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A new “ab initio” method is presented which is designed to simulate highly asymmetric 
systems of charged particles such as micellar solutions and charge-stabilized colloidal 
suspensions. The hybrid description considers the macroion degrees of freedom explicitly, 
while the microscopic counterions are treated within the framework of density functional 
theory. The counterion density profile is treated as a dynamical variable which is 
coupled to the macroion positions; the corresponding equation of motions are derived from a 
Lagrangian which contains a fictitious kinetic energy term associated with the 
inhomogeneous counterion density, with a fictitious mass chosen so that the counterions stay 
as close as possible to the surface of lowest free energy (adiabatic condition). The 
discontinuous behavior of the counterion density profile at the macroion surfaces is suppressed 
by the use of a classical pseudopotential scheme without spoiling the rapid variation of 
the counter-ion density profile outside the macroion cores. The ab initio method is implemented 
in Molecular and Brownian Dynamics simulations of concentrated colloidal suspensions, 
and the results are compared to the predictions of much simpler simulations based on the 
pairwise additive effective Derjaguin-Landau-Verwey-Overbeek (DLVO) potential 
between macroions. The density profiles calculated from the DLVO model differ considerably 
from the predictions of the ab initio simulations, but the macroion pair structures are in 
reasonable agreement. Recent “improvements” of the standard DLVO theory are found to 
overestimate or underestimate the pair structure considerably. The density functional 
formalism may be used to derive systematic many-body corrections to the effective DLVO 
pair potential. The extension of the ab initio method to treat colloidal suspensions in 
the presence of added salt is briefly sketched. 

I. INTRODUCTION 

Charge-stabilized colloidal suspensions represent a se- 
vere challenge to a statistical mechanics description of 
their structure and dynamics due to the large asymmetry in 
size, mass, and charge between the mesoscopic polyions 
(or macroions) and the microscopic coions and counteri- 
ons, not to speak of the molecules making up the suspend- 
ing polar liquid (or “solvent”). The latter is almost invari- 
ably treated as a continuum, which is characterized by a 
macroscopic dielectric constant E, reducing the electro- 
static forces between ions, and which induces hydrody- 
namic interactions between the moving colloidal particles. 
These velocity-dependent forces do not affect the static 
equilibrium properties of the suspension, so that in the 
“primitive model” of colloidal suspensions, the dielectric 
constant E is the only manifestation of the solvent. This 
reduction of the initial problem appears to be reasonable as 
long as the size of the solvent molecules is small compared 
to that of the macroions and to the Debye screening length 
of the microscopic ions. 

The highly asymmetric primitive model has been the 
object of intense theoretical investigation for nearly 50 
years. A further reduction of the initial many-component 
system may be achieved by taking advantage of the large 
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asymmetry to eliminate the degrees of freedom of the mi- 
croscopic ions, and derive effective interactions between 
“dressed” macroions, within the framework of the adia- 
batic approximation. This program may be carried out ex- 
plicitly in the limit of low macroion concentration, where it 
leads to the pairwise additive screened Coulomb interac- 
tion between the electric double layers associated with the 
dressed macroions- derived by Derjaguin et al. (DLVO po- 
tential).’ This potential, which also includes the long- 
range van der Waals interactions between colloidal parti- 
cles, has been widely used in theoretical calculations of the 
pair structure and of the phase diagram of charge- 
stabilized colloidal suspensions,2 and in the interpretation 
of light and neutron scattering data of such dispersions, or 
of charged micellar solutions;3 the surface charge carried 
by the macroion is often used to fit the experimental data 
to theoretical calculations of the structure factor based on 
the DLVO potential. 

More recently, several attempts have been made to 
treat macroions and microscopic ions in the primitive 
model on an equal footing, using the multicomponent ver- 
sions of the integral equations for the pair structure famil- 
iar from the theory of liquids,4 or resorting to Monte Carlo 
(MC) or molecular dynamics (MD) computer simula- 
tions.5 If the microscopic ions are assumed to be point ions 
and the “mean spherical” approximation (MSA) closure is 
used for the latter, the primitive model may again be re- 
duced to a one-component problem with effective 
(screened) interactions between the dressed macroions, In 
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the low-concentration (Debye-Hiickel) limit, the DLVO 
potential is recovered,6 while at higher concentration, the 
effective macroion charge must be renormalized with re- 
spect to its DebyeHtickel value.‘-’ 

Analytic reduction to pairwise additive effective poten- 
tials is only possible, for point coions and counterions, 
within the MSA. If more accurate closures such as the 
HNC equation are used, the resulting coupled integral 
equations must be solved numerically to obtain partial pair 
distribution functions. In practice, numerical solutions 
have only been obtained for moderate macroion charges 
(2 less than loo), typical of micellar solutions.“” [An 
exception is the hybrid hypernetted chain (HNC)-MSA 
theory of Ref. 9, where higher charge asymmetries could 
be addressed.] A similar restriction holds for computer 
simulations; a recent, extensive MD study was carried out 
for a charge asymmetry 2O:l (Ref. 1 1 ), but it seems un- 
likely that significantly higher charge and size ratios may 
be tackled successfully in the near future. 

