecular liquid crystals (see, e.g.,
[25-27]) but not for liquids embedded in a solvent. It
turns out that Brownian dynamics simulations are com-
putationally more costly since the time step has to be
very small in the simulation.

It is instructive to compare with Brownian dynamics of
spheres where only the translational motion is nontrivial.
In this case much more is known: Brownian dynamics
simulations of hard spheres for arbitrary packing fraction
in the fluid phase have been carried out by Cichocki and
Hinsen [28,29]. Mode-coupling theories and Enskog-type
approaches have successfully been applied to predict the
long-time self-diffusion [30]. At freezing the ratio of the
long-time and short-time self-diffusion coefficient D} /D*
is 0.100. The latter value is universal since it is the same
also for soft interaction which constitutes a dynamical
freezing rule [31]. For spheres theories and extensive
simulations have been done also for Yukawa potentials
[32] and a detailed comparison with the experimental
data was performed [33]. Even effects of polydispersity
on self-diffusion have been studied [34,35].

It is tempting to look for a generalization of the
dynamical phase transition rule for anisotropic liquids.
We have calculated the translational and rotational long-
time self-diffusion coefficients Dj and D] along the fluid
freezing line and measured them in terms of their short-
time limits D' and D". Here we have considered also
higher length to width ratios p including the Onsager lim-
it p— . Depending on p there are two possible coexist-
ing phases, a crystal or a nematic. As a result, both
D; /D' and Df /D" are nonmonotonic in p which rules
out a general universal phase transition rule which is val-
id for any p. However, in a good approximation, D] /D"
is roughly independent of p along the fluid freezing line
for 2 < p <6 where it equals 0.12. This results in a simple
dynamical phase transition rule for the isotropic-
crystalline and isotropic-nematic transition in the re-
stricted regime 2 <p <6.

The paper is organized as follows: In Sec. II, we dis-
cuss Brownian dynamics in our model of hard sphero-
cylinders. Then we describe the simulational method in
Sec. ITII. Results for the pair structure and the diffusion
coefficients are then collected in Secs. IV and V. Finally
we are also looking for dynamical empirical freezing cri-
teria for anisotropic liquids in Sec. VI where we also in-
clude results for larger length to width ratios on the
fluid-nematic coexistence line. Our calculations do not
show a general universality of the dynamical quantities at
the fluid freezing line, ruling out a simple general dynam-
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ical phase transition rule but establishing one in the re-
stricted regime 2 <p <6. Finally Sec. VII is devoted to
some conclusive comments.

II. MODEL

We consider N spherocylinders in a volume V with to-
tal width L and diameter o; see Fig. 1. A rod
configuration is characterized by its center-of-mass coor-
dinates {R;, i=1,...,N} and orientations {;,
i=1,...,N} where Q; is a unit vector. The potential
energy is simply of the excluded-volume type: It is zero if
the rods do not overlap and infinite otherwise. Due to
this simple interaction the temperature T scales out and
the rod number density p=N/V is the only thermo-
dynamic variable. This density is conveniently expressed
in terms of the rod packing  fraction
n=pmo*[o/6+(L—0)/4]. Choosing the rod diameter
o as the typical length scale, the only additional
geometric quantity is the length to width ratio p=L /o
of the rods. Hence all structural and thermodynamic
quantities including the bulk phase diagram only depend
on 7 and p. For L =0 the isotropic case of hard spheres
is recovered.

We adopt Brownian dynamics of the rods and approxi-
mate the short-time dynamics by that of one single rod in
a solvent characterized by two translational short-time
diffusion constants, D* and D', perpendicular and paral-
lel to the rod axis, and a rotational short-time diffusion
constant D’". As a function of p, these three diffusion
constants have been calculated by Broersma [36] and
Tirado and co-workers [37,38]. For the calculations in
this paper we have used the analytical expression pro-
posed by Tirado, Martinez, and de la Torre in Ref. [38]:

1 D, 2
D —-4—;(lnp+0.839+0.185/p+0.233/p ), (1)

D
D"=2—1:(lnp —0.207+0.980/p —0.133/p2),  (2)

3D,
D=
aL?

L .
p=1 T—
p=2
p=4
p=6

FIG. 1. Shape of the spherocylinders for different values of
the length to width ratio p=L /o. The cases p=1,2,4,6 which
are used in the simulations are shown.

(Inp —0.662+40.917/p —0.050/p%) , (3)
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with
Dy=kgT /n,L , 4)

where kp is Boltzmann’s constant and 7, the shear
viscosity of the solvent. These different diffusion
coefficients are displayed as a function of p in Fig. 2.

