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A simple dynamical criterion for crystallization of a colloidal fluid which undergoes Brownian motion
is proposed, similar in spirit to the classic Lindemann melting rule. It states that the ratio of the long-
time and short-time self-diffusion coefficients is a universal nuimber very close to 0.1 along the freezing
line. This phenomenological crystallization rule is confirmed both by Brownian dynamics simulations of
a Yukawa liquid and by forced Rayleigh scattering experiments on charge-stabilized colloidal suspen-

sions.
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The crystallization of a liquid into a regular crystal is a
classic example of a first-order phase transition with
spontaneous breaking of the continuous translational
symmetry of the homogeneous liquid. Since the last cen-
tury, phenomenological and molecular aspects of this fas-
cinating and important phase transformation have been
studied and, during the past decade, new experimental
and theoretical techniques have greatly advanced our un-
derstanding of the freezing transition [1]. Well-
characterized colloidal suspensions of nearly mono-
disperse spherical macroparticles are excellent represen-
tatives of simple liquids on a mesoscopic length scale
which also exhibit a crystallization transition [2]. They
permit an investigation by optical methods which give in-
sight into details of freezing on an interparticle length
scale [3]. Furthermore, density functional theories were
developed which describe freezing as a condensation of
liquid density modes providing a microscopic theory for
freezing of hard-sphere-like systems [4].

Despite these recent advances there is still no complete
“ab initio” theory of freezing in three dimensions which
works for arbitrary interparticle potentials of a one-
component liquid. However, there are two important
empirical rules of melting and freezing. The first phe-
nomenological criterion was put forward as early as 1910
by Lindemann [5]. It states that the ratio L of the root-
mean-square displacement and the average interparticle
distance at the melting line of the solid has a value of
roughly 0.15. The second criterion was formulated in
1969 by Hansen and Verlet [6]. For a Lennard-Jones
system, they found that the first maximum of the liquid
structure factor S (k) has a constant amplitude of =2.85
along the freezing line. Both simple criteria were tested
and found to hold for different interparticle interactions
and are, in this sense, universal; especially the static
structure factor criterion was strongly confirmed by
scattering experiments on real liquids. Thus these cri-
teria are very helpful in locating approximately the freez-
ing and melting lines for a given system without doing
any free-energy calculation. In particular, both rules
(and also some generalizations of them [7]) are based on
static properties, i.e., they are independent of the dynam-
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ics of the system.

In this Letter, we report a third phenomenological cri-
terion for freezing in colloidal suspensions which is of
dynamical origin. The motion of a colloidal particle em-
bedded in a bath of solvent is characterized by two
different self-diffusion constants. On a time scale that is
short compared to a time 7, which is a macroparticle
needs to move over its own radius R, but large compared
to that of microscopic solvent kicks, the macroparticle
motion is diffusive with a short-time self-diffusion
coefficient Dg. In a dilute suspension of spherical col-
loidal particles, Dg is given by the Stokes-Einstein value
Dy, i.e., Ds =Do=kgT/6nnR, where T is the temperature
and n the viscosity of the solvent. This relation is actual-
ly only valid for highly charged, salt-free colloidal liquids
where freezing occurs even at very low packing fractions
of the macroparticles; in dense sterically stabilized or
strongly screened charged colloids, however, Dg is also
strongly affected by solvent-mediated hydrodynamic in-
teractions. There is a second self-diffusion coefficient,
D;, for times long compared to 7,,, which can be defined
as

Dy = lim —[r(1) —r(0)12, m
1— o0 6t

where r(z) is a time-dependent trajectory of a colloidal
particle. In general, due to direct interparticle interac-
tions, Dy is smaller than Dg. In the following we give
evidence that the ratio D;/Ds provides a suitable quanti-
ty for a dynamical freezing rule: D;/Ds equals a fixed
universal value of =0.98 along the freezing line of a col-
loidal suspension. This constitutes a dynamical analog to
the usual (static) Lindemann criterion.

Evidence for this dynamical rule is given by extensive
Brownian dynamics computer simulations along the
freezing line of a liquid interacting via a pairwise Yu-
kawa potential which is a reasonable simple model for a
charged colloidal suspension [3]. Furthermore we present
systematic measurements of the self-diffusion coefficient
across the fluid-solid phase transition of a dilute charged
colloidal fluid, using the method of forced Rayleigh
scattering, which also strongly confirm the dynamical
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freezing rule for real colloidal suspensions.