In this paper, we present an alternative to “brute 
force” simulations by combining MD for the macroions 
with a density functional description of the microscopic 
ions. Rather than treating the degrees of freedom of the 
latter explicitly, we consider the inhomogeneous one- 
particle densities associated with each species in the instan- 
taneous field of the macroions. Due to the large mass ratio, 
these densities follow adiabatically the motions of the mac- 
roions, and the forces acting between the latter are, in turn, 
determined by the inhomogeneous coion and counterion 
densities. In practice, a Lagrangian is used which couples 
the macroion degrees of freedom and the suitably param- 
etrized densities; the resulting equations of motion yield 
the physical dynamics of the macroions, while an adequate 
choice of the fictitious mass associated with the densities 
ensures that the microscopic ions remain very near the 
surface of lowest free energy. Although the full implemen- 
tation of this density functional strategy automatically ac- 
counts for nonlinear screening and more-than-two-body in- 
teractions between macroions, it will be shown to lead back 
to the effective DLVO potential under well-defined condi- 
tions and to allow the derivation of systematic corrections 
to the approximation of pairwise additivity. 

The method presented in this paper may be looked 
upon as a purely classical counterpart of the ab initio 
method developed by Car and Parrinello12 to treat valence 
electron states in covalent or metallic materials,13 the 
coions and counter-ions, which obey classical statistical me- 
chanics, here playing the role of the degenerate valence 
electrons. In fact, large parts of a Car-Parrinello code may 
be carried over to construct the density functional code for 
colloidal suspensions. A preliminary account of parts of 
the present work has been published elsewhere.14 

II. THE PRIMITIVE MODEL OF CHARGE-STABILIZED 
COLLOIDS 

The basic model under consideration here is an exten- 
sion of the familiar primitive model of ionic solutions to 
highly asymmetric suspensions of ionized spherical colloi- 
dal particles in a polar liquid. As emphasized earlier, the 
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molecular nature of the latter is ignored and it manifests 
itself solely through its macroscopic properties-the dielec- 
tric constant E as far as static properties of the primitive 
model are concerned, and the viscosity 7, which deter- 
mines the friction coefficient {=~PT$ if dynamical prop- 
erties are to be examined. 

For clarity and convenience, we shall first restrict our- 
selves to perfectly dialized suspensions, i.e., the concentra- 
tion of added salt will be assumed to vanish; the generali- 
zation to the case where this concentration is finite will be 
examined in Sec. X. Under these conditions, the model is 
made up of two ionic species-the macroions of radius R, 
mass M, and charge Ze; and the counterions of radius r, 
mass m, and charge -qe, and we are interested in situa- 
tions where R/r>l, M/m>l, and Z/q>l. Because the 
Coulomb repulsion keeps the counterions apart, and since 
r<R, it is a reasonable approximation to neglect their size, 
i.e., to assume r=O (point counterions). In the absence of 
added salt, the Debye screening length and hence the width 
of the electric double layers around the macroions is gen- 
erally comparable to their size, so that the van der Waals 
interactions are masked effectively by the Coulomb inter- 
actions and may hence be safely neglected. Under these 
conditions, the primitive model pair potentials read 

I a, for r<2R 

o,,(r) = { Z2e2 
. for 

[ 6r ’ 
r>2R. 

I co, for r<R 

4&) = for r>R, 

22 4Jr) =c f 
where the indices m and c are for macroions and coun- 
terions, respectively. If n, and n., are the numbers of mac- 
roions and counterions per unit volume, global charge neu- 
trality requires that 

Znm=qnc. (4) 

For given values of Z, q, R, and E, the equilibrium prop- 
erties of the suspension depend on the temperature T and 
the number density n,, n, being determined by the con- 
straint (4). It is convenient to introduce the dimensionless 
variables v=4rn,R3/3 (packing fraction of the macro- 
ions) and lY=q21/a,, where I=e2/ekBT is the Bjerrum 
length (1=7.2 A in water at room temperature) and a, 
= (3/47rn,) 1’3 is the ion-sphere radius of the counterions. 
The parameter I? is a direct measure of the intensity of 
Coulomb coupling between counterions. The other impor- 
tant length in the problem is the Debye screening length 
associated with the counterions 

1 IX 

AD=G= - I 4s-nd2e2 * (5) 

One of two strategies may now be followed in order to 
arrive at the main objective of a statistical theory of the 
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colloidal suspension, namely, the measurable properties of 
the mesoscopic fluid of colloidal particles such as the mac- 
roion pair structure,2’3 or the phase diagram.15 