Two remarks are in order: First, strictly speaking,
Egs. (1)-(3) are valid for a pure cylinder but not for a
spherocylinder. We have, however, assumed that the
diffusion constants of a pure cylinder and a sphero-
cylinder of equal total length do not differ much. The
differences are maximal for spheres (p=1) where one
gets D'/Dy=0.100 and D'/D,=0.102 from Tirado,
Martinez, and de la Torre’s expression. Both values
essentially do not differ much from the exact Stokes re-
sult D'/Dy=D'/Dy=1/37=0.106.... Hence the
differences between a pure cylinder and a spherocylinder
are negligibly small. Furthermore, it was shown [38] that
Egs. (1)-(3) are compatible with experimental data in the
range 2 <p <30, also proving that it is a reasonable fit for
the diffusion constants.

The second point is more severe. In using the type of
dynamics described above any hydrodynamic interactions
from vicinal rods mediated by the solvent are neglected.
These interactions do not influence the statics and the
bulk phase diagram but they alter dynamical correla-
tions. For high packing fractions they become relevant
in slowing down the diffusive short-time as well as long-
time relaxation. Unfortunately the explicit form of the
hydrodynamic interactions is only known asymptotically
for larger rod separations but not for intermediate and
high rod concentrations. Consequently, at the moment,
it is not clear how to incorporate them into the model.
Nevertheless there are two points which strongly
motivate an analysis of our model without hydrodynamic
interactions.

D'/D,, D'/D,, D'L?/4D,

p

FIG. 2. Free- or short-time diffusion constants of a single
cylinder in a solvent versus length to width ratio p, 1<p =10.
The parallel translational diffusion constant D is given by the
solid line and the perpendicular translational diffusion constant
D' by the dashed line. Both D! and D* are given in units of Dj.
The dot-dashed line is the rotational diffusion constant D’
which is given in units of 4D, /L2

(i) Often the hard-spherocylinder model with an
effective diameter is employed to model the interaction of
charge colloidal rods; see, e.g., [39]. This idea was first
indicated by Onsager [40]. Then the true hydrodynamic
diameter of the rods is much smaller than the effective di-
ameter such that hydrodynamic interaction can safely be
neglected. For this case the Brownian dynamics of the
substitute hard-spherocylinder system has direct
significance.

(i) In discussing long-time diffusion coefficients of
spheres, Medina-Noyola [41] proposed a simple scaling.
He gives evidence for the fact that the ratio of long-time
and short-time diffusion coefficients remains unaffected
by hydrodynamic interactions. It is this ratio which we
shall discuss in the following for rods. Hence there is
reason to believe that this ratio is not significantly
changed by hydrodynamic interactions.

In ordinary Brownian dynamics simulations, trajec-
tories of the center-of-mass and orientational coordinates
are generated by integrating the corresponding Langevin
equations with a finite time step A¢. For spheres this was
implemented by Ermak [42], for another calculation see
also [43]. The corresponding finite difference equations
for rods are a bit more complicated. At a given time ¢,
the center-of-mass position R;(z) of the ith rod can be
split into a part RJ(2)=[Q;(¢)-R;(2)]Q,(¢) parallel and
another part R}(¢) perpendicular to the rod orientation
Q,(t) such that

R;(£)=Rl()+R}(z) . (5)

The same separation into a parallel and perpendicular
part can be done for the total force F;(t), acting on the
ith rod due to the interaction with the other rods,

F,(1)=Fl(¢)+F}1) . 6

Then for a finite time step At the temporal evolution of
R;(t) is given by

If
D" pie)at+(ARDQ, (1), (D)

I(¢+Az)=RlI
Rl(t+At)=Rl(¢)+ kT

where (AR') is a random displacement due to solvent
kicks which is a_Gaussian distributed random number
with zero mean, (AR )=0, and variance

(ARM?=2DAz . (8)

Here, () denotes an average over a Gaussian distribution.
The perpendicular part, on the other hand, diffuses
with the perpendicular diffusion constant D*:

Dl
kT

+(ARY)e;(t)+(ARY)en(t) )

Ri(t+At)=R}(t)+ Fi(t)At

where again (AR{) and (AR ;) are Gaussian distributed
with zero mean and variance 2D'At. Furthermore, e;,(t)
and e;,(¢) are two orthogonal unit vectors perpendicular
to Q,(¢).

Finally the orientational degree of freedom diffuses as
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Q1 +A0)=0,(0)+ -2 M, (1) X Q,(£)Ar
kpT
+x1e,-1(t)+x2e,~2(t) ) (10)

where now M;(2) is the torque acting on rod i and x,x,
are Gaussian random numbers with zero mean and vari-
ance 2D"At.

