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Charged rodlike colloidal suspensions: An ab initio approach 
Hartmut Lowen 
Sektion Physik der Universitat Miinchen, Theresienstrasse 37, D-B0333 Miinchen, Germany 

(Received 13 October 1993; accepted 12 January 1994) 

The interactions and orientational correlations of charged rodlike colloidal particles in a salt-free 
suspension are calculated using an "ab initio" approach which combines molecular dynamics for 
the rods and classical density functional theory for the counterions. Both fluid and liquid-crystalline 
phases are investigated. It is found that the interaction between charged rods can satisfactorily be 
described by an effective Yukawa-segment model which in general differs, however, from the 
Derjaguin-Landau-Verwey-Overbeek segment model. For strongly interacting long rods, an 
exactly soluble Yukawa-segment model, based on a cylindrical Poisson-Boltzmann cell, is proposed 
which reproduces the ab initio data quite well in the liquid-crystalline phase. 

I. INTRODUCTION 

Highly charged colloidal suspensions of rigid rodlike 
particles represent excellent realizations of liquid-crystalline 
systems. I

-
3 Well-known examples are concentrated aqueous 

suspensions of tobacco-mosaic viruses (TMV) or bacterial 
fd and P fl viruses,4 but there are also other realizations like 
cylindrical micellar aggregates (see, e.g., Refs. 5 and 6), col­
loidal .B-FeOOH,7 y-AIOOH,8 polytetrafluoroethylene,9 and 
ellipsoidal polystyrene latex particles. lO Suspensions of such 
rodlike particles reveal a number of new phases and also 
show characteristic structural and dynamical effects typical 
for liquid crystals which are not observed in suspensions of 
spherical particles. Since the first experimental proof of the 
existence of liquid-crystalline order in a TMV suspension by 
Bawden et al. in 193611 there has been a flurry of detailed 
experimental investigations for the TMV and fd viruses and 
related systems. The experimental studies make use of static 
and dynamical light scattering as well as small angle neutron 
scattering (as for recent experiments see Refs. 12-20 and for 
a review on earlier experiments see, e.g., Ref. 21). These 
studies have essentially contributed to our understanding of 
the structure and dynamics in the disordered phase and have 
also revealed a number of other liquid-crystalline phases, 
like nematic, smectic A, smectic B, and columnar phases. 
Despite these numerous investigations, the complete phase 
diagram for a given material (as TMV) is still not entirely 
understood over the full range of densities, temperature, and 
for different charges on the cylindrical rods, and one can be 
optimistic that new liquid-crystalline phases may still be dis­
covered in rodlike suspensions. 

Theoretically, one mainly has tried to capture the essen­
tial physics within a simele model of hard ellipsoids or hard 
spherocylinders. This idea originates from Onsage~2 and 
was also used to interprete experimental data 
qualitatively?3,13 By Monte Carlo simulation, the phase dia­
gram was calculated24 for different length to width ratios of 
the rods, showing disordered, nematic, and smectic phases. 
This phase diagram was also obtained by current density 
functional theories.25

-
28 It is clear that a model of hard rod­

like particles is greatly oversimplified for a quantitative de­
scription of the real interaction of charged rods where the 
long-ranged Coulomb interaction between the rods and their 

counterions is dominant. The Coulombic repulsion between 
the rods is screened by a counterion cloud around the cylin­
drical rods. If one adds salt to the solution, screening is dras­
tically enhanced by the additional salt ions. It is only in the 
extreme strong screening limit (i.e., for a high concentration 
of added salt) that a hard-body model is justified. Particu­
larly, for typical experimental parameters, where one often 
works in the salt-free limit, a hard-body model must fail. 

A more realistic attempt for the interaction between 
charged rods was done by Klein and co-workers.29-31 At in­
finite solution, they have shown that a Derjaguin-Landau­
Verwey-Overbeek (DLVO)-Yukawa-segment model, to be 
described later, is an adequate description of the 
interaction.32 In this model, the interaction is described in 
tenns of an effective pair potential between the rods. Klein 
et at. then assumed that the DLVO-segment model is valid 
also for higher concentrations and calculated structural cor­
relation using liquid integral equations and Monte Carlo 
simulations.33 However, one should note that the validity of 
the DLVO model is an ad hoc assumption which may give 
qualitative agreement with experiments but still needs to be 
justified theoretically. 

The most general framework for a theoretical description 
of the structural correlations and the interaction between rod­
like polyelectrolytes is constituted by the so-called "primi­
tive" approach where the discrete structure of the solvent is 
neglected completely and the interaction between the rods 
and their counterions is a combination of Coulombic and 
excluded volume interactions. Due to the complete time­
scale separation between relaxations of microscopic counte­
rions and mesoscopic rods, the adiabatic approximation is 
well justified. This implies that only the density field of the 
counterions is a relevant variable which adjusts itself adia­
batically in the external field made up by the charged rods. 
This adiabatic primitive approach was frequently used to 
study the structure and dynamics for spherical colloidal par­
ticles. For instance the density profile in a spherical Wigner­
Seitz cell around a single colloidal particle34 was investi­
gated. Recently, also an ab initio simulation35- 37 of the 
structural correlation of macroions was perfonned using a 
classical version of the Car-Parrinello algorithm.38 In this 
approach, one could directly simulate the adiabatic primitive 
model and thus predict structural and dynamical properties. 
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Hartmut Lowen: Rodlike colloidal suspensions 6739 

For charged colloidal rods, however, much less theoreti­
cal work was done due to the enhanced complexity of the 
problem. The orientational degrees of freedom drastically in­
crease the effort of solving a suitable closure relation of a 
liquid integral equation. There are, however, some simple 
situations which are understood better. The density profile 
around a single infinitely long rod was studied by liquid 
integral equations by Rossky and co-workers.39

•
40 This quan­

tity was also directly measured in a small-angle x-ray scat­
tering experiment of Wu et al. 6 Although the counterion den­
sity distribution is a key quantity in understanding screening 
effects, the interaction between two rods and their static cor­
relations are more complicated quantities which are not trivi­
ally connected to the density profile. Second, Dhont41 studied 
the structure of fully aligned rods. 

