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Blocking of metastable phase formation by an external field
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The influence of an external field on interfacial growth is analyzed within a Ginzburg-Landau model
of front propagation. In the field-free case in a rapid temperature quench a metastable phase can be
created by a dynamic instability that splits the front separating the stable high-temperature and low-
temperature phases [J. Bechhoefer et al., Phys. Rev. Lett. 67, 1266 (1991)]. The external field blocks the
production of the metastable phase. It is found that the thickness of the metastable phase is a nonmono-
tonic function of time. It first grows to mesoscopic size and then shrinks to a microscopic layer. Sugges-
tions for observing this effect in real growth experiments are made.

PACS number(s): 64.60.My

I. INTRODUCTION

Metastable phases are usually produced by fast temper-
ature quenches. The common picture is that due to
kinetic obstacles the stable phase does not have enough
time to form and a metastable phase can be created on a
macroscopic scale. There are many concrete examples of
metastable phases in physics and metallurgy [1] and for
more than a century [2] experimental and technical ex-
perience on creating metastable crystalline structures and
glasses from the melt has accumulated. It is, however,
only recently that theoretical mechanisms have been
studied. Two general mechanisms have been proposed
[3]: First the nucleation rate of metastable germs may be
larger than that of stable germs. Second, the growth rate
of the metastable phase exceeds that of the stable phase.

Recently a simple Ginzburg-Landau model for interfa-
cial growth with one nonconserved order parameter was
investigated by Bechhoefer, Lowen, and Tuckerman [4].
They proposed a theory for the different growth velocities
of the stable and metastable phases incorporating some
quantities related to material parameters. An interesting
dynamic splitting instability was found at the front
separating the phase stable at high temperatures (phase
10) from the phase stable at low temperatures (phase 2).
A macroscopic portion of a metastable phase (phase 1) in-
tervenes dynamically between the two original phase 0
and 2 due to the different growth velocities of the 01 and
12 interfaces. The same picture also applies to two non-
conserved order parameters [S], showing that the mecha-
nism is quite universal and should be observable in many
different experimental realizations.

In the Ginzburg-Landau model of Ref. [4] an infinite
geometry with a planar system was assumed. In this case
the growth of the metastable phase is not hindered by the
finite size of the sample, and a macroscopic portion of the
metastable phase forms. It is clear that the finite system
size of the sample provides a natural limit to the growth
of the metastable phase. Other circumstances that may
hinder the growth of the split interface are external fields,
such as walls or a gravitational field.
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In this paper we address the influence of an external
field on the dynamical creation of a metastable phase
quantitatively within a suitable extension of the dynami-
cal Ginzburg-Landau model. We do not include a finite
system size but consider a semi-infinite system in an
external (e.g., gravitational) field. We find that there are
two different time regimes describing the growth of the
02 interface: For small times a metastable phase can be
formed due to the splitting instability. This means that
the Ol-interface velocity is larger than the 12-interface
velocity. Consequently the portion of the metastable
phase increases and reaches mesoscopic or even macro-
scopic sizes depending on the strength of the external
field. Then in a second (large) time regime the external
field induces a reduction of the grown metastable phase.
The width of the metastable phase now decreases with
time. This is because the external field slows down the 01
interface motion much more than the 12-interface
motion.

For very long times the interfacial profile approaches
its equilibrium profile in the external field, consisting of a
02 interface with a microscopically small remnant of the
metastable phase. Hence the width of the layer built up
by the metastable phase is nonmonotonic in time. It first
reaches mesoscopic or macroscopic sizes and then
shrinks to microscopic dimensions. The dynamical non-
monotonicity in the portion of the created metastable
phase should be observable in time-resolved growth ex-
periments.

The paper is organized as follows. We first describe in
Sec. II a simple model of Ginzburg-Landau dynamics for
an interface in an external field. Numerical results for
the interfacial motion and the dynamical creation of a
metastable phase are presented in Sec. III. We finally
conclude in Sec. IV.

II. THE MODEL

To see the influence of an external field in its simplest
setting, we study a semi-infinite spatial domain
(0=x < ). Asin Ref. [4] we assume that the phase 0, 1,
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and 2 may be described by a single nonconserved order
parameter gq. The order parameter is taken to be dimen-
sionless and may be chosen to be a suitable scaled func-
tion of the bulk densities of the three different phases.
For example, phase O may represent a disordered phase
(e.g., a liquid) and phase 2 the stable low-temperature
solid phase, whereas the metastable phase 1 may be a
solid phase with different crystal structure, a quasicrystal,
or a glass. For zero external field the bulk-free-energy
density F'”(q) has three local minima at ¢\, ¢!, and
g%. We choose g’ <q{» <q'?.