If the time step At is very small, the leading terms in
Egs. (7), (9), and (10) are the random displacements. The
square root of the diffusion constants D'/D, and D'/D,
which are shown in Fig. 2 is proportional to the mean
displacements parallel and perpendicular to the director.
The square root of D'L?/4D,, on the other hand, is pro-
portional to the mean random displacement due to orien-
tational short-time diffusion for a point on the top of the
rod having a distance of L /2 from the center-of-mass
coordinate. Figure 2 shows that this displacement
exceeds the translational displacements for large p
whereas for small p the translational displacement be-
comes larger.

III. SIMULATION TECHNIQUE

Equations (7)-(10) constitute the basis for Brownian
dynamics simulations of rods: For a given rod
configuration and a given time ¢ all forces {F;(z)} and
torques {M;(¢)} are calculated according to the rod in-
teraction and then the rods are moved in parallel to get a
new configuration by adding a random displacement.
This results in “toothed” trajectories {R;(z)},{Q;(z)}
(i=1,...,N) for which dynamical correlation can be ex-
tracted. For hard-body interactions, however, this
scheme cannot directly be used since the forces and
torques are either zero or infinite. Hence one has to
avoid and exclude overlapping rod configurations. Also
it is numerically more efficient to use a scheme where the
rods are moved sequentially instead of in parallel. This
results in the following algorithm: We choose a small
time step Az. In one elementary trial step of the simula-
tion, one out of N rods is randomly chosen. In the first
part of an elementary trial step, the translational degrees
of freedom are then moved with zero force according to
Egs. (7) and (9). If this results in a nonoverlapping
configuration, the move is accepted which means that the
center-of-mass coordinate of the chosen particle is updat-
ed. In the opposite case of a rod overlap the move is re-
jected and the center-of-mass coordinates are not
changed. Then in the second part of an elementary trial
step, the orientational degree of freedom is moved with
zero torque according to Eq. (10). Again, only moves are
accepted that do not lead to an overlap with vicinal rods.
For the sake of completeness, the overlap conditions of
two rods are listed in Appendix A.

This algorithm is basically a Monte Carlo scheme.
Structural quantities and static correlations are indepen-
dent of At. Therefore, if one is only interested in static
correlations, one can optimize A¢ by maximizing the
acceptance-rejection ratio. For hard spherocylinders,
such Monte Carlo simulations have been widely used for
almost 20 years, see [44]. The important point for our

use is that this sequential algorithm is stochastically
equivalent to Brownian dynamics of rods in the limit
At \0 if the corresponding time ¢ associated to N, ele-
mentary trial steps is taken as [28]

t=N,At/N . (11)

Hence, in contrast to the static correlations, the dynami-
cal correlations do depend on Az. Consequently, At has
to be chosen sufficiently small, which implies that a huge
number of elementary trial steps (typically 2X10®) are
needed in order to get correct statistical averages for
long-time properties.

In our calculations, a cubic simulational box contain-
ing N rods with periodic boundary conditions is used.
The ratio p of total length and width is changed between
1 and 6. For p=1 (spheres), the orientational motion
never leads to an overlapping configuration and can
therefore be completely neglected. Then one ends up
with the well-known translational motion of hard spheres
where Brownian dynamics results for the long-time
diffusion coefficient are known for different packing frac-
tions in the fluid phase [28,29]. We have systematically
investigated the nontrivial cases p =2, 4, 6 scanning the
whole density regime in the fluid phase. The shape of the
rods is illustrated in Fig. 1 for these different values of p.
We have taken N =500 rods for p =2, N =540 for p =4,
and N =972 for p=6. Taking finite size effects properly
into account, the number of rods in the cubic box has to
increase with p. During the simulation the center-of-
mass coordinate of the whole system was fixed in order to
avoid spurious diffusion of the whole system. After each
elementary trial step the orientation vectors are rescaled
to have unit norm.

TABLE 1. Parameters of the different runs. Given are the
rod packing fraction 7, the length to width ratio p, the time step
At, the total time T over which statistics was taken, the maximal
time ¢,, of the time window where dynamical correlations were
explored, and the translational and rotational long-time self-
diffusion coefficients D; /D’ and D] /D’. The time unit is
7=02/D,. The number in parentheses gives the error of the
last digit.