In this paper, we transfer the ab initio description within 
the primitive approach, which was successfully applied al­
ready to the case of spherical colloidal particles, to colloidal 
rods. We have performed ab initio simulations of the coun­
terionic screening where nonlinear screening effects and ef­
fective counterion-induced many-body forces and torques 
are included. As an output, we obtain center-of-mass and 
orientational correlations between the rods. Based on this 
calculation, we propose an effective optimal pair potential 
between the rods which fits the ab initio data well. This 
effective pair potential is very close to an effective Yukawa­
segment model, but differs in general from the DLVO­
segment model. Thus the Yukawa-segment model of Klein 
et al. is justified if the effective charges and the screening 
parameter are suitably chosen. We propose an exactly solv­
able Poisson-Boltzmann cell model which works for 
strongly interacting rods and gives reasonable predictions for 
the effective charge and the screening parameter if the sys­
tem is in a phase where the rods are at least partially aligned. 

The paper is organized as follows: The primitive ap­
proach and details of the ab initio description are introduced 

with 

A( .......... )= d' d" m , 1 m ,2 J J 
e2n (r' O)n (r+r" 0 ) 

r,U'1,·1£2 r r €Ir' -r"1 

X x(r' ,Ol)x(r+ r",02), (3) 

where r is the difference between the two center-of-mass rod 
positions and OJ (i = 1,2) is the orientation of rod i. The 
counterions are assumed to be pointlike and carry a charge 
- qe. Hence, the potential between a counterion and a rod 
with orientation 0 is 

( 

00 if X(r,O) = I 

Vm;(r,O)= _ e2f dr' nm(r',O) X(r',O) 
q €lr-r'l 

else' (4) 

in Sec. II. Then, in Sec. III, different effective Yukawa­
segment models are proposed and discussed. In Sec. IV, the 
numerical implementation of the ab initio method is outlined 
and results are summarized in Sec. V. Finally, we conclude 
and summarize the results in Sec. VI. 

II. AS INITIO APPROACH: GENERAL THEORY 

In the primitive approach, we start from a two­
component system consisting of charged colloidal rods of 
mesoscopic size (macroparticles) and microscopic counteri­
ons. In the following, we shall restrict ourselves to the salt­
free case. The discrete nature of the solvent is neglected 
completely, it manifests itself merely by its dielectric con­
stant € screening the Coulomb interaction between rods and 
counterions. The rods are cylindrical with a characteristic 
cylindrical radius R and a total length L. They carry a total 
charge Ze ,Z typically lying between 100 and 10 000, which 
is distributed over the rod volume Pm (the index m stands for 
macroparticle or rod) according to a charge density 
enm(r,O) if the center of mass of the rod is at origin. Here, 
o is a unit vector determining the orientation of the rod. The 
normalization of nm(r,O) is such that I dr nm(r,O)=Z. The 
actual value of the rod volume Pm depends a bit on whether 
one takes spherocylinders or pure cylinders, in any case 
Pm = 'Tf R2 L. More generally, the shape of the rod with its 
center of mass at the origin is specified by a function x(r,O) 
which is defined as 

x(r,o)={ ~ if r is inside the rod 

if r is outside the rod 

such that Pm= I dr x(r,O). 

(1) 

In the primitive model, the interactions result from a 
combination of Coulombic and excluded volume forces. The 
direct interaction between rods is then given by the following 
potential: 

(2) 

where now r is the difference between the center of mass of 
the rod and the counterion position. The index c is for coun­
terions. Finally, the counterions are treated as a classical 
plasma with interaction 

(5) 

Strictly speaking, two different charge distributions 
enm(r,O) with the same line charge density along the rod 
lead to different interaction. In view of Gauss theorem for a 
cylindrical symmetry, however, the differences should be 
small. In the following we shall therefore only consider the 
line charge density as the essential parameter to characterize 
the rod charge distribution. 
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We consider N m rods and N c counterions in a given vol­
ume v. Global charge neutrality then requires that 

(6) 

The thermodynamic parameters are the rod density 
Pm=Nmlv (the counterion density is then fixed to be 

P =N Iv=Zp Iq) and the temperature T. The rod density 
c. c . m . 3 

Pm IS convemently measured m terms of c*=.lIL . 
Having written down tlte basic interactions, we further 

adopt the adiabatic approximation.36 If {RJ and {OJ are the 
center-of-mass positions and orientations of the rods 
(l~i~Nm)' the total Lagrangian of the adiabatic primitive 
model reads 

Nm 

L: Vmm(R;-Rj ,0; ,OJ) 
;,j=l;;<j 

(7) 

where M and e are the mass and tlte moment of inertia of the 
rods and {AJ is a set of Lagrange multipliers ensuring that 
10il= 1. The dot denotes a time derivative. Finally, the adia­
baticity condition manifests itself by the fact that merely the 
counterionic density field pc(r) enters into the equations of 
motion. The density functional fir depends parametrically on 
the rod positions and orientations and can be split into four 
different terms:36 

fir =.9'id + firext + firee + fireorr , 

where 

.9'id=kBTf dr pc(r){ln[A~pAr)]-l}, 

firext= f dr pAr)Vext(r,{RJ) 

= q
2
e

2 f f d d ' pc(r)pc(r') 
Y ee 2e r r Ir-r'l . 

(8) 

(9) 

(10) 

(11) 

In the "ideal" part (9), Ac is the de Broglie thermal wave­
length of the counterions; firext describes the coupling of the 
counterions to the rods, while fir cc stems from the Coulomb 
interaction between counterions. The last term in Eq. (8) is 
the nontrivial counterion correlation term, for which we 
adopt the local density approximation (LDA) 

Yeorr=kBTf dr pc(r)'I'o~p(T,pAr». (12) 

In Eq. (12), 'l'o~p denotes the reduced excess free energy per 
ion, FexelNkBT, of a homogeneous fluid of point ions in 
neutralizing, uniform background, for which we use the Abe 
expansion:42 

(13) 

where r='(47TPcl3)1/3q2e2/ekBT, kB denoting Boltzmann's 
constant, c=~ln3+h-l=1.101 7623"', and 'Y is Euler's 
constant. The only approximation that has been made is the 
LDA for Y eorr which is justified for parameters typical for 
colloidal suspensions except perhaps in the immediate vicin­
ity of tlte rod surface where the counterions pile up, due to 
tlte strong Coulomb attraction. 