The Ginzburg-Landau dynamics model is defined in

terms of the free-energy functional,

og(x,1)

2
i +F[q(x,t),x]

Flg(x,t)]= fow dx %

’

(1)

where A is a microscopic bulk correlation length which
determines the length scale and € sets the energy scale.
The bulk free-energy density can be split into F*(g) and
a field-dependent part as follows:

F(g,x)=¢€f(q,x)=F""(q)+eagx . )

Here we consider a linear coupling of ¢ to the external
field. The quantity a plays the role of a coupling con-
stant. As a simple example, if the order parameter is pro-
portional to the particle density, this linear coupling de-
scribes a homogeneous gravitational field. We assume
the function F'O(q)=ef¥(q) to diverge as ¢—0+,
which guarantees that phase O is stable for large x and
that the order-parameter profiles are bounded and posi-
tive. Since in all physical applications the order parame-
ter stays finite, we are forced to introduce such a diver-
gence into the functional. In our calculations we choose
£©(q) to be a negative superposition of Gaussian peaks
centered around the three local minima. For g <gq’ we
add the term of the form A +Bg + C/q that diverges as
~1/q as ¢—0+. The parameters A4, B, and C are
chosen such that the derivative df*(q)/dq is continuous
at ¢ =q¥. Two choices of f°(q) are given in Figs. 1(a)
and 4(a), where the shape of f(g,x) is shown for different
x.

The dynamics of the nonconserved order-parameter
profile g (x,?) is defined by the relaxational equation

dg(x,t) _ T 8F[q(x,t)]
ot dq '

The natural time scale for interfacial dynamics is given
by 7,=1/Te. Henceforth we take 7, €, and A as units
for time, energy, and length. The solution of Eq. (3) is
subject to the boundary conditions

(3)

g(x =0,0)=¢q%" @)
and
lim g(x,1)=0 (5)

for all + >0. The latter boundary condition stems from
the fact that the position of the left peak in f(g,x) con-

verges to zero as x — . The relaxation of the order-
parameter profile was then studied using an arbitrary ini-
tial profile g (x,z =0) as an input which obeys the bound-
ary conditions (4) and (5).

Without an external field one may look for steady-state
solutions where the 02 interface moves with constant ve-
locity vy,. As has often been recognized [6], the equa-
tions of motion of the order-parameter profile are analo-
gous to the classical mechanical equation of motion of a
fictitious particle moving in the “potential”—F()(q),
with a “velocity”’-dependent friction with friction con-
stant proportional to the interface velocity. This yields
an analytical solution is some cases [7]. For a nonzero
field the analogy breaks down. The influence of an exter-
nal field may be viewed as a ‘“‘time”’-dependent force, but
there are no steady-state solutions due to the breaking of
the translational symmetry by the external field. Conse-
quently, the equation of motion can only be solved nu-
merically.

III. RESULTS

We have calculated ¢(x,?z) numerically for three
different parameter combinations (runs A —C) using the
discretized version of the partial differential equation for
the order-parameter profile. The numerical method is
similar to that in Ref. [5]. In particular, a half-tahn map-
ping is used for the semi-infinite interval here. For run 4
the form of f®(¢q) we chose is shown in Fig. 1(a). We
have considered a coupling parameter @ =0.8 for run A4.
The parameters of run A4 are in the regime where the
metastable phase forms dynamically in the field-free case.
This means that the splitting instability occurs, and there
is no steady-state solution for the 02 interface. Order-
parameter profiles for different times ¢ are shown in Fig.
1(b). Starting from an initial (left) profile the phase 2
grows at the expense of phase 0. For small times the
metastable phase 1 appears and grows to a maximal
width w_,,. Then further growth is blocked by the exter-
nal field, and the profile reaches its equilibrium form for
t— oo with only a microscopic layer of phase 1 in be-
tween phase 2 and 0. We can define an interface position
x,;(1) between two phases i and j by solving

9(x(0,0=3g*+¢/”) . ©)