M P At/T T/ t,/7 D; /D! D; /D’
0.1 2 0.0002 100 35 0.78(1) 0.96(1)
0.2 2 0.0002 100 35 0.607(9)  0.93(1)
0.3 2 0.0002 60 25 0.42(1) 0.84(2)
04 2 0.0001 60 20 0.27(1) 0.63(2)
0.5 2 0.0001 60 20 0.120(5)  0.39(1)
ul 2 0.0001 50 20 0.035(5)  0.13(2)
0.1 4  0.0002 120 16 0.745(9)  0.82(2)
0.2 4  0.0002 60 16 0.545(9) 0.64(4)
0.3 4  0.0002 80 16 0.36(1) 0.48(2)
0.4 4  0.0002 60 16 0.215(9)  0.275(9)
Ul 4  0.0001 40 16 0.080(9)  0.10(2)
0.1 6  0.0004 35 10 0.68(1) 0.70(2)
0.2 6  0.0004 25 10 0.45(1) 0.50(2)
0.3 6  0.0002 18 8 0.31(1) 0.30(2)
ul 6  0.0002 15 8 0.17(1) 0.13(2)
ul: 10  0.001 150 50 0.31(1) 0.19(2)
ns 20  0.002 150 80 0.33(1) 0.11(2)
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The starting configuration consisted of equally oriented
square lattices which were put with different orientations
on cubic sublattices of the cubic simulational box. Then
with a large time step a long equilibration period was
guaranteed which was checked by monitoring the mean
orientation and fluctuations of the orientation as well as
the mean-square displacement. Then long runs with a
small time step were performed. Details and results of
the different runs are listed in Table I where the time step
is given in units of r=02/D,,.

IV. ROD PAIR STRUCTURE

During the Brownian dynamics we have also calculat-
ed static averages which do not depend on the magnitude
of the time step Afz. First we have computed the pair
correlation function of the center of mass

1 N
glr)=—— (8(r—(R,—R,))) , (12)
PN i,j=21;i¢j !

where ( ) denotes a canonical average. Results for g(r)
for different p and % are summarized in Fig. 3. For p=2
also g(r) for hard spheres is shown exhibiting a first max-
imum at contact r =c¢. For low packing fraction 7=0.2
[Fig. 3(a)] the pair correlation exhibits an ordinary struc-
ture with a main peak between o and the mean rod dis-
tance. For increasing p, this peak becomes broader and
its amplitude decreases. In Fig. 3(b), the packing fraction
is taken to be at the fluid-crystalline (fluid-nematic) coex-
istence line. The corresponding parameters are summa-
rized in Table II. In these dense fluid systems, g(r)
shows a rich structure. For p =2, there is a split first
maximum which can be understood as being composed
by the ‘‘sphere maximum” at contact and a
“configurational” maximum at mean distance

Orientational pair correlations are conveniently mea-
sured by the function [45]

(r)=—o—

Y pNg(r)

N
X 3 (Py(cosh; )8(r—(R,~—Rj))) , (13)

i,j=1i#]

where 6;; is the angle between two orientations (2; and
Q; and P,(x)=(3x?—1)/2 is the second Legendre poly-
nomial. If gp(r) is positive, two rods at a given center-
of-mass distance r are on average oriented in parallel
whereas they are perpendicular if gp(r) has a negative
sign (Fig. 4). For spherocylinders, gp(r) is positive at
minimal distance. This can be understood simply by the
argument that there are more configurations of vicinal
cylinders with parallel orientation than that with perpen-
dicular orientation. Due to packing effects, gp(7) has an
oscillatory behavior as a function of r.

The positive sign of gp(7) near constant is in contrast
to segment models with soft interactions. Due to purely
energetic reasons rods are perpendicular if they are very
close to each other [45,21]. This might be a mechanism
to stabilize a cholesteric phase which was never found for
excluded-volume interactions.

The behavior of g(r) and gp(r) is not new but already

TABLE II. Packing fraction 7, of the fluid phase in coex-
istence with a crystalline or nematic phase for different length
to width ratios p, from Refs. [59,60,22,23].

4 vl Coexisting phase
1 0.494 crystal
2 0.572 crystal
4 0.497 crystal
6 0.396 nematic
10 0.270 nematic
20 0.148 nematic

g(r)

r/ o

FIG. 3. Pair correlation function g(r) of the center-of-mass
coordinates as a function of the center-of-mass distance r mea-
sured in units of the rod diameter o. (a) For 7=0.2 and four
different values of p: p=1 (dotted line), p=2 (solid line), p =4
(dashed line), and p =6 (dot-dashed line). (b) Same as (a) but
now for a packing fraction corresponding to the fluid freezing
line (p=2,4) and at the fluid-nematic transition (p =6). The
line types are as in (a). The case p =1 is not shown.
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FIG. 4. Same as Fig. 3, but now for the orientational correla-
tion function gp(7) as defined in the text. The parameters 7 and
p and the line types are as in Figs. 3(a) and 3(b). For p=1, g»(r)
vanishes.

known from Monte Carlo simulations [44] and integral
equation theory [46]. Nonetheless we have recapitulated
the basic features in order to have a feeling which
structural ordering corresponds to the dynamical proper-
ties discussed in the next section.