For each rod configuration, the eqUilibrium one particle 
counterion density p~O)(r,{R;},{O;}) is the solution to the 
variational problem: 

(14) 

subject to the constraint of global charge neutrality: 

f dr pc(r)=Nc=~ Nm· (15) 

Once p~O) has been determined, the forces Fj on the center of 
mass and the torques Mj induced by the counterions acting 
on each rod may be calculated directly, according to 

Fj = - VR/7np~O)(r,{RJ,{OJ )]{RJ,{O;}) 

= - f dr p~O)(r,{Rj},{Oi})V R
j 
V mc(r- Rj ,OJ) (16) 

and 

Mj= -OjX V nt97np~O)(r,{Ri}'{O;} )],{RJ,{OJ) 

= -OjX f drp~O)(r,{RJ,{O;})V nY mc(r- Rj ,0) 

(17) 

for 1 ~j~N m' In order to obtain the total force Fj=Fj + FJ' 
and tlte total torque Mj=Mj+MJ' acting on rodj one must 
add the direct inter-rod forces 

Nm 

Fj=-VRj L: Vmm(Ri-RbO;,Ok) (I 8) 
;,k=I;;<k 

and torques 

Nm 

MJ'=-OjXV Oj L: Vmm(Ri-RbO;,Ok)' (19) 
;,k=l;i<k 

Regarding Eqs. (16) and (17), one clearly sees the many­
body character of the counterion-induced forces and torques: 
Only if the eqUilibrium density p~O)(r,{R;},{O;}) is a linear 
superposition of density orbitals around each rod, are the 
forces and torques pairwise. In general, however, the density 
will explicitly depend on the rod configuration and will be a 
complicated nonlinear combination of such density orbitals. 
This nonlinear counterion screening immediately results in 
effective many-body interactions between the rods. 
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At this stage it is useful to compare the present approach 
to other familiar approaches, namely the Poisson-Boltzmann 
approach and the linearized Debye-Huckel theory which are 
both special cases of the present theory. The Poisson­
Boltzmann approach, recently used in an ab initio simulation 
by Fushiki43 for spherical particles is obtained if the correla­
tional part of counterionic free energy functional, .97'corr' is 
neglected completely. The Debye-Hiickel theory is a further 
approximation if the local nonlinear ideal part Yid is ex­
panded in the density difference pc(r)-pc around the mean 
counterion density Pc' see Ref. 36. 

Now the general strategy of ab initio simulations is as 
follows. One starts with a given configuration {RJ, {OJ of 
rods in a periodically repeated simulational box. One then 
minimizes the free energy functional Y with respect to the 
counterion density field and thus gains the total forces and 
torques on the rods. Then, using molecular dynamics de­
scribed by the Lagrangian $, the rods are moved with a 
small time step, .7 is again minimized, the forces and 
torques are again calculated, and the rods are moved again. 
After a sufficient number of equilibration time steps, statis­
tics is taken during a big number of time steps and thus 
orientational and other pair correlations of the rods are cal­
culated. It is clear that this strategy still requires an enormous 
numerical effort. We can avoid the major difficulties by 
adopting a pseudopotential construction and using the Car­
Parrinello simulational method. This is described in detail in 
Sec. IV. 

III. EFFECTIVE YUKAWA-SEGMENT MODELS 

In this section we summarize effective segment models 
with Yukawa pair interaction between each segment along 
the rod. The DLVO-segment model is well known and was 
frequently used in theory and computer simulation whereas 
the second model, resulting from an optimal fit of the ab 
initio data, and an analytical Poisson-Boltzmann cell model 
are novel results of this paper. In an effective Yukawa­
segment model the interaction energy between two rods is 
taken as the sum over screened Coulomb potentials between 
Ns segments on each of the rods: 

V( r,O. ,02) = ~ V~.B( I r+ O. 2~s (211'- 1 - Ns) 
a • .B= I 

(20) 

where r is the separation between the centers of mass of the 
rods, and V~.B(r) is a charge-polydisperse Yukawa potential 

(21) 

It is the explicit form of Za and K which is the output of an 
effective Yukawa model. 

A. DLVO-segment model 

The simplest segment model is based on the traditional 
DLVO interaction between spherical particles44

,45 and was 
introduced and studied by Klein and co-workers.29- 31 In this 
model, 

(22) 

and 

(23) 

It was shown by Dhont and Klein32 that this DLVO segment 
model becomes exact at infinite dilution. For strong interac­
tions or dense systems, however, there is no theoretical jus­
tification for the DLVO-segment model. 

B. Optimal effective segment model by fitting the ab 
initio data 

For this method, one needs to perform an ab initio run 
first. During the run one stores ./f/~ different typical configu-

. {R(j) n(j). '-1 N' '-1 ,f/'} d h ratlons i' ~"i ,/- , ... , m' j- , ... ,JY c an t e asso-
ciated many-body forces on the center of mass and the many­
body torques {F~j), M~j); i=l, ... ,Nm ; j=I, ... ,JY~}. One 
then makes a least square fit with a segment model of pair 
potentials, i.e., one minimizes the forces 

, I ' k (24) 
aVer o(j) O(j)I ) 2 

ar r=RU)-R(i) 
i k 

or the torques 

.#~ Nm ( Nm aV(R(j)-R(i) o(j) O(j))) 2 

:L:L M(j)- :L o(j) , k '. ' ' k 
, , an,(J) , 

j=. i=l k=l;b"i , 

(25) 

where V(r,fi. ,fi2) has the segment form (20) with a pairpo­
tential V~.B( r). It is with respect to V~.B( r) and also with 
respect to L that Eqs. (24) and (25) are minimized. In the k 
sum of Eqs. (24) and (25) also periodic images must be taken 
into account if V~.B( r) is long ranged. We tried different 
Ansatze for V~.B(r) and made the following observations. 

(i) For the minimizing potential, it practically does not 
matter whether one fits the forces (24) or the torques (25). 
The results are very close. 

(ii) The best fit was achieved with a charge-polydisperse 
Yukawa-segment model. Also a fit with a usual (charge­
monodisperse) Yukawa potential was acceptable. However, a 
fit where V~.sC r) is chosen as a soft sphere potential 
V~.B( r) = A r - v where A and v are fitting parameters is much 
worse than a two-parameter Yukawa ansatz 
V~.B(r) =A exp( - vr)lr. 