The time-dependent width w(¢) of the metastable phase
is then defined via

w(t)=xq (1) —x,(1) . (7

A plot of w(¢) for run 4 is shown in Fig. 2 (solid line).
As can clearly be seen, w(t) shows a nonmonotonic
behavior and reaches a large value w,, for intermediate
times. Then it decreases to its microscopic equilibrium
value. In a second run B we have chosen a stronger cou-
pling a=2 but did not change the other parameters. The
width of the metastable phase for run B is also shown in
Fig. 2 (dashed line) exhibiting a smaller w_,,. The quali-
tative behavior of the interfacial growth was the same.
With decreasing a, w,,,, increases which implies that for
small external fields w,,, is macroscopic.
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The nonmonotonic behavior of w(t) stems from the
different interfacial velocities v, (2)=dx,(¢)/dt and
vy,(t)=dx,(t)/dt. These velocities are shown in Fig. 3
for run A4 on a normal [Fig. 3(a)] and a logarithmic scale
[Fig. 3(b)]. For small times, vy, >v,,, whereas vy <v(,
for intermediate times. If one looks at details of the in-
terfacial velocity relaxation, there are three different time
regimes in the decay of the interfacial velocities. First,
there is relaxation from the initial profile towards a
quasiequilibrated profile on a microscopic time scale. For
run A and the chosen initial profile this time regime is in
the interval 0<¢ <0.1. It is nonuniversal since it de-
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FIG. 1. (a) Form of — f(q,x) versus g for different x for runs
A and B. ax is taken to be ax =2.4n, n =0,1,2,3,4,5. The up-
permost curve is —f%(q) where the positions of the three
peaks, g, ¢{0,¢?), are also indicated. — f(g,x) can be shifted
by an arbitrary additive constant without changing the equa-
tions of motion. As x increases, the left phase 0 becomes stable
and the right phase 2 loses its stability. The middle phase 1 al-
ways remains metastable. (b) Order-parameter profiles ¢ (x,?)
versus x starting from an arbitrary initial profile g (x,0) (left
curve) in an external field for run 4. The times for which ¢ (x,)
is shown are from left to right ¢=0.2n with
n=1,2,3,7,15,19,23,. ... The time is in units of 7,.
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FIG. 2. Width of the layer of metastable phase, w(t), versus
time ¢ for runs A4 (solid line), B (dashed line), and C (dotted line).
The width is measured in terms of the width w(0) of the arbi-
trarily chosen initial profile.
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FIG. 3. (a) The different interfacial velocities v, (crosses)
and vy, (open circles) for run A as a function of time. Att=~4.2
an abrupt change due to “interface fusion” is visible. (b) Inter-
facial velocities vy, (open circles) and v, (crosses) from run A
on a logarithmic scale in the exponential regime. The velocities
are scaled by their initial value v (0) at t =0.
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pends on the explicit form of the initial profile. During
this time the interface starts to split until practically two
independent interfaces are formed.

Then in a second intermediate time regime the relaxa-
tion of both interfacial velocities falls on a straight line in
the logarithmic plot of Fig. 3(b). This shows that it obeys
an exponential law,

v,»j(t)zexp(—t/f,-j) , j=01,12, (8)
with a decay time 7;;.

This exponential law can also be proved by a simple
general argument: Consider only one interface moving in
an external field. The interface position is denoted by X.
For t — o the interface will approach its equilibrium po-
sition at X=X,. The two maxima of the function
f(g,x,) are then of equal height. For X+#X, the
difference A in the height of the two peaks is a linear
function of X —X if X —X, is small. Now consider an in-
terface without external field with f(g,X) being the cor-
responding free energy. In this situation, steady-state
motion with a steady-state velocity v (X ) is possible. For
small 4, it is known [8] that v, is proportional to A which
yields v (X )= —c(X —X,), where ¢ >0 is a constant. We
now assume that the external field is weak such that we
can identify the steady-state velocity v, with the actual
interface velocity v=dXx /dt. By solving the resulting
differential equation dX/dt=—c(X—X,) it turns out
that the velocity changes exponentially in time ¢ with a
decay constant 7=1/c.

In our case we have two decoupled interfaces for inter-
mediate times which both decay exponentially with
different decay times 7, resp. 7, [see the different slopes
in Fig. 3(b)]. Consequently the width of the metastable
layer is a superposition of two exponentials for intermedi-
ate times.