V. TRANSLATIONAL AND ROTATIONAL
LONG TIME SELF-DIFFUSION

According to Einstein’s formula, the translational
long-time self-diffusion coefficient D; is defined as

D} = lim D%z) (14)
t— oo
with
D'(t)=W(t)/6t , (15)
where

1237
1 N
W=+ 3 ([R;(1)—R;(0)]>) =([R,(t)—R,(0)]?)
i=1
(16)

is the mean-square displacement of the center-of-mass
coordinate. For large times ¢, the convergence of D¥t)
towards D} is of order 1/¢, i.e., it is rather slow. Alter-
natively one can define D} as

DL= lim D't) (17)
t—
with
=1L w . (18)
°dt

The latter formula has the advantage of quicker conver-
gence as t— oo although the statistical error is larger
since it is a differential quantity. A natural scale for D}
is its short-time limit D‘=lim,_,,D‘(¢) given by

D'=1(2D*+DV). (19)

The long-time orientational self-diffusion coefficient
D], on the other hand, is defined via the long-time limit
of a diffusive process on the unit sphere:

D[/ = lim D'(z) (20)
t— o0
with
D’(t)=——21?ln[(ﬂl(O)-ﬂl(t)H . @1
The associated differential quantity is
o %4 j— d T
=—[tD"(¢ (22)
D'(t) dt[ ()]
such that
D= lim D'(¢) . (23)
t—®

An alternative definition for Dy is

t—> o

which has also a differential counterpart. Of course, the
short-time limit D"=lim,_,,D'(¢) provides a natural
scale for D'(z).

In calculating the long-time diffusion coefficients one
has two practical problems: First one has to extrapolate
to infinite times, and second, as explained in Sec. III, the
time step At has to be reasonably small. The extrapola-
tion to infinite time is achieved by comparing D(¢) with
D'(t). If they coincide one is very close to the infinite-
time value. For the rotational diffusion, we have calculat-
ed D't),D'(t) as well as averages of P,(Q;(0)-Q,(2)) as
suggested by Eq. (24). In general, one needs many more
configurations to get a small statistical error in the rota-
tional relaxation than in the translational one. As re-
gards the second difficulty, we have used a very small
time step and additionally employed a simple scaling idea
which is described in Appendix B to correct for finite-
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time-step errors.

A typical result for time-dependent diffusion is shown
in Fig. 5 where one can see that D(¢t)>D'(¢) and
D"(t)>D"(¢t) and that the convergence of D¥(t) and
D'(t) is slower than that of D'(¢) and D'(¢). Due to the
statistical noise for large times, it is very difficult to ex-
tract the leading long-time tail correction to the data.
Therefore we simply focus on the long-time limit itself.

Results for the long-time self-diffusion coefficients are
summarized in Table I and graphically displayed in Fig. 6
for different p as a function of 7. All runs are in the fluid
(disordered) phase and the whole range of packing frac-
tions is investigated. As expected the diffusion
coefficients are decreasing with increasing 7. Also, for
constant packing fraction, both D; /D' and D] /D" are
decreasing with increasing p since there are more entan-
gling vicinal rods for higher p. For fixed p, the data of
D] /D" almost fall on a straight line. The same holds for
D; /D" if p is high enough, p >24. We have fitted the data
by a simple fit formula providing an analytical expression
for the long-time self-diffusion coefficients for variable p
and 7. A successful multiparameter fit was obtained us-
ing a polynomial expression in 7 and p=p —1:

|

t/T

translational and rotational

FIG. 5.
diffusion coefficients D(¢) (solid line), D'(2) (dashed line), D"(1)
(dashed-dotted line), and D'(t) (dotted line), as defined in the
text, measured in terms of their short-time limits, D'=D!+2D!
and D', versus ¢ /7. The parameters are 7=0.3 and p =4.