(iii) The optimal ab initio fit reproduces the ab initio 
data for the forces and torques within a relative error of 
:52%. 

(iv) As will be explicitly demonstrated in Sec. V, the ab 
initio fit model reproduces the pair correlations of the ab 
initio run quite well. However, for higher order correlations 
and more subtle quantities where many-body forces become 
important, the results with the ab initio fit become worse. 
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(v) The ab initio fit does not depend sensitively on the 
number N m of rods used in the ab initio run. If one calculates 
pair correlations in an ab initio simulation one must carefully 
consider finite size effects and one typically needs at least 
= 100 rods in the simulational box. It is much less computa­
tionally costly to simulate a smaller system with say = 15 
rods, fit an optimal effective segment model, and then do a 
simulation with a big system size of this segment model. 

Summarizing the ab initio fit represents an optimal ef­
fective segment model with pair potentials and is thus supe­
rior to any of other explicit segment models. However, one 
needs to perform an ab initio simulation of a small-sized 
sample first. We finally mention that in Ref. 37 the same idea 
of an ab initio fit was discussed in the case of spherical 
colloidal particles where the Yukawa pair potential, fre­
quently used for the interaction between charged colloidal 
spheres, was justified. 

C. An exactly soluble Poisson-Boltzmann-cell model 

Another way to obtain explicitly parameters for an effec­
tive Yukawa-segment description for the interaction between 
charged rods results from a calculation of the counterion 
density profile in a cylindrical Wigner-Seitz cell (WSC) 
around one rod. For an infinite long rod, this density profile 
PFB(r) is analytically known in the nonlinear Poisson­
Boltzmann approximation (PBA),46,6 characterized by Pois­
son's 

and Boltzmann's 

( 
cP(r») 

PPB(r)=pc exp - kBT (27) 

equations, r being the cylindrical distance. We then match 
this profile at the WSC boundary with that of a linearized 
Debye-Hiickel screening solution, where the associated 
screening constant K/ is determined by the counterion density 
at the WSC boundary. The effective charge is then obtained 
by integrating the Debye-Hiickel counterionic profile inside 
the WSc. In this way, one ends up with a simple analytical 
Poisson-Boltzmann cell (PBC) model. This model is justi­
fied (i) for long rods. LID?; 4, since an infinite rod is taken 
as a reference system, (ii) for strong interactions, since only 
the Wigner-Seitz cell boundary is considered, and (iii) for 
small volume fractions, since the effective boundary is as­
sumed to be cylindrical. It is thus quite complementary to the 
DLVO-segment model which works for infinite dilution or 
weak interactions, respectively. The idea of such a cell model 
was first used by Alexander et al. 34 for colloidal spheres. In 
the spherical case, however, one does not end up with ana­
lytical expressions as the solution of the PBA is not known 
exactly in spherical symmetry. 

We consider an infinite long rod with a charge line den­
sity z = Z/ L along the rod in a cylindrical WSC which has an 
outer radius of Ro = 1/ ~'rrLPm' A typical measure for the 
charge density along the rod is the ratio ~= tBZ of the Bjer­
rum length tB=e2/EkBT and the linear spacing of one el-

ementary charge along the rod. Depending on the value of 
the WSC boundary density, PFB(Ro), there are two different 
cases: (i) PPB(Ro) < pt and (ii) PPB(Ro) ;;.: pt, with a 
threshold density 

pt= 1/2'T/'tBR~. 

In case (i), the density profile is given by 

4f32 
PPB(r)=PPB(Ro) Ar cos[f3 In(r/Rm)]2 . 

(28) 

(29) 

Here, the dimensionless constant f3>0 is determined as a 
solution of the algebraic equation 

1 (~-l) I 1 fi arctan T + fi arctan fi -In(Ro/ R) = O. (30) 

Furthermore, in Eq. (29), the constant Rm is given by 

(31) 

and the screening constant A is defined as A 
= 2 f1+7jf/ Ro. The WSC boundary density is given via 

PPB(Ro) = pt(1 + f32). (32) 

On the other hand, in case (li) the density profile is 

4f3,2 

PPB(r)=PPB(Ro) A'r sinh[f3' In(r/R~)]2 ' (33) 

where now the constant f3' is determined by 

1 (~- I) I I 
f3' arcoth ---;3' + f3' arcoth f3' + In(Ro/R)=O (34) 

with arcoth(x)=~ In[(x+ I )/(x-l)]. Correspondingly, in 
case (ii), the constant R~ in Eq. (33) is given by 

R~=R exp[ - ~, arcoth( ~;,I)] (35) 

and A' = 2 ~/ Ro. Now, the WSC boundary density 
equals 

PPB(Ro) = pt(1- f3,2). (36) 

We now consider solutions PIer) of the linearized 
(Debye-Hiickel) version of the Poisson-Boltzmann equa­
tion in a cylindrical WSC 

( 
d2 1 d ) 
dr2 +-;:- dr - Kf p/(r)=O, (37) 

where the screening parameter K/ is determined in terms of 
the WSC boundary density 

4'T/'e2q2 
K;= €kBT PPB(Ro)· (38) 

This is an essential assumption meaning that the effective 
screening is only established by the counterions near the 
WSC boundary. Equation (37) has the general solution 

(39) 

where A, B are integration constants and In(x) , Kn(x) denote 
Bessel functions of imaginary argument of order n.47 The 
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01 p::= 20 ..-... 

'"' -.-
0: 

01 
p::= 

10 f,. ,.-... 

'"' 
I·, 

-.- I , 
III 
Q., -. ....:. Q.. 