As regards the simulated part, we take /N =500 parti-
cles in a periodically repeated cubic box (whose volume ¥V
is governed by the particle concentration cp =N/V) and
integrate the stochastic Langevin equations of motion for
the particle positions {r;(t), i=1,...,N} with a finite
time step Ar. Neglecting any hydrodynamic interactions,
we use the finite difference algorithm [8]

R A =r O+ ELE (A anp+ L Q)
0
where (Ar)g is a random displacement due to solvent col-
lisions which is sampled from a Gaussian distribution
with zero mean and variance 6DoAt. Furthermore, F;(¢)
is the total interparticle force on particle i derived from
the Yukawa potential V(r) =Voexpl—x(r —2R)1/r. As
a function of the inverse screening length «, the Yukawa
potential exhibits quite different shapes: For x=0, the
soft interaction of a one-component plasma (OCP) is
recovered whereas for xk— oo the interaction equals a
hard-sphere (HS) potential. Simulations were done for
six different values of « along the freezing line including
the two extreme cases of the OCP and HS. The OCP
freezes isochoricall;l if the dimensionless coupling param-
eter T'=(4ncp/3)'3Vo/kgT equals 178 [9], whereas the
hard-sphere liquid is characterized solely by its packing
fraction ¢ =4mcpR>/3 and shows a strongly first-order
crystallization transition at ¢ =0.494 [10]. The freezing
line of a Yukawa liquid was calculated recently for four
different values of x by Meijer and Frenkel [11]. Using
these data for the freezing line, the long-time self-
diffusion coefficient D; was calculated with Einstein’s for-
mula (1) for finite times and extrapolated to infinite time.
It was carefully checked that the time step Atr of the
Brownian dynamics simulations was small enough such
that the results were independent on a further reduction
of At which is particularly important for hard spheres
[12]. Results for the ratio D; /Do are given in Table L.
For comparison, we have also shown the corresponding

data for the Lindemann parameter L and the first max-
imum of the liquid structure factor, S(k,,). As the shape
of the potential varies from soft to hard repulsions, the
ratio D; /Dy remains practically constant and has a value
of 0.098. This demonstrates that it is a suitable universal
quantity for a general freezing rule. The Lindemann pa-
rameter L, on the other hand, has much larger variations
(of about 30%) whereas the Hansen-Verlet criterion is
fulfilled extremely well.

Experimentail values of D; were determined by forced
Rayleigh scattering (FRS) [13] which measures the self-
diffusional decay of an absorption grid produced by a UV
interference pattern in a suspension containing small
amounts of UV sensitized, but otherwise equal, particles
[14]. We used commercial particles (LOT 2011M9R,
Seradyn, In. USA) of titrated charge number Z;
=920 = 20 and of hydrodynamic radius R =50 nm [15].
The dyed particles were carefully examined to have equal
radius and surface charge number to the undyed ones.
The hydrodynamic radius R was obtained from the
Stokes-Einstein relation using dynamical light scattering
data for the self-diffusion constant D§ in a highly diluted
(¢=0.0001) and practically noninteracting sample with
an excess salt concentration ¢, =10"3 mol/l. In this
noninteracting sample, all self-diffusion coefficients Dg,
Ds, and D; are equal. The actual measurements were
done for interacting, but still diluted samples
(¢ <0.004), where we may safely assume that hydro-
dynamic interactions enter into the calculation of Dgs via
Ds=Do(1 —1.73¢) [3]. Therefore, for all our measure-
ments, Dg is very well approximated by D§. The suspen-
sions were prepared by the recently reported method of
continuous deionization [16] which allows fast and repro-
ducible access to ordered colloidal systems at low volume
fraction and practically no excess salt. This has the ad-
vantage that self-diffusion measurements are even feasi-
ble in the formerly inaccessible range of suspension pa-
rameters where crystallization occurs for such low pack-
ing fractions while hydrodynamic interactions are absent.