The first strategy treats both ionic species on an equal 
footing by focusing on the three partial pair distribution 
functions g,,(r) , g,,(r), and g,,(r) . These may be calcu- 
lated either “exactly” from MC or MD simulations,” or 
approximately from numerical solutions of coupled inte- 
gral equations such as HNC, MSA, or hybrid clo- 
sures.*-i1*i6 This strategy has a drawback. For technical 
reasons, the simulations and the numerical solutions of the 
more accurate integral equations are limited to size and 
charge asymmetries that fall into the range of micellar so- 
lutions rather than colloidal suspensions. As already men- 
tioned earlier, the counterion component may be formally 
eliminated if their correlations and the macroionic corre- 
lations are treated within the linear MSA closure.698*g The 
resulting effective pair potential between macroions is of 
the DLVO form 

--Kg) 
, r>a~2R. 

In the low concentration (or Debye-Hiickel) limit, the 
DLVO expression for Z,, is recovered,6 namely’ 

zDLV0 = zexP(KDR) 
eff 

l+K$? . 
(7) 

Note that at higher concentrations, 2,; is enhanced above 
its DLVO limit (7) .*,’ The effective pair potential (6) may 
then be used in a one-component description of the colloi- 
dal suspension to calculate g,,(r) . 

The approach based on the MSA has several short- 
comings. The pairwise additivity can be seen to be a direct 
consequence of the linear character of the MSA closure 
which, for point counter-ions, breaks down as the concen- 
tration increases. The simplicity of the derivation of an 
effective pair potential between macroions is spoiled, as 
soon as finite size effects are included,8’g which is a neces- 
sity in the presence of added salt due to the Coulomb 
collapse of oppositely charged point ions. In fact, the ef- 
fective macroion charge Z,, in Eq. (6) is frequently used 
as an adjustable parameter in an analysis of experimental 
scattering data.3 

The alternative strategy, which will be pursued here, 
focusses on the inhomogeneous one-particle density pJr) 
of the counterions. Historically, the first attempt along 
these lines is the familiar Poisson-Boltzmann theory, 
which, in its linearized version, has led to the DLVO po- 
tential between macroions.’ At high concentrations, when 
the macroion structure exhibits strong short-range or even 
crystalline order, the Poisson-Boltzmann equation may be 
solved in a Wigner-Seitz cell to determine p,(r) around a 
single macroion. Such solutions have been used to deter- 
mine effective macroion charges in a DLVO potential.” 
Poisson-Boltzmann theory may be generalized to incorpo- 
rate correlation effects and to treat multicenter macroion 
geometries within the framework of the density functional 
theory of inhomogeneous liquids.‘8~‘g The density- 
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functional formulation will be presented in Sec. III, while 
practical implementations will be the subject of the remain- 
ing sections of this paper. 

III. A DENSITY-FUNCTIONAL FORMULATION 

If the macroion and counterion coordinates and mo- 
menta are denoted by {R,Pi} ( l<i<iV,) and {rj,pj} 
( 1 <&NJ, respectively, the total primitive model Hamil- 
tonian reads 

H=K,[IPi)l+K=[IPi)l+V,,C(RiJl 
+v,,[IRi),(rjIl+V,,[Irj)l, (8) 

where K,,, and Kc are the kinetic energies, while V,,, V,, 
and V,, are the potential energies, sums over all pairs of the 
interactions ( 1 )-( 3). Since M/m> 1, the time scales r, 
and TV associated with the two species differ by several 
orders of magnitude, so that partial averaging over the 
degrees of freedom’may be carried out for a given config- 
uration CR,) of the macroions, which provide an “exter- 
nal” field in which the counterions move (adiabatic ap- 
proximation). As shown’ in the Appendix, the effective 
Hamiltonian for the macroions reduces to 

H=Km[ (PiI I+ vm,[ (RI 1 +~b,(r> 1, (9) 
where 9 is the free energy of the inhomogeneous counter- 
ion fluid, a functional of the one-particle density p,(r), 
which depends parametrically on the macroion positions 
{Ri}.20 This functional is the sum of four termslg 

Fid=kBT 
s 

dr p,(r)M~~p,(r) I- 11, 

pext= s dr PC(r) vext[r,lRjl 1 

= ?J dr p,(r)u,,( jr---Rjl 1, 
j=l 

dr dr, p&)pJr’) 

lr-r’l ’ 

(11) 

(12) 

(13) 

In the “ideal” part ( 1 1 >, A, is the de Broglie thermal 
wavelength of the counterions, Fext describes the coupling 
of the latter to the macroions, while FCC stems from the 
Coulomb interaction between counterions (the precise sta- 
tus of this term is discussed in the Appendix). The last 
term in Eq. (10) is the nontrivial counterion correlation 
term, for which we adopt the local density approximation 
(LDA) 

~co,, = k,T s drp,(r)y~~~[T,p,(r)]. (14) 