Finally there is third time regime for ¢ R 4.2, where the
velocities show a very abrupt change [see Fig. 3(a)].
Physically this interesting phenomenon occurs when the
former decoupled 01 and 12 interfaces no longer exhibit
independent motion but ‘“fuse” into a single interface of
microscopic thickness. The same abrupt change was
detected in run B where the gravity was stronger showing
that the phenomenon is quite general.

For the third parameter combination (run C), the form
of f ((2; we chose is given in Fig. 4(a). The coupling
strength « is taken to be 1. For zero field there is now a
steady-state solution for the interface, and no splitting in-
stability occurs. In this case the interface initially moves
with a weakly time-dependent velocity vg,(t), which is
close to the associated steady-state velocity. The velocity
v (1) then decreases, and the interfacial profile relaxes to
its equilibrium value in the external field. The corre-
sponding profiles g (x,t) are shown in Fig. 4(b). For the
sake of completeness we have also included the data for
w (¢) of run C in Fig. 2 (dotted line). In this run w(#) de-
creases monotonically towards its microscopic equilibri-
um value. This is due to the fact the width of the initial
profiles was chosen to be relatively high. Following our
general argument, the velocity of the 02 interface decays
exponentially with time for large times.
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FIG. 4. Same as Fig. 1, but now for run C. (a) Form of
— f(g,x) versus q for different x. ax is taken to be ax =2.4n,
n=0,1,2,3,4,5. The uppermost curve is —f'°(g). As in Fig.
1(a), the middle phase 1 always remains metastable. (b) Order-
parameter profiles g (x,?) versus x starting from an arbitrary ini-
tial profile g(x,0) (left curve) in an external field. The scaled
times for which g (x,?) is shown are from left to right  =0.04n,
where n =0,7,15,23,27,. ...

IV. CONCLUSIONS

Since our Ginzburg-Landau model is constructed in a
general way, the phenomenon of blocking of metastable
phase formation may occur in quite a large number of
different real physical systems. We thus conclude with
some remarks on realizations of the nonmonotonic
behavior of w(?) in real physical situations and on possi-
ble experimental verifications.

One closely related phenomenon is surface melting,
where the phases O, 1, and 2 are the gas, liquid, and solid
phase, respectively [9]. A minor difference here is that
the intermediate phase 1 can also be a stable bulk phase.
In surface melting in a gravitational field the equilibrium
profile does not exhibit complete wetting of the solid but
a liquid layer with finite thickness [10,11]. The dynamics
of surface melting can also be described in a Ginzburg-
Landau model as in this paper [12]. To see the effect of
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the gravitational field, one can perform time-resolved
scattering experiments on the solid-gas interface.

Another possible realization is in the growth of meta-
stable phases of liquid crystals [13—-15] in a centrifuge.
There are different setups and the growth rates are slow
enough to make an experimental resolution of the time
scales.

At a growing solid-liquid interface an interfacial layer
that may be related to a manifestation of a metastable
phase was observed for ice [16], salol [17], and cyclohex-
ane [18], by Bilgram and coworkers. If one performs
these experiments in a gravitational field, a change in the
layer thickness as a function of time should be detectable.

It may be difficult to resolve the time scale of the grow-
ing and shrinking of the metastable phase experimentally.
Colloidal suspensions in a gravitational field may be more
accessible experimentally since their dynamics are much
slower. Colloids show different stable and metastable
phases [19] and their sedimentation dynamics can be fol-
lowed by depolarized light scattering [20]. The equilibri-
um density profiles of a colloidal suspension in a gravita-
tional field have been extensively studied theoretically
[21,22], also at two-phase coexistence, and it would be in-
teresting to consider the dynamics of three phases near
coexistence as well. The sedimentation dynamics of a

colloidal suspension may exhibit unusual mesoscopic wet-
ting layers of a metastable phase at intermediate time
scales.

If the external field is a wall, different metastable crys-
talline phases which first grow and then disappear have
been detected in the context of charge-stabilized colloidal
suspensions [23]. It has yet to be checked whether this
phenomenon is related to that proposed in the paper.

As a final comment, whereas there are a number of
possible experimental realizations, it is very difficult to do
a microscopic nonequilibrium computer simulation on
the dynamics of interfacial motion. This is mainly due to
the small system size accessible in a computer simula-
tions.
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