0 
0 2 

r/R 

FIG. 1. Density profiles of the counterions in a cylindrical Wigner-Seitz 
cell for two different parameter combinations in units of 11 R3. The results of 
the linearized PBC model, p/(r) (dot-dashed lines), as well as that of the 
Poisson-Boltzmann theory, PfB(r)R 3 (solid lines), are shown. r denotes the 
cylindrical distance. The parameters are R=53 nm, T= 300 K, €=78, Ll2R 
=6, p=6c*. For the lower curves, Z=400 and PPB(Ro) < P: whereas for 
the upper curves, Z= 1500 and PPB(Ro) > P:' 

coefficients A and B are directly detennined by matching the 
density at the WSC boundary with {Jps(Ro) , i.e., by demand­
ing {Jps(Ro) = p/(Ro) and requiring dP/(Ro)/dr= 0 which is 
a direct consequence of global charge neutrality. Explicitly, 
one gets 

B- (R) II(K/Ro) (40) 
-PPB 0 II(K/Ro)Ko(K/Ro)+/o(K/R)KI(K/R) 

and 

KI(K/Ro) 
A = B --:--,-­

II(K/Ro) 
(41) 

Finally, the effective charge ZPBC of the rod is obtained by 
integrating the density profile39 

II (K/Ro)K I (K/R) -II (K/R)K I (K/Ro) 
X (42) 

II (K/Ro)Ko( K/Ro) + lo( K/R)K I (K/R) . 

In Fig. 1, the density profiles {JpB(r) and Pier) are compared 
for two parameter combinations corresponding to cases (i) 
and (ii). The qualitative results are very similar to the spheri­
cal case.34 First, the effective charge ZPBC' is in general 
smaller than the bare charge Z and the corresponding screen­
ing length K/ is smaller, too, compared to its Debye-Hiickel 
value. Second, for very high Z, Zeff is drastically reduced, 
and does only depend very weakly on Z. This is illustrated in 
Fig. 2. Nevertheless, since also K/ decreases with increasing 
Z, the interaction may become stronger even than that of the 
DLVO-segment model. However, we emphasize that in the 
cylindrical symmetry the PBA is exactly soluble whereas 

there is no such explicit solution in the spherical case and 
thus this model is more easily implemented in the cylindrical 
case. 

The resulting PBC-YUkawa-segment model for the inter­
action between charged rods is finally given by 

IV. AS INITIO APPROACH: PRACTICAL 
IMPLEMENTATION 

A. Pseudo potential construction 

.(43) 

First of all, we have to fix the charge distribution 
enm(r,n) of a rod with orientation n, whose center of mass 
is at the origin. One may expect that details of this distribu­
tion do not matter as long as typical spacings of the charge 
inhomogeneities are small compared to the mean distance 
between the rods. As in Refs. 35 and 36 we are using a 
classical pseudopotential construction in order to smooth the 
counterionic density profile at the macroionic surfaces. This 
is technically necessary and reduces the numerical effort 
drastically. 

The pseudopotential construction is done as follows. We 
first put N r equal charges Z(O) / N r on equally spaced seg­
ments along the rod. Hence we start from a rod charge dis­
tribution 

where L (0) is an a priori rod length. This is not the final real 
charge distribution enm(r,n) since the pseudopotential con­
struction admits penetrating counterions which will reduce 
the rod charge from Z(O) to Z. Also the final rod length will 
be slightly changed from L (0) to L. 

In a second step, the rod-counterion potential V mc(r,n) 
of Eq. (4) is replaced by the penetrable potential 

J 
n(°lcr' n»)lr-r'l) 

V~c(r,n)= -qe2 dr' m IE' eu\ ~ . 
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FIG. 2. Effective charge in the PBe model, ZpBC' vs bare charge Z (solid 
line). The other parameters are as in Fig. 1. For comparison the straight line 
ZPBC=Z is also shown (dashed line). 
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100nrn 
f--- --1 

~ ~ , , 

FIG. 3. Cylindrical rod shape for the parameters corresponding to run A 
where N, = 3 and the three equal original point charges have a distance of 
100 nm. The positions of these point charges are shown by the full black 
circles. Integration of the inside counterion density, which penetrates the 
core due to the pseudopotential construction, yields reduced values Z I , Z2 
for the bare charges. In general Z I*" Z2. The integration boundaries are 
indicated by dashed lines. 

Here erf(x) denotes the error function and Re=2R is chosen 
in order to ensure that V~e(r,n) practically equals V me(r,n) 
outside the rod volume. As a consequence, the counterions 
will penetrate into the core. 

In a third step, fluctuations of the inside counterions are 
suppressed by adding an arbitrary free energy penalty 
feut(Pe) to 'l'oxCp(T,Pe) in Eq. (13) which increases rapidly 
for counterion densities Pc > p~ut; the form chosen for feut is 

_{O when x=(Pe-p~ut)/p~ut<O 

feut(pJ - 0 05 ( 3) . (46) 
. exp - tan( 1TX) when x~O 

Here, p~ut is determined self-consistently as to match the 
averaged density at the rod surface having a cylindrical dis­
tance R from the origin. This cutoff density discriminates 
between ·two regions: For Peer) < p~ut, fluctuations of the 
charge density are not affected by the free energy penalty, 
whereas for Peer) > p~ut the charge distribution is stiffened 
by the penalty. Consequently the form of the rod [or, in other 
terms, the boundary of the characteristic function x(r,n)] is 
given by the two-dimensional manifold defined as the solu­
tion of 

(47) 

If one averages over different rods and different orientations 
during a simulation, the averaged value finally determines 
the actual form of the rods. It should be noted, however, that, 
due to the construction, the fluctuations in the rod shape are 
very small (less than 3%) and the resulting rod shape is very 
close to a spherocylinder. Obviously it depends on the linear 
charge spacing L (0) / N r of the original charge distribution 
en~)(r,n). One possible rod shape for the parameters used 
in the simulation is shown in Fig. 3 where N r =3. Having 
determined the rod shape, the rod volume 9"/m is readily ob­
tained by integration. 

By the free energy penalty (46), the fluctuations of the 
artificial counterion density inside the rod are suppressed. 
This was explicitly checked a posteriori in the simulation. 
The averaged counterion inside density en~i)(r,n) has there­
fore to be added to the total charge distribution such that 

nm(r,n) = n},?)(r,n) + n~i)(r,n). (48) 

Correspondingly, the total rod charge is reduced to a value Z 
being smaller than Z(O) as obtained by integrating n~i)(r,n) 
over the rod volume. 

One disadvantage compared to the case of spherical 
macroions35,36 is that one cannot predict Z within one single 
run. One has to guess a suitable n~)(r,n) and determine 
p~ut and then one gets the total rod charge Z as an output. 
This means that one needs a set of iterative runs in order to 
get finally the prescribed result for Z. In the spherical case 
this could be done in a spherical Wigner-Seitz cell without 
any notable numerical effort since the radial coordinate was 
only relevant. In the case of cylindrical rods of finite length, 
however, this calculation is not trivial. In the following we 
just take some parameter combinations where Z is an output 
of an arbitrary chosen initial charge distribution en~)(r,n). 