In Eq. ( 14), \Ilg& denotes the reduced excess free energy 
per ion FeXC/NkBT of a homogeneous fluid of point ions in 
neutralizing, uniform background (the so-called “one- 
component plasma” or OCP21). Due to the scaling prop- 
erties of the Coulomb potential, ‘ug& depends only on the 
dimensionsless coupling constant I’ defined in Sec. II. The 
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theory. Fext and FCC in Eqs. (lo)-( 14) are linear and 
quadratic functionals of pJr> which yield constant and 
linear terms in the Euler equation. did and 3,,,,, on the 
other hand, may be expanded to quadratic order around 
the mean counterion density F= = n,, a valid procedure for 
weak inhomogeneities 

9id+9corrE9q=FO+ dr B[p,(r) -id 
s I 

+$p,(r) -iTI2 . 1 (19) 

The coefficients B and A may be calculated explicitly from 
Eqs. ( 11) and ( 14) using the Abe expansion (15) with the 
result 
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function f (I’) =Yg&[T,p,(r)] is well known, from dia- 
grammatic expansions at low I, and from extensive MC 
simulations at large I.21 In practice, under physical con- 
ditions relevant for concentrated colloidal suspensions, I 
remains less than 1, so that f(I) is given, to a high degree 
of accuracy, by the Abe expansion22 

\Y~~~(T,p,)=-lr3"--Sr3-5r3~31nr--1) 
fi 

+ouY, (15) 
where c=iIn 3+$-l=l.lOl 762 3*-e, and y is Euler’s 
constant; note that the leading term in Eq. ( 15) is just the 
familiar Debye-Hiickel contribution. 

So far the only approximation that has been made is 
the LDA for Fc,,,. This is justified as long as pJr) varies 
smoothly in space; more precisely, pJr) should vary little 
over a distance of the order of the mean spacing between 
counterions, i.e., / V In pJr) I < [p,(r)]“3. Under the weak 
screening conditions typical of salt-free suspensions, this 
condition is easily satisfied, except perhaps in the immedi- 
ate vicinity of the macroion surfaces, where the counteri- 
ons pile up due to the strong Coulomb attraction (“Stem 
layer”). Nonlocal corrections” to the LDA may then be 
necessary, but the difficulty will be overcome differently in 
the MD simulation described in Sets. VI-IX. 

For each macroion configuration, the equilibrium one- 
particle density p:O’[r,{RJ] is the solution to the varia- 
tional problem 

SF 

SPC 
=o (16) 

Pe=P(o)w c 
subject to the constraint of global charge neutrality 

B=kBT[ln(A3iQ -9 q31;/2+? ( iwi)q6/3 

-7rq613ij;ln[ $I(y)rn] 1, 

R+T( ;-i ($) 1’2q313%; (h+;), 

-1T46pan[ q21( ?)“‘1), 

where I is the Bjerrum length defined in Sec. II. 

I 
dr p,(r) =N,=tN, . (17) 

Once pc lo) has been determined, the force induced by the 
counterions acting on each macroion may be calculated 
directly according to the Hellmann-Feynman theorem 

~=-v~~~(Cp!~‘[r,{Rj] lk{Rj) 1 

For illustrative purposes, consider first the case of 
point macroions (R =O). Since the potentials u,,(r) and 
U,(Y) are then integrable, the equilibrium density 
pE[r,{RJ] may be obtained analytically from Eq. (16) by 
Fourier transformation. The solution is a linear superposi- 
tion of screened Coulomb (or Yukawa) orbitals 

pie’[r,(Ri)]= iii ~~exp(~~~~RiI), (22) 
I 

where 

4rq2e2 
K2=- 

eA * (23) 

=- 
s dr pAr,lRjl IVR+A Ir-Rjl 1 (18) 

for l<j<iV,. Note that in order to obtain the total force 
acting on macroion j, one must add the pairwise additive 
contribution due to the direct Coulomb interaction be- 
tween macroions (u,,) . 

If the contribution from Fc,, to Fs is neglected, A 
= k,T/Fo and K reduces to the DebyeHiickel expression 
K~ [Eq. (5)]. Inserting the result (22) into the Hellmann- 
Feynman expression ( 18)) one recovers an effective 
macroion-macroion pair potential: 

IV. DERIVATION OF THE DLVO POTENTIAL 
Z2e2 

UemffJY) =- Er exp( --KY), 

Solution of the general variational problem sketched 
above presents a formidable mathematical challenge due to 
the nonlinear nature of the resulting Euler equation. Before 
describing the numerical scheme which we have developed 
to solve the problem, it is important to show which further 
approximations have to be made within the present 
density-functional formulation in order to recover the stan- 
dard DLVO description, which is essentially a linearized 

which is the DLVO potential (6) for R=O. Note that 
counterion correlations renormalize K with respect to its 
DLVO value K~ but the correction is generally negligible, 
at least in the salt-free case under consideration here. 