TABLE I. Comparison of the Lindemann, Hansen-Verlet, and the dynamical rule for freez-
ing of a Yukawa system. The Lindemann parameter L of the coexisting solid, the value of the
first maximum in the liquid structure factor, S(k), and the ratio of the long- and short-time
diffusion coefficients, Dy/Do, are shown for six different points on the freezing line of a Yukawa
liquid including OCP and HS. The freezing line data for the Yukawa system are characterized

by the average particle distance a =cp '/

measured in units of 1/x and a scaled temperature

T* =kgTaexpla—2xR)/xVo [11]. With increasing a, the repulsion becomes steeper. The
number in parentheses gives the error of the last digit. Data for the Lindemann parameter L
are from Refs. [24] (OCP), [11] (Yukawa), and [25] (HS).

System Freezing line data L S (km) D./Do

ocCp =178 0.186(6) 2.82(3) 0.097(3)
Yukawa a=2.95T*=0.079 0.185(8) 2.82(3) 0.099(3)
Yukawa a=3.87,T*=0.116 0.188(8) 2.84(3) 0.097(3)
Yukawa a=5.39,T* =0.200 0.164(5) 2.82(3) 0.100(3)
Yukawa a=6.87,T* =0.286 0.150(4) 2.83(3) 0.100(3)

HS ¢=0.494 0.133(2) 2.85(3) 0.099(3)
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Another advantage of our experimental technique com-
pared to usual dynamical light scattering is that FRS is
insensitive to multiple scattering.

The process of preparation leaves the suspension in a
metastable fluid state, which crystallizes if the concentra-
tion of excess salt NaCl, ¢, is low and the particle con-
centration cp is high enough. To scan the phase diagram
several experimental runs both at constant volume frac-
tion ¢ and at constant ¢; were performed. All the FRS
data were measured in the fluid state, which was either
an equilibrium fluid or a metastable shear molten fluid.
Care was taken in the latter case that measurements were
completed before significant crystallization had occurred
such that the data were not affected by the much slower
diffusion in the solid phase [13]. Figure 1 shows a ¢-xR
diagram of our results; x =le2(cpZ s+ 2¢5)/ o, kpT1'?
being the inverse Debye-Hiickel screening length where
e» =78 is the dielectric constant of water at room temper-
ature 7 =295 K and e the elementary charge. The re-
sults for several experimental runs are shown in compar-
ison with the phase boundaries of our system (solid lines)
which were determined independently by static light
scattering and torsional resonance detection [17]. We
only present the coordinates of samples with D./Ds
=(0.098 =0.010 and further discriminate between those
showing only deviations on the order of the experimental
error (D;/Ds=0.098 +0.005) (solid circles) and those
showing higher (0.108 20.005) (circles with dots) or
lower values (0.088 £0.005) (circles with crosses) of
D;/Ds. It can be noticed that irrespective of the stability
of the fluid phase D;/Ds decreases smoothly across the
phase boundary. As is clearly demonstrated, within the
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FIG. 1. Phase diagram of a suspension of charged particles

in terms of their volume fraction ¢ (respectively their concen-
tration cp) and the dimensionless Debye-Hiickel screening pa-
rameter kR. The solid curves represent the freezing and melt-
ing lines. Symbols show the coordinates of samples with Dr/Ds
fulfilling the following criteria: @®: 0.093 < D.;/Ds <0.103; ®:
0.083 < D;/Ds <0.093; ®: 0.103 < D;/Ds <0.113. The width
of these intervals was set by the experimental error in D/Ds of
5%.

experimental errors of 5% in Dy, 5% in ¢; at micromolar
concentrations, and less than 2% in the particle concen-
tration, the coexistence region coincides with the region
of D;/Ds =0.098 £ 0.005.

In conclusion, computer simulations on the Yukawa
model and experiments on real colloidal suspensions both
indicate that the ratio of short- and long-time self-
diffusion constants has a universal value of = 0.098 on
the freezing line. This universality of a dynamical quan-
tity for Brownian systems is surprising, since dynamical
quantities usually depend much more sensitively on de-
tails of the interparticle interaction than their static coun-
terparts in terms of which the Lindemann and the
Hansen-Verlet melting rules are defined. Although the
ratio D;/Ds is sensitive even to small variations in the
liquid density near the freezing lines, its value along the
freezing line is remarkably universal. It also does not de-
pend on the lattice structure of the coexisting crystal
which is bee for soft and fcc for hard repulsions.