B. Car-Parrinello method 

Following general ideas of Car and Parrinell038 which 
were implemented in the classical context in Ref. 36 we add 
a small fake kinetic energy term 

(49) 

to the Lagrangian $ from Eq. (7) with a small fake mass 
m f' m f was chosen such that the resulting counterionic fake 
kinetic energy during the run was less than 4% of the kinetic 
energy of the rods, thus ensuring that we are very close to the 
adiabatic solution. 

We parametrize the counterion density field by its expan­
sion in Fourier components 

pcCr) = L: Pke exp(ik·r), 
k 

(50) 

where the sum is over all reciprocal lattice vectors k of the 
periodically repeated simulation box of volume V. In prac­
tice, we include about .,.1/'=850 000 different reciprocal lat­
tice vectors and cut off the sum in Eq. (50). The resulting 
density in r space is defined on an A":'dimensional grid of 
the cubic or rectangular simulational box. 

The finite difference versions of the equations of motion 
corresponding to the Lagrangian ,2;"'+ Kf are solved itera­
tively with a finite time-step !1t. Standard molecular dynam­
ics algorithms for the orientational degrees of freedom of the 
rigid rods48 are used. The center-of-mass motions are 
coupled to a Nose thermostat,49 such that averages taken 
along the phase space trajectories are equivalent to canonical 
ensemble averages at an imposed temperature T. The angular 
velocities were scaled each 200 steps to this prescribed tem­
perature. Efficient fast Fourier transform techniques are used 
to commute back and forth between the r- and k-space rep­
resentations of the counterion density. The infinite range of 
the bare Coulomb interactions is taken care of by appropriate 
Ewald summation.48 The finite time-step !1t was chosen suf­
ficiently small to ensure excellent conservation of the total 
energy of the system. 
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TABLE I. Parameters and results of the ab initio run A (AI) and the different Yukawa-segment models: the ab 
initio fit (AI fit), the DLVO, and the PBC model. Given are the outer charge ZI and the inner charge Z2 along 
the rod (see Fig. 3), the distance d between these charges, the inverse screening length K in the different 
Yukawa-segment models, the mean force P, and the mean torque M. For the ab initio run, Z 1 and 22 are just the 
total integrated inside charge of Fig. 3 with distance d. Z 1 , Z2' d, and K were used as four independent fit 
parameters to find an optimal ab initio fit potential within a three-segment model. For the DLVO and PBC 
model the charges are assumed to be equal and the quadrupole moment of the original charge distribution is 
matched in finding a suitable d for a three-segment model. 

Model ZI 22 d(nm) 

AI 46.4 43.8 100.7 
AI fit 66.5 66.4 100.8 
DLVO 51.4 51.4 101.7 
PBC 45.3 45.3 101.7 

v. RESULTS 

Three different ab initio runs were performed in the dis­
ordered fluid as well as in the liquid crystalline (smectic B) 
phase. The results are compared with that of Yukawa­
segment models. In every run the temperature was fixed to 
T= 300 K (room temperature) and the dielectric constant is 
that of water, E= 78. 

A. Disordered phase 

One parameter combination (run A) was in the fluid 
phase. Nm = 108 rods were put into a periodically repeated 
cubic simulational box with ,,1"=963 gridpoints. The original 
charge distribution en~)(r,O) was taken according to Eq. 
(44) with Nr=3, Z(O)/Nr=65, L(O)=302 nm. The pseudo­
potential construction then yields the bare charges ZI =46.4 
and Z2=43.8 (see Fig. 3) such that the total rod charge is 
Z=2Z1 +Z2= 136.6. The rod shape has an averaged cylin­
drical radius of R = 47 nm and a total length of L = 3 01 nm, 
hence Ll2R = 3.2. The cutoff density p~ut was 2. 77IR 3• The 
rod density was Pm=3.34c*=3.34IL 3 which corresponds 
to a concentrated system with a relatively high volume frac­
tion 4>=0.23. A very short-ranged steep repulsive potential 
was added in order to prevent overlapping rods. Nonetheless 
such overlapping was found to be rather unlikely. The mo­
ment of inertia, 0, was chosen to be 0=20MR 2

, M being 
the total mass which sets the time scale. The finite time step 
was Llt=3X 1O-3 TO where TO = ~MR2IkBT. The starting 
positions were equilibrated positions gained by a run based 
on the DLVO-segment model. After an equilibration period 
of 8000 time steps, statistics were gathered over 25 000 time 
steps. One time step took about 4 s CPU time on a Cray 
YMP. 

In Table I, the parameters of the three different Yukawa­
segment models are given. Three segments are chosen and 
the distance between the point charges is fixed by matching 
the quadrupolar moment of the ab initio and the segment 
charge distribution. In the ab initio fit, this distance as well 
as the three point charges and the inverse screening length K 

were taken as variational parameters and determined by 
minimizing Eq. (24) or Eq. (25). Due to the high volume 
fraction of the system the inverse screening length K is 
higher in the PBC model than in the DLVO model and closer 
to that of the ab initio fit. The effective charges, however, are 

KR P/kBTp!!.3 M/kBT 

29.8 9.3 
0.6471 29.0 9.0 
0.5752 23.7 7.4 
0.6462 18.7 5.9 

both significantly lower than that resulting from the optimal 
Yukawa-segment model. 

Two self-properties and some central pair correlations 
were calculated. First the mean force on the center of mass of 
the rods is defined as 

(51) 

where < ... > denotes a canonical average. In analogy the mean 
torque is 

(52) 

Data for F and if are given in Table I for the ab initio run 
and the Yukawa models. For the Yukawa-segment model we 
took the same system size with N m = 108 particles in order 
to avoid systematic deviations due to finite system size in a 
comparison. Whereas both the PBC model and the DLVO 
model underestimate the mean forces and torques, the ab 
initio fit reproduces the ab initio data reasonably well. 