A finite macroion radius R forces pL”‘[r,{RJ]=O for 
I r-Ri] < R. The finite R correction to the potential (24) 
is obtained most conveniently by adopting for pL”) the lin- 
ear superposition form (22), and imposing the following 

(20) 

(21) 
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constraint on the one-particle density around a macroion 
situated at the origin: 

s Id ‘R 
dr p,(r) =4. (25) 

This constraint is incorporated into the free energy func- 
tional by a Lagrange multiplier p. Determination of p fi- 
nally leads to the renormalized charge given by Eq. (7) 
(with K replacing K~); the equilibrium density pFLvo is 
given by Eq. (22), for I r --RiI > R, and Z replaced by 
ZpRLVO , 

N ZZY” 2 exp( -K/r-Ri] ) 
p~LVo[r,(R]l= C 7~ 

i=l Ir-Ril ’ 

]r-Ri] > R. (26) 

The enhancement of the macroion charge from Z to ZFvo 
is a direct consequence of the core condition (25) which 
expresses that the counterion charge outside the macroion 
core must exactly cancel the bare charge Z of the latter. 
The resulting effective macroion-macroion pair potential 
takes the DLVO form (6). 

Note that throughout the treatment of the finite size of 
the macroions, the overlap of Yukawa orbitals associated 
with different macroions has been neglected implicitly, so 
that the result only applies to dilute suspensions. 

The above considerations show that the DLVO poten- 
tial is contained as a special limiting case in the general 
density functional formulation of the preceding section, 
and also give some hints of how to go beyond the DLVO 
theory. The above derivation clearly establishes a link be- 
tween pairwise additivity of the effective forces between 
macroions and the quadratic nature of the approximate 
free energy functional ( 19). Terms beyond quadratic in the 
expansion of Fid +Fc,, would lead to more-than-two- 
body effective forces between macroions, so that the 
DLVO theory can, in principle, be improved systematically 
by adding these many-body forces, as shown in the follow- 
ing section. 

V. MANY-BODY FORCES BETWEEN MACROIONS 

The density functional framework will now be used in 
a systematic perturbation scheme to derive formal expres- 
sions for effective many-body interactions between 
“dressed” macroions. The reference free energy functional 
F. is chosen to be Eq. ( lo), with Fid+Fcorr replaced by 
their quadratic form (19) 

&==q+&t+&, (27) 

while the perturbation is 

kF’=sc^i~+F~~rr-CFq 5 (28) 

where A is an ordering parameter to be set equal to 1 at the 
end of the calculation. The equilibrium density which min- 
imizes F. is the DLVO density pyLVo(r( Ri) ) defined in 
Eq. (26), at least in the limit of low macroion concentra- 
tions. The density minimizing the full functional F=Fo 
+ilsc^’ is sought in the form of an expansion in powers of 
a, 

p(‘)[r (R.)] =pDLVo c 9 I c [r,(Ri]] + ?, ~npcntr9(Ri) I. 
(29) 

Substituting Eq. (29) into 3 and expanding Ss”I/Gp, in 
powers of A., one finds for the first-order term 
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p,i[r,lRii]=8l[r,[Ri~]-~ J dr’ exp(~~~,~r”) 

where 

Xh[r,lRil I, (30) 

/;i[r,{Ri] ] =-f 
I 
afpc DLVoIr,{&) I _ B 

JP 

--A[pf’LVo[r~lRl 1 -&I ] 

and 

(31) 

f(p)=p[ln(n~p)-l++~~~(T,p)l. (32) 

In first-order perturbation theory, one may now derive sys- 
tematically effective many-body interactions between mac- 
roions by taking expansion ( 19) off(p) to orders higher 
than quadratic in [p,(r) -DJ. The sum of all more-than- 
two-body terms leads to a potential energy between mac- 
roions of the form 

vtotal[(Ri)l= nz3 V’“‘[(RiJl (33) 

with 

n. 1 s 
dr anf tic) dp” [pPLVo(r,(Ri] I---P,l”. 

(34) 

This general procedure may be taken to higher order in the 
perturbation expansion (29), but the expressions become 
very cumbersome for practical purposes. In the following 
sections, it will be shown how the minimization of the full 
functional may be implemented numerically to compute 
the instantaneous effective forces between dressed macro- 
ions in an MD code. 

VI. DENSITY FUNCTIONAL AND MOLECULAR 
DYNAMICS 

In order to solve the variational problem of Eqs. (16) 
and (17) self-consistently and adiabatically, along the 
macroion trajectories, we follow the ideas of Car and Par- 
rinello12*‘3 and regard the counterion density p,(r), or, 
equivalently, its Fourier components pkc as dynamical 
variables coupled to the macroion degrees of freedom by 
the free energy functional 9. Classical equations of mo- 
tion for pJr) and the macroion degrees of freedom Ri are 
derived from the Lagrangian 
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NIV2 
2G;icI c R:+;mfJdr[p,(r~12 

j=l 

- j:j~,,( IRimRjl )-~([pAr)l;[Rjl)- (35) 

In Eq. (35), mf is a “fake” mass (in fact a mass times the 
fifth power of a length) associated with p,(r). If, in appro- 
priate units, mf is chosen much smaller than A4, the re- 
sulting p,[r,CRi31 is expected to stay close to the true adi- 
abatic pi”‘[r,{Rj}] which would follow, e.g., from a 
simulated annealing procedure for each macroion configu- 
ration CRi}. 