It is also instructive to compare the self-diffusive be-
havior of colloidal liquids with that of atomic liquids
along the freezing line. The marked difference to
Brownian dynamics is that now the particle mass M
enters in the equations of motion and sets the time scale.
Since the short-time dynamics is ballistic, the short-time
diffusion coefficient is zero and a simple scale for D, is
missing. For molecular dynamics (MD), the most natu-
ral scale for D, is D*=cp *(kgT/M) "% another possi-
ble scale uses the state-dependent Einstein frequency wg
of a corresponding fcc crystal [18]1 D**=cp Ywg/2x.
We have also performed MD simulations for the same
states as given in Table I. As a result, the ratio D /D* is
rather constant [0.027(2)] for the OCP [19] and
moderately steep Yukawa potentials but decreases from
strong repulsive potentials to 0.013(4) [20] for HS. On
the other hand, D;/D** is 0.0084(3) for the OCP and in-
creases for increasing steepness of the repulsion; it is
0.0106(4) for the fourth Yukawa system (@ =6.87) and
diverges for the completely anharmonic HS system. Con-
sequently, none of the two scales can be used to define a
dynamical freezing criterion for MD which includes both
extreme soft and hard repulsions. It is only in the case of
Brownian dynamics where the short-time diffusion sets a
suitable scale for the long-time diffusion that a general
dynamical freezing rule holds. So, contrary to the static
criteria, the dynamical criterion cannot be extended to
atomic systems governed by reversible dynamics.

We end with three remarks on the stability of the
dynamical freezing criterion with respect to several
features important for colloidal suspensions: First, in
dense colloidal suspensions, the dynamics (including both
Ds and D;) are strongly affected by hydrodynamic in-
teractions. These interactions could be safely ignored for
our experimental system and were also neglected in the
Brownian dynamics (BD) simulations. Medina-Noyola
[21] suggested the scaling D, =DsDf/Do where Df is the
long-time self-diffusion coefficient for a system without
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hydrodynamic interactions. This was checked and con-
firmed in recent experiments of dense colloidal liquids
[22]. Thus the ratio D;/Ds is universal also with regard
to hydrodynamic interactions. In one sample of Ref.
[22], Dy /D¢ was found to be significantly lower than 0.1
at freezing, but a rescaling with Ds/Dg again leads to a
value of D;/Ds that is compatible with our prediction of
=~0.1 (within the experimental error of Ref. [22]).
Second, real colloids have a small intrinsic polydispersity
in their size and surface charge. In order to check the
dependence of D;/D¢y on polydispersity we have per-
formed BD simulations with a polydisperse Yukawa mod-
el. We assumed a constant surface charge density, cou-
pling size and surface charge polydispersities, and also in-
cluded different scattering amplitudes of big and small
particles. For an effective charge polydispersity < 10%
we have not seen a systematic deviation from 0.1 for
Dy /Dy along the freezing line. This is consistent with our
experimental findings, as our particles show an intrinsic
size polydispersity of about 10% [15]. Thus the dynami-
cal Lindemann criterion is also robust against small in-
trinsic polydispersity. Finally, our experimental results
also indicate that further details in colloidal suspensions,
like the van der Waals attraction, effective many-body
forces between the macroions induced by nonlinear coun-
terion screening [23], and corrections due to nonspherical
bodies, which we ignored in the simple picture used in the
BD simulations, also do not have any strong influence on
D;/Dgs at freezing.

Direct consequences of the dynamical Lindemann cri-
terion are twofold: First, it gives a theoretical insight into
the self-diffusional behavior at melting, proving that the
behavior is universal. It also couples dynamical quanti-
ties to the free energies which determine the coexistence
lines. This demonstrates a dynamical self-similarity of
the freezing process. Second, for a real colloidal suspen-
sion, it allows a determination of the liquid-solid coex-
istence line with a single self-diffusion measurement, and
has the advantage of a robust rule of thumb in estimating
the coexistence lines in a simple yet accurate manner.
This is of prime importance for systems allowing no
direct optical access to their phase diagram, e.g., micelles
or other very small particles.
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