As for pair correlations we have computed the pair cor­
relation function of the center of mass 

1 Nm 

g(r)=~ :L (b'[r-(R;-R)]). 
Pm m ;,)=1;;*) 

(53) 

Orientational pair correlations are conveniently measured by 
the function I 

1 
gp(r)= PmNmg(r) 

Nm 

:L (P2(COS Oij)b'[r-(R;- R j )]), 

;,j=I;;*) 

(54) 

where Oij is the angle between two orientations 0; and 0) 
and P2(x)=(3x 2 -1)/2 is the second Legendre polynomial. 
If gp(r) is positive, two rods at a given center-of-mass dis­
tance r are on average oriented in parallel whereas they are 
perpendicular if g per) has a negative sign. For Yukawa­
segment models it is known 1 that gp(r) is negative for small 
distances, becomes positive with a maximum roughly at 
mean distance a = p;;.I/3, and finally tends oscillatory to zero 
as r--+ oo • 
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Finally the r-dependent force and torque pair correla­
tions are defined via 

(55) 
i,j= l;i*j 

and 

1 
gM(r)= - PmN mg(r)(k

B
T)2 

(56) 
i,j= l;i*j 

The functions gF(r) and gM(r) diverge to +00 as r--+O and 
vanish in the opposite limit r--+ oo . 

Results for the pair correlations are shown in Fig. 4 both 
for the ab initio run and the Yukawa models. The pair corre­
lation function g(r) which is displayed in Fig. 4(a) does not 
exhibit a great structure since the system is disordered and 
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(b) ria 

correlations of the center-of-mass coordinates are mainly 
smeared out by a large number of different rod configura­
tions. Figure 4(b) shows orientational correlations as embod­
ied in gp(r). The DLVO and the PBC segment model under­
estimate the structure whereas there is quite good agreement 
between the ab initio data and the ab initio fit within the 
statistical error. The discrepancies are readily explained with 
many-body interactions between the rods which are ignored 
in the ab initio fit procedure. Finally the force and torque 
correlation functions are shown in Figs. 4(a) and 4(b). Al­
though there is a considerable statistical error, one can con­
clude that the correlations are reasonably reproduced by the 
ab initio fit, not too surprisingly, since the forces and torques 
were adjusted in this theory, while again both DLVO and 
PBC model underestimate the forces and torques. g M( r) 
shows an oscillation near the averaged distance a = P;;' 1/3. 

The underestimation of the structure by the DLVO and 
PBC model can also be seen more directly if one takes the 
Yukawa-segment data of Fig. 1 and plots the force between 
two infinitely long parallel rods carrying a line charge den­
sity z = Z/ L which are separated by a distance r. In a liquid­
crystalline situation where neighboring rods are really paral-
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FIG. 4. Different pair correlation functions as a function of the center-of-mass distance r measured in terms of the mean distance a = p;;.1!3. (a) Pair correlation 
function gIrl of the center-of-mass coordinate. (b) Orientational correlation function gp(r) as defined in the text. (c) Force correlation function gp(r) as 
defined in the text. (d) Torque correlation function gM(r) as defined in the text. For the parameters of run A results are shown for the ab initio calculation (solid 
lines), the Yukawa-segment model by ab initio fit (dashed lines), the DLVO-segment model (dot-dashed lines), and the PBe-segment model (dotted lines). 
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lei these forces are even very close to the actual forces. In a 
disordered configuration considered here these forces give 
only a qualitative estimate of the actual forces. The potential 
v (r) = V( r)/ L per unit length between two infinitely long 
rods of a Yukawa-segment model with inverse screening 
length K is given by 50 

(ze )2 
v(r)=-- Ko(Kr) (57) 

E 

such that the forces are proportional to 

dv (ze)2 
f(r)= - dr =-E- KK1(Kr) (58) 

with K 0 and K 1 denoting Bessel functions of imaginary ar­
gument. This quantity is shown for the three different 
Yukawa-segment models in Fig. 5(a). Mainly the contribu­
tion from the mean distance is relevant if one relates fer), 
e.g., to the first peak of g p( r). As already expected from the 
results of the pair correlation functions, the DLVO and the 
PBe models underestimate the data of the ab initio fit. In the 
following we shall study the quantity fer) instead of a full 
simulation of the pair correlations. It gives already the right 
tendency of whether a Yukawa-segment model over- or un­
derestimates the structure. 

The failure of the DLVO model in run A is similar to the 
underestimation of the structure in spherical macroions for 
large packing fractions. 35•36 On the other hand, the PBe 
model fails for three reasons. First, the rods are not long 
enough to justify an infinite cylindrical symmetry. Second, 

(e) ria 

FIG. 5. Force fer) between two infinitely long parallel rods as a function of 
the rod distance r within three different Yukawa-segment models: ab initio 
fit (dashed lines), the DLVO-segment model (dot-dashed lines), and the 
PBC-segment model (dotted lines). (a) For run A, (b) for run B, (c) for run 
C. r is measured in units of the mean rod distance a. For run A and B 
(disordered state), a = p;;.1I3. For run C (smectic B phase). a is the spacing 
of the triangular lattice perpendicular to the rod orientation. fer) is mea­
sured in units of f(a) of the ab initio fit data . 

there are important configurations where the rods are perpen­
dicular which cannot be described within a cylindrical 
Wigner-Seitz cell. Third, due to the high packing fraction 
the rods come close to each other and the approximation 
made in PBe theory that only the Wigner-Seitz boundary is 
relevant breaks down as well. The fact that the ab initio fit 
gives reasonable agreement with the full ab initio data en­
ables us to calculate the pair correlations even for longer rods 
where one needs a large system in order to prevent finite size 
effects. The procedure then is to do a full ab initio run for a 
small system, to find an optimal Yukawa-segment model by 
fitting the forces and to then perform a simulation with the 
Yukawa-segment model for a large system. 

We have followed this strategy for a second run, B, 
where a higher rod charge Z=442.8 and a lower volume 
fraction q,=O.lO was chosen. The further parameters are 
given in the caption of Table II, where the results of the three 
Yukawa-segment models are shown. The force fer) of run B 

TABLE II. Ab initio fit (AI fit), the DLVO, and the PBC model correspond­
ing to run B. The meaning of the symbols is as in Table 1. The parameters of 
run B are N m=53, ./V=963, N r=3, L(0)=302 nm, ZI=152.4, 
Z2= 138.0, R= 53 nm, L= 30 1 nm, p~ut = 6.2IR 3

, and Pm= 1.3 I c*. 