The coupled equations of motion derived from the La- 
grangian (35) are of the form 

Mi&= - c Viv,,( ] 
i#j 

69 
mfPJr)=-gpc0 

=-kkgrln[ 

Ri-Rjl) +FF, (36) 

G,(r) 1 -A&> -&(r) 
-~~~xZ%4T,p,(r) I. (37) 

In Eq. (36), E is the force on macroion i induced by the 
counterions, and given by Eq. ( 18). In Eq. (37), $,, and 
4, are the Coulomb potentials acting on a counter-ion at r, 
and due to the macroions and other counterions, 

4,&r) = g %A I r--R4 1 (38) 

&(r)=q I dr’ E, 

while x&C T,p,) =%&4T,p,) +p&W&/~p, 
In practice, p,(r) is parametrized by its expansion in 

Fourier components 

pJr) = T pk exp(z~-r), (40) 

where the sum is over all reciprocal lattice vectors k of the 
periodically repeated simulation box of volume V; con- 
versely, 

1 
Pkc=F 

s 
dr p,(r)exp( -&or). (41) 

V 

The resulting density in r space is defined on a cubic X3- 
dimensional grid. The finite difference versions of Eqs. 
(36) and (37) are solved iteratively by the standard Verlet 
algorithm,4’5 and efficient fast Fourier transform (FFT) 
techniques are used to commute back and forth between 
the r- and k-space representations of the counterion den- 
sity.13 The infinite range of the bare Coulomb interactions 
is taken care of by appropriate Ewald summation.5’23 

VII. A MACROION-COUNTERION PSEUDOPOTENTIAL 

The ab initio combination of density functional theory 
and MD sketched in the previous section raises a technical 

problem linked to the rapid variation of pc( r) in the vicin- 
ity of the macroion surfaces. Due to the combination of 
excluded volume effects for I r -Ri] <R and strong Cou- 
lomb attraction for I r-Ri] > R, the counterions pile up in 
the “Stern-layer” part of the electric double layers, where 
pJr> rises sharply above the mean counter-ion density PC. 
Hence a very large number of Fourier components pkc 
would be required to yield a sufficiently accurate represen- 
tation of pJr). 

To overcome this technical difficulty, we developed a 
pseudopotential scheme, similar to that used in the 
quantum-mechanical ion-electron problem, designed to 
suppress the discontinuous behavior of the local density 
pJr,CRJ) at th e macroion surfaces. The present, purely 
classical procedure involves two closely related steps. 

First, the macroion-counterion core repulsion is sup- 
pressed and the Coulomb attraction is smoothly extrapo- 
lated inside the macroion core, such that the true potential 
tmmc( r) in Eq. (2) is replaced by the “pseudopotential” 

Zqe2 
k(r) = ---y erf(r/R,), 

where R, is chosen to be -R/2. In other words, we allow 
the counterions to penetrate the macroion cores; this leads 
to an extra, unphysical, counterion charge inside the cores, 
which must be compensated by increasing the macroion 
charge from Ze to (Z+Z*)e. Since the total macroion 
charge, i.e., the sum of the renormalized surface charge 
plus the counterion charge of opposite sign inside the core, 
must, on the average, remain equal to the physical charge 
Ze, the mean counter-ion density P, has to be increased 
accordingly. It must be stressed that zy’ is not an adjustable 
parameter, but is uniquely determined as explained below. 

However, it is clear that the permeability of the mac- 
roions leads to unwanted fluctuations of the counter-ion 
charge density inside the cores, and hence of the apparent 
macroion charge, which will strongly affect the static and 
dynamical properties of the macroion fluid. Therefore, in a 
second step of the pseudopotential construction, these fluc- 
tuations are efficiently damped by simultaneously assigning 
a severe free energy handicap to the excess counterion 
charge. This is achieved by modifying the free energy func- 
tional for counterion densities exceeding a cut-off value 
pyt, so as to “stiffen” pJr) inside the cores. In practice, 
we added an arbitrary, positive free energy contribution 
f,,,( pc) to VI&( T,p) in Eq. ( 14), which increases rap- 
idly for counterion densities pc > pTt; the form chosen for 
f cut is 

10, when ~=(p~-p~~)/p~~<O 

fcut(pc)= 10.05 exp[ -&I, when x>O. (43) 