Time-dependent

D} /D'=1—(a,+a,p+asp*+a,p )+ (as+agp+a,p’+ap’m+(ag+a,gp+a,p+a,p’n’ (25)

and

D[ /D"=1—(b,p+b,p>+ b5+ (bf+bsp>+bep >+ (b,p+bgp>+bop’)y* , (26)

where the constants are given by a,=1.940, a,=0.310,

a,=—0.0569, a,=0.0151, a;=1.250, az=—0.522,
a,=0.271, az=0.0193, ay=—2.042, a,,=2.836,
a,;=—1.044, a,,=0.049, and b, =0.000, b,=0.2897,
by=—0.0303, b,=0.501, bs=—0.563, be=0.1396,

b,=—7.815, bg=4.436, by=—0.6293. The analytical
formula is also given in Fig. 6 proving that the simple fit
formula is a reasonable description for the data in the
range 1 <p <6. We have that the analytical formula will
facilitate a comparison of experimental data with the
hard-spherocylinder model. It should also be useful to
test theories for Df /D'and D] /D".

One may compare our data with the theoretical expres-
sions derived for high densities pL *2 100 within the tube
model of Doi and Edwards [1]

D} /D"=b(pL?*)? Q27
and that proposed by Teraoka and Hayakawa [15]
D /D"=1/(1+cpL?7?, (28)

where b and c are constants. Our data do not fulfill these
relations. The reason is that pL? is a small number even
at freezing; our largest value for pL? is 19.2 for p =6 and
1n=m,. Similar deviations from these relations for small
densities were found experimentally for a charged suspen-
sion [7].

It is also interesting to check how D/ /D’ and D] /D"

I

depend on the ratio of the short-time diffusion constants
D'/D’. For spheres (p=1) there is a trivial decoupling
of rotation and translation, but for rods this is a priori not
clear. We have performed runs with D/D"=0 as well as
D'/D"— . This means that we started from an equili-
brated configuration and then blocked the translational
or rotational motion completely. As a result, the ratio of
translational and rotational self-diffusion coefficients, ob-
tained from a simulation where one part of motion was
frozen in is significantly smaller than that from a run
where both degrees of freedom were moved. Explicitly,
for frozen-in motion, we found D} /D'=0.43 and
D} /D"=29 for p=4 and 7=0.2 as well as D} /D*=0.05
and D] /D"=0.02 for p =4 and 7=0.4. This indicates a
substantial coupling between translational and rotational
long-time diffusion.

VI. TEST OF DYNAMICAL PHASE
TRANSITION RULES FOR LIQUID CRYSTALS

For spherical interactions, empirical freezing and melt-
ing rules have proved to be very helpful in estimating
fluid-solid coexistence lines. The most famous melting
criterion was put forward as early as 1910 by Lindemann
[47): As an empirical fact, the ratio of the root-mean-
square displacement and the average interparticle dis-
tance at the solid melting line has a value of roughly 0.15.
Another freezing criterion was formulated in 1969 by
Hansen and Verlet [48]. It states that the amplitude of
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For p=1 (spheres). From Ref. [29]. (b) For p=2. (c) For p=4. (d) For p=6. The lines are the analytical expressions of the fit for-

mulas (25) and (26).

the first maximum of the liquid structure factor has a
universal value of ~2.85 along the liquid freezing line.
A third dynamical criterion for freezing in colloidal sus-
pensions was recently proposed by Lowen, Palberg, and
Simon [31]. They found that the ratio of translational
long-time and short-time self-diffusion coefficient has,
within the Brownian dynamics picture, a universal value
of Dj /D*=0.098 along the fluid freezing line. The two
latter criteria are universal in the sense that they do not
depend on the detailed nature of the spherical interaction
potential.

For nonspherical interactions, such simple criteria are
missing. For instance, the nematic orientational order
parameter varies along the liquid-nematic coexistence
line from 0.64 (p =4) to 0.80 (p — ) [23,24]. It is tempt-
ing to check whether there are dynamical phase transi-
tion rules by looking at the values of D} /D' and D] /D’

at the freezing line of the liquid. It is the advantage of
our spherocylinder model that the location of this line is
known: for p=1,2,4,6, i.e., the values investigated in
this paper, there exist Monte Carlo data [22], and for
p > 6 the theory of Lee [23] gives explicit data for the
coexisting fluid and nematic densities including the limit
p— o which is known exactly from Onsager’s theory
[40,49,50]. Some of these freezing data are summarized
in Table II. The Monte Carlo simulations have also re-
vealed that the coexisting phase is crystalline for p <4.5
whereas it is nematic for p X 4.5.

In addition to the previous runs we have also per-
formed simulations for higher p on the fluid side of the
isotropic-nematic transition with N =600 rods for p =10
and N =300, 2400 rods for p =20. The results are includ-
ed in Table I. For very high p (p > 30) Onsager’s theory
yields an asymptotically exact expression for the fluid
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density 7, at the fluid-nematic transition [49,50]:
1,=3.2906/p . 29)

Furthermore the tube model yields D} /D"=b(pL*)~?
where an estimate of b can be obtained by fitting the
simulation data of Doi, Yanamoto, and Kano resulting in
b=540 [9]. This yields the asymptotic prediction

D} /D"=30.8/p* 30)

along the fluid-nematic transition line which becomes val-
id for pX30. On the other hand, the translational
diffusion tends to Dj /D'=1/3 as p— o according to
the tube model.