Model 

AI fit 
DLVO 
PBC 

187.0 
177.2 
136.0 

187.7 
177.2 
136.0 

d(nm) 

1Ol.3 
102.3 
102.3 

0.7347 
0.7328 
0.6734 
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TABLE III. Ab initio fit (AI fit), the DLVO, and the PBC model corresponding to run C. Given are the line 
charge density z and the screening parameter K, the Lindemann para!lleter Lxy of the triang~lar lattice in a 
smectic layer, orientational fluctuations Xu as well as the mean force F and the mean torque M. 

Model 

AI fit 
DLVO 
PBC 

zR 

106.8 
164.0 
81.8 

KR 

0.7329 
0.9417 
0.6559 

Lxy 

0.06 
0.09 
0.06 

is shown in Fig. 5(b). For this moderate packing fraction, the 
DLVO model is a better description of the ab initio fit data 
than for run A. This agreement is, however, fortuitous as 
observed for spherical macroions35,36 with similar param­
eters. Again the PBC model which is not expected to work in 
the fluid phase does underestimate the forces considerably. 

B. Liquid-crystalline phase 

We have performed a third run C in the liquid-crystalline 
(smectic B) phase. N m = 9 rods were put into a periodically 
repeated rectangular box which is quadratic in x and y direc­
tion with A/'=96X96X 192 gridpoints. The mean orientation 
of the rods was along the z direction. Due to resolution prob­
lems of the counterionic density field, only one smectic layer 
of rods could be simulated. In order to avoid a spurious 
center-of-mass diffusion in z direction, the z coordinate of 
the center of mass of the rods was fixed. 

The original charge distribution en~)(r,a) was taken 
according to Eq. (44) with N r =52, Z(O)INr = 180, 
L (0) = 1590 nm. The pseudopotential construction yields a 
total line charge density of z = ZI L = 2. 8 9 nm -\ along the 
rod and a cutoff density of p~ut = 24.1 R3 where R = 37.1 nm 
is the averaged rod radius and L = 1664 nm is the total rod 
length such that Ll2R = 22.4. The rod density is 
Pm=45.80c* which corresponds to a packing fraction of 
¢=0.070. In the smectic layer the area density of the rods is 
0.026IR2

. 

Sufficient configurations were gathered during an ab ini­
tio run of this small system and an optimal effective Yukawa­
segment model was fitted to these configurations. The results 
together with that of the DLVO- and PBC-segment models 
are given in Table III. The PBC screening constant K is much 
closer to the ab initio fit value than that of the DLVO model. 
The effective charge is a bit lower but the force is very much 
equal since the screening constant is a bit smaller. If one 
considers the forcesf(r) of these three models in Fig. 5(c), it 
becomes evident that the PBC model practically yields the 
same forces as the ab initio fit and is superior to the DLVO 
model. Note that the forces fer) are now physical since we 
are discussing an aligned liquid crystalline phase where the 
main interaction is that between parallel rods. 

In order to check whether the PBC and the ab initio 
model also yield agreement of more subtle quantities we 
have performed simulations with a much larger system size 
of Nm= 144 rods (4 layers with 36 rods each of which hav­
ing 14 segments). As a target quantity we first calculated the 
Lindemann parameter L xy of the triangular lattice in one 
smectic layer which is defined as 

Xu X104 

4.0 
6.5 
4.3 

FtkBTp1/.3 

198 
189 
197 

199 
190 
198 

~( (x- (x) )2 + «y _ (y) )2) 
L~= , 

atJ. 
(59) 

where a tJ. is the lattice constant of the triangUlar lattice and 
R=(x,y,z) is the center-of-mass position of one rod whose 
mean orientation is in z direction. Second, orientational fluc­
tuations are defined via 

(60) 

The quantity Xn equals 1 in a disordered phase and is zero in 
a fully aligned configuration. Finally we have also calculated 
the mean forces and torques. The results are listed up in 
Table III. Again the PBC data are very close to the ab initio 
fit data whereas the DLVO segment model underestimates 
the structure. 

In conclusion, in a liquid crystalline phase for long rods, 
the PBC model yields excellent agreement with the ab initio 
data. This is easily understood since the PBC model was 
designed for infinitely long rods in a spherical geometry 
which is well realized in a liquid crystalline phase. One may 
expect that the PBC model should also work in the nematic 
phase where the rods are still oriented. 

VI. CONCLUSIONS 

Summarizing, an ab initio description of nonlinear coun­
terion screening in charged rodlike colloidal suspensions was 
described and implemented. It represents a combination of 
molecular dynamics for the meso scopic charged rods and 
classical density functional theory for the microscopic coun­
terions. Within this approach counterion-induced effective 
many-body forces between the rods are included. By fitting 
the forces and torques in actual configurations during the ab 
initio simulation an optimal effective pair potential segment 
model was extracted which is very close to a Yukawa­
segment model. Thus the Yukawa-segment model frequently 
used to describe the interaction between charged rods is jus­
tified on an ab initio basis. The actual parameters for the 
effective charge and the screening constant, however, differ 
in general from that of the usual DLVO-segment model. This 
was demonstrated using three different runs in the disordered 
and liquid-crystalline phase. For partially aligned long rods, 
an exactly soluble Poisson-Boltzmann model in a cylindrical 
Wigner-Seitz cell was proposed. This model makes reason­
able predictions for the inter-rod forces and is superior to the 
DLVO model in smectic and nematic phases of highly inter­
acting rods. 

The simple Poisson-Boltzmann-cell model can be used 
in theory and simulation as an effective Yukawa-segment 
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model. Within this model even quantitative agreement be­
tween experimental data for, e.g., TMV and the simulations 
may be achieved in liquid-crystalline-like phases. Further­
more the PBC model is readily generalized to a situation 
with added salt. This generalization and also a comparison 
with experimental data will be part of our future activity. 

A further extension is to address dynamical quantities 
like orientational and center-of-mass self-diffusion of inter­
acting rods. The true dynamics of the rods is Brownian51 

rather than molecular dynamics. As explicitly demonstrated 
for spherical macroions the ab initio description can at least 
in principle be generalized to Brownian dynamics of the 
macroparticles. It would be interesting to compare then dy­
namical quantities of the simulation with the available ex­
perimental results. 
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