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Density Distribution in a Hard-Sphere Crystal.
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PACS. 61.50 ~ Crystalline state (inc. molecular motions in solids).
PACS. 0520 - Statistical mechanics,
PACS. 61.20J - Computer simulation of static and dynamic behaviour.

Abstract. — We performed extensive Monte Carlo sitmulations of a hard-sphere f.c.c. crystal near
the melting transition in order to examine the validity of the widely used Gaussian ansatz for the
density distribution in solids. Anisotropie deviations in the shape of the density distribution from
the Gaussian form are found to be of the order of 10%. Popular liquid-based density functional
approximations are shown to fail in predicting the magnitude and the qualitative features of the
anisotropy in the erystalline density distributions.

Computer simulations[1] have revealed that the hard-sphere fluid freezes into a
dense-packed crystal which is stabilized only by entropy and is thus entirely anharmoniec.
This phase transition occurs with coexisting densities g;¢° = 0.944 and 2,0 = 1.04, with ¢
denoting the hard-sphere diameter. In the current density functional theory of the freezing of
simple liquids with a strongly repulsive core potential, hard spheres are normally employed
as a suitable reference system., The short-range order, governed by the repulsive core, is
thereby carried over to the solid phase and freezing is viewed as a condensation of density
waves (see [2] for a recent review). In this variational approach, the free energy is expressed
as a funetional of the single-particle density which becomes minimal for the equilibrium
distribution o(r). In the solid phase, the lattice-periodic (r) also reflects the anisotropie point
group symmetry of the erystal. However, in practical calculations, the density distribution is
often taken to be a superposition of isotropic Gaussians centred at the lattice sites {R},

€O = (2)"S expl-atr - R, M
R

where « is a variational parameter for the width of the peaks.

In this letter, we examine the validity of the ansatz (1) for a hard-sphere crystal near
melting where deviations from the Gaussian approximation should be most pronounced. For
this purpose, we present Monte Carlo (MC) results for density profiles in {1001, [110] and
{11171 directions from an f.c.c. lattice position. The MC profiles are then compared with those
obtained from density functional theory within the weighted-density approximation
(WDA)[3] and its simplified version (MWDA) [4], in particular.
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Gaussian behavicur.
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Fig. 1. - Density distribution near a lattice site of a hard-sphere solid with mean density g, = 1.0409572
calenlated by Monte Carle simulation. In a) o(r)rZ is shown along the three directions indicated i the
inset: {1007 (solid line), [110] {dashed line), [111] (dotted line}. In b) a Gaussian has been subtracted from:.
the ulcuti'ves in a). The wiggles in the curves in b) are due to the statistieal error of the' _
simulation :
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fig. 2 where ¢(r}r* is shown which is the integrand of the second moment of an isotropice
density distribution. While p(r) decreases, this quantity is spread out in the interstitial region
and thus contributes significantly to L.

To summarize: we calculated and discussed the density distribution in 2 hard-sphere solid
near the melting point. The global form of the density distribution was found to be quite close
to a Gaussian. However, the tails of the distribution show a significant anisotropy and
non-Gaussian behaviour., The liquid-state-based density funetional approximations such as
WDA and MWDA predict the anisotropic features of the single-particle density distribution
incorrectly.

We conclude with two eomments: 1) it would be instructive to check the Monte Carlo
predictions experimentally with real hard spheres like probes. As a suitable material we
suggest an index-matched nearly monodisperse sterically stabilized colloidal suspension
where the interparticle interactions are completely governed by excluded-volume
effects [13]. By using an external field produced by different laser beams one could in
principle forece the fluid suspension to freeze into a pure single fe.e. crystal. After
compressing the erystal and removing the stabilizing field, the real-space particle density
may be examined by light microscopy. 2) The technique of free minimization is also applicable
to other physically interesting situations such as solids in contact with walls, solid-liquid
interfaces and surface melting, where effects due to anisotropy are presumably of minor
importance. This method has already been applied to study strongly inhomogeneous density
profiles of hard-sphere liquid mixtures near 3 rigid wall within a novel hybridized form of the
weighted-density approximation [14],
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