The whole pseudopotential procedure sketched above 
should result in a counterion density p,(r) which is 
smooth inside the macroion cores, but coincides with the 
physical density outside the cores. Under these conditions 
the construction is norm conserving. 
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The auxiliary parameters Z? and pr’ have to be de- 
termined self-consistently, for each thermodynamic state, 
before the corresponding MD run. In fact, these parame- 
ters are expected to depend on any particular macroion 
configuration {Ri}; their determination would hence re- 
quire, in principle, a large number of exploratory runs for 
each typical macroion configuration, a highly unpractical 
procedure. However, it is reasonable to assume that the 
optimum parameters p and prt are only weakly depen- 
dent on the configurations {Ri}. Hence we have chosen one 
typical configuration, in a highly simplified geometry, to 
determine p and pyt, and checked a posteriori that these 
values lead to negligible fluctuations of the effective mac- 
roion charges, as the ionic configurations evolve during a 
MD simulation. The geometry chosen is that of a single 
macroion in its spherical Wigner-Seitz cell, containing a 
total counterion charge which exactly cancels the macro- 
ion charge.17 This geometry is well adapted to highly sym- 
metric crystal configurations, but is also representative of 
dense fluid configurations characterized by crystal-like 
short-range order. 

The volume of the Wigner-Seitz cell centered on a 
macroion is equal to the volume per macroion urn= V/Nm 
= l/n,. The counterion density PC(r) inside the cell has 
spherical symmetry and its integral over the volume u, 
must equal Z/q; PC(r) is obtained numerically by solving 
the variational problem ( 16) with the simplified free en- 
ergy functional ( IO), where the coupling to the macroions 
Fext reduces to a single term, corresponding to the mac- 
roion at the center of the spherical Wigner-Seitz cell; the 
imposed boundary condition is dp,(r)/dr=O on the sur- 
face of the Wigner-Seitz sphere, i.e., for r=R,,= (3v,/ 
43~) *‘3. If, moreover, the correlation contribution ( 14) was 
neglected, the problem would reduce to the Poisson- 
Boltzmann problem considered by Alexander et al. l7 The 
parameters p”,“’ and p were then determined for the 
Wigner-Seitz geometry as follows: p,(r) was first calcu- 
lated outside the macroion core (R < Y < Rws), and p:’ 
was chosen equal to the value p,(r=R) at the surface of 
the impenetrable macroion. Next the penetrable ion ver- 
sion of the model, based on the pseudopotential (42), was 
solved after adding the contribution f,,,(p,) to the corre- 
lation part of the counterion free energy. p was varied 
until the total (effective) charge of the penetrable macro- 
ion matched the physical charge Ze of the impenetrable 
macroion. In view of the spherical symmetry and of Gauss’ 
theorem, these two counterion densities (corresponding to 
impenetrable and penetrable macroions, respectively) are 
exactly equal outside the cores. Whereas the former den- 
sity has a discontinuity when / r-Ril =R and drops to 
zero inside the cores, the latter remains smooth throughout 
the Wigner-Seitz cell. 

While it is clear that the two densities may differ for 
more general macroion configurations, we found that the 
parameters p:’ and p, determined within the Wigner- 
Seitz geometry, are in fact transferrable. A posteriori tests, 
carried out in the course of the MD simulations reported 
below, showed that the effective charge of the penetrable 
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FIG. 1. Counterion density profiles p,(r)R’ for one macroion with 
charge Z in its spherical Wigner-Seitz cell. The macroion packing frac- 
tion is ~7 =O. 1. The macroion surface is located at r/R = 1. The parameters 
are R =53 nm, T=300 K, l =78, and Z=500, 400, 300, and 200, the 
higher Z corresponding to the upper curve. 

macroions stays very close to the physical charge Ze, rel- 
ative derivations being systematically less than 1%. 

Figure 1 shows typical density profiles p,(r) in a 
spherical Wigner-Seitz cell; the stabilization mechanism 
associated with fcut ( p,) is seen to lead to a nearly constant 
counterion charge inside the macroion core. As expected, 
the steepness of the counterion density near r= R increases 
rapidly with increasing macroion charge Ze. The macroion 
charge increment p is plotted in Fig. 2 vs the physical 
charge Z for various packing fractions 7; p is seen to 
increase nonlinearity with Z. 

I. 
= 0.3 /’ ./ ,’ . / 4 

600 

l N 

O- 
100 200. 300 400 500 

charge Z 

FIG. 2. Self-consistently determined counterion inside excess charge Zy 
vs bare macroion charge Z for three different macroion packing fractions 
n=O.3 (dashed), q=O.2 (dotted), and r]=O.l (solid line). The other 
parameters are the same as in Fig. 1. 