In Fig. 7, D{ /D" and Djf /D" are plotted versus 1/p
for 1 being on the fluid-freezing line. Both simulational
data and the asymptotic formula (30) are shown. It turns
out that along the freezing line both D /D’ and D; /D"
are nonmonotonic with p. The translational diffusion is
nonmonotonic in the crystalline region. This is connect-
ed to the nonmonotonicity in p of the coexisting fluid
packing fraction 7,; see Table II. In the nematic region,
D} /D' increases monotonically to its “tube limit” 5.
This limit is practically reached for p % 10.

On the other hand, D] /D" is strongly decreasing for
small increasing p in the crystalline region. Then, for
2<p <6, it stays more or less constant =~0.12 irrespec-
tive of whether the coexisting phase is crystalline or
nematic. If p is increased further, Dj /D" increases again
and then decreases approaching its asymptotic law (30)
for p 2 20.

Hence it becomes clear that both diffusion ratios
D} /D" and D[ /D" vary significantly along the freezing
line, both in the crystalline and nematic region. Conse-
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FIG. 7. Translational and rotational long-time diffusion
coefficients D} (circles) and D] (stars), measured in terms of
their short-time limits D’ and D', versus 1/p at coexistence of
the liquid with the crystalline or nematic phase. The dot-
dashed line is the asymptotic law (30). The dashed line
separates the nematic and crystalline region.
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quently a simple universal dynamical phase transition cri-
terion which would guarantee a universal value of D} /D’
or Dj /D" for arbitrary p is missing. It may still be that
for a fixed length to width ratio p, D} /D" and D{ /D" are
universal with respect to different interactions, e.g., soft
Yukawa or Lennard-Jones segment forces [51]. Since for
these systems the bulk phase diagram is not completely
known, however, one cannot test this conjecture.

Nevertheless, in the relatively broad region 2=<p <6
where the coexisting phase may by crystalline or nematic,
D] /D" is roughly constant. This is the rotational analog
of the dynamical freezing rule for spherical systems: It
states that an anisotropic fluid freezes if its long-time ro-
tational self-diffusion coefficient is one order of magni-
tude smaller than its short-time limit. We again em-
phasize that this freezing rule is only valid for the re-
stricted regime 2 <p <6.

Also the asymptotic expression (30) for D; /D" along
the liquid-nematic coexistence line is useful in order to
extract information on the static interaction from a
dynamical measurement. There are experiments on aque-
ous fd virus solutions [7,52] measuring directly D; /D" at
the fluid-nematic transition. By translating these data
into our diagram one gains an effective ratio p and by the
coexistence conditions an effective packing fraction
which corresponds to the measured D; /D". Thus by ex-
ploiting dynamical data one may obtain parameters of
the rod interactions which are not directly accessible to
static or dynamical scattering experiments. Kramer and
co-workers [7,52] have measured the rotational diffusion
constant for aqueous fd virus solutions. For their experi-
mental parameters they found at the liquid-nematic coex-
istence line Dj/D"=0.05 which correspond to an
effective p of 25 with an effective packing fraction of

VII. CONCLUSIONS

By computer simulation we have calculated the rota-
tional and translational long-time self-diffusion
coefficients in a fluid of hard spherocylinders exhibiting
Brownian dynamics in a solvent. We end with a couple
of comments related to future problems and experiments.

(i) It would be interesting to calculate the low-density
correction to Dj /D' and Dj /D" exactly. For spheres
this can be done [53,54] resulting in D} /D'=1—27 but
the low density expansion is unknown for rods. Also mi-
croscopic mode-coupling theories should be extended
from the spherical to the anisotropic case.

(ii) One should also examine soft interaction models
(e.g., a Yukawa segment model) by Brownian dynamics
simulations in order to check the influence of the finite
range of the interaction potential on long-time diffusion.
Work along these lines is in progress where also the
dynamical scattering function is investigated and com-
pared to experiments [55].

(iii) It has been suggested (see, e.g., [56]) that a precur-
sor of the isotopic-nematic phase transition may be the
building of so called swarms which are large nematic re-
gions in the globally disordered fluid phase. This could
slow down dramatically the rotational diffusion constant.
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Since we have simulated a finite system with maximal
N =2400 rods, we cannot test the assumption of swarms
by simulation.

(iv) In order to compare with experiments one should
also take the intrinsic polydispersity of the rod shape into
account. One step in this direction was done by
Stroobants [57], who recently simulated the phase dia-
gram of a bidisperse rod system with fixed orientation.
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APPENDIX A: CONDITIONS FOR ROD OVERLAP

Two spherocylinders with center-of-mass coordinates
R,R, and orientations 0,2, are overlapping if at least
one of the nine following conditions is satisfied.

(1) Mutual penetration of the cylindric parts:

r-ﬂz—(ﬂl'ﬂz)(r'ﬂl)
) <(L—0)/2 (A1)
1_(01'02)
and
r-ﬂl—(ﬂl-ﬂz)(r-ﬂz) <(L )/2 (A2)
<(L—0o
1—(Q,-Q,)?
and
(Q,XQ,)
—— % <
r 0, %0, <o, (A3)

where r=R,—R,.

(2)-(5) There are four possibilities for overlapping
spheres being at the top and bottom of the sphero-
cylinders which are captured by the four conditions

x—yl<o, (A4)

with x=R,+(L —0)Q,/2 and y=R,+(L —0)Q,/2.

(6) and (7) Penetration of a sphere of the first rod with
the cylindric part of the second rod. There are two dou-
ble conditions:

|x-Q,| <(L—0)/2 (A5)

and

x—(x-Q,)Q,| <o (A6)
with x=R (L —0)Q,/2.

(8) and (9) Penetration of a sphere of the second rod
with the cylindric part of the first rod. Again there are
two double conditions:

ly-Q,| (L —0)/2 (A7)

and

ly—(y-Q,)Q,| <o (A8)

with y=R,+(L —0)RQ,/2.

APPENDIX B: FINITE TIME-STEP CORRECTIONS
VIA A SCALING METHOD

Since long-time self-diffusion data of hard bodies de-
pend sensitively on the time step used in the Brownian
dynamics simulation, one has in principle to perform a
run with different time steps and extrapolate the diffusion
data to a time step of zero. The problem is how to do
this extrapolation explicitly. For spheres two different
schemes were proposed by Cichocki and Hinsen [28,29]
leading to slightly different results for the long-time self-
diffusion coefficient. A simpler version where overlap-
ping spheres are shifted until they touch was successfully
implemented by Schaertl and Sillescu [58]. The latter
method is very efficient, but fails for high packing frac-
tions. Unfortunately both methods cannot be directly
transferred to rods.

In this appendix, a simple scaling correction is pro-
posed to avoid errors due to a finite time step. The
method is most easily explained for the isotropic case of
spheres. If a finite time step At is used, two spheres will
have a large probability to overlap after the next time
step if they have a distance of o .s=0c +AR. Here

AR=1/6D,At , (B1)

where D is the isotropic short-time diffusion constant of
hard spheres. As far as dynamical long-time properties
are concerned, the idea is that the spheres behave
effectively as a system with a larger diameter o .4 instead
of their bare diameter 0. The system simulated with a
finite time step thus effectively has a larger packing frac-
tion which reduces the long-time diffusion coefficient. By
examining the finite time-step analysis of Ref. [28] where
a packing fraction of 7=0.4 was taken, it turns out that
the reduced long-time diffusion coefficient can be perfect-
ly understood quantitatively as belonging to a larger
packing fraction determined by the larger diameter o 4.
Inversely, for a given packing fraction and a finite time
step, one should thus simulate a system with a smaller
packing fraction in order to get the correct long-time
behavior.

This scaling concept has the advantage of being easily
transferable to rodlike particles. In this case one has an
averaged parallel displacement x'=V'2D!A¢, a perpen-
dicular translational displacement x1=V2D'At, and a
perpendicular rotational displacement x; =V 2D'AtL /2
for a point on the top of the spherocylinder. For a given
bare cylinder diameter o and total length L we consider
an effective spherocylinder with smaller diameter o’ and
different total length L’ in order to eliminate corrections
due to the finite time step. Explicitly we take

o'=0—V2x}{—1x} (B2)
and

L'=L—x"4+(0'—0) . (B3)
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For p=2 we have systematically examined the effect of
this scaling. The translational and rotational long-time
self-diffusion coefficients of the scaled spherocylinders
agree quite well with that of the original system, simulat-
ed with a much smaller time step. For all parameter

combinations, we have used both the original and the
scaled system with the same time step. The differences in
long-time diffusion are on the 5% level. This finally pro-
vides an efficient way to estimate errors due to a finite
time step.
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FIG. 1. Shape of the spherocylinders for different values of
the length to width ratio p=L /o. The cases p=1,2,4,6 which
are used in the simulations are shown.