Ltiwen, Hansen, and Madden: Counterion screening in suspensions 3281 

J. Chem. Phys., Vol. 98, No. 4, 15 February 1993 Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3282 Lawen, Hansen, and Madden: Counterion screening in suspensions 

TABLE I. Parameters for the three different runs A, B, and C. Bare charge Z, macroion packing fraction 7, number of macroions N,, additional charge 
F, and cut-off density &“’ from the pseudopotential construction, as well as the data for the screened Coulomb reference pairwise potentials-the 
effective charge Z$ for model (i) (i=a,b,c) and the corresponding Debye screening parameter K$)R (K;)=K~)). 

Run Z 7 N, z* PC 
C”t R3 Z$) 2:;’ Z$’ K$~‘R K~‘R 

A 200 0.1 31 66.6 11.6 259 296 194 0.90 0.88 
B 100 0.3 53 67.3 12.5 142 189 97.8 1.10 1.09 
c 300 0.08 16 126.3 21.2 404 462 284 0.98 0.96 

VIII. PRACTICAL IMPLEMENTATION 

Many of the practical aspects of the present ab initio 
simulations are similar to methods developed for Car- 
Parrinello codes simulating ion-electron systems13 and for 
the Thomas-Fermi version of such calculations.24 This 
paragraph reports some technical details and parameter 
values of our simulations. 

The “fake” mass associated with the counterion den- 
sity was chosen to be mf =8x lo-l4 R5 M; this value en- 
sured that the mean kinetic energy K, ,of the macroions 
exceeds the fake kinetic energy Kf of the counterion de- 
grees of freedom by a factor of 10-100. The dynamics of 
the macroions were implemented with a Nose thermo- 
stat,25 such that averages taken along the phase space tra- 
jectories are equivalent to canonical ensemble’averages at 
an imposed temperature z no such thermostat was used 
for the fake counterion degrees of freedom, which were 
thus governed by the usual microcanonical dynamics. Tak- 
ing as time unit ro= (MR2/k,T) 1’2, the time step At was 
chosen sufficiently small (At= 10-3ro) to ensure excellent 
conservation of the total energy of the system. 

sity profile was chosen to be a linear superposition of 
profiles derived from a Wigner-Seitz cell calculation and 
centered on RY The simulated annealing process was op- 
timized insofar as the fake kinetic energy of the counterion 
degrees of freedom was set to zero when the associated fake 
temperature was maximal. This minimization procedure 
turned out to be reasonably efficient, since only a few hun- 
dred time steps were necessary to achieve Kf/K,= lo-*. 
Next a backstep was performed, i.e., the macroions were 
moved back in time by -At/2 and the system was once 
more annealed in order to determine consistent fake start- 
ing velocities. Thereafter the usual MD algorithm was used 
to solve the coupled equations of motion (36) and (37) for 
the macroion and counterion degrees of freedom. The sys- 
tem was equilibrated, usually for about 3000 time steps, 
and thereafter statistics were gathered during lo4 time 
steps each of which took between 2 and 5 s of central 
processing unit (CPU) time on an IBM 3090. 

In order to avoid finite size crystallization effects, the 
number of macroions N, was not chosen equal to 2n3 or 
4n3 (with n an integer), corresponding to periodic simula- 
tion cells accomodating a body-centered-cubic (bee) or a 
face-centered-cubic ( fee) lattice, whenever the objective 
was the simulation of a fluid state of the macroions. The 
results reported below were obtained for N,,,=3 1 or N, 
=53. The counterion density p,(r) was defined on a three- 
dimensional grid of X3 points spanning the cubic simula- 
tion cell with X=64. This discretization of r space leads 
to N3 Fourier coefficients Pkc. In order to avoid spurious 
effects associated with the cubic symmetry of the cell, the 
Fourier coefficients were set equal to zero whenever 
1 k 1 > 277X/L (where L is the side length of the cubic 
cell). 

IX. RESULTS 
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Runs were taken for three different thermodynamic 
states (runs A, B, and C) . In each run, the macroion radius 
was chosen as R = 53 nm, the temperature was T = 300 K, 
and the suspending fluid was water (e=78). The parame- 
ters that were varied were the macroion packing fraction 77 
and the charge Z. The values of all characteristic parame- 
ters are listed in Table I. It is to be noted that all three 
states under consideration correspond to the weak screen- 
ing regime (~9 = 1) due to the absence of added salt. 
Runs A and B describe a macroion fluid of intermediate 
(7 = 0.1) and high (v = 0.3) packing fraction, while run C 
corresponds to a crystalline bee phase of low v and high Z; 
the number of macroions was taken to be 16 in the latter 
case such that a bee crystal fits exactly into the simulation 
cell. 

In order to allow a direct comparison of the ab initio 
results with the predictions of the usual DLVO model for 
the effective interactions between macroions, we carried 
out standard MD simulations for a system of macroions 
interacting via the pairwise additive DLVO potentials (6) 
and (7) under identical physical conditions (T,n,,...) and 
for identical values of the parameters (e.g., N,). 

For the three runs listed above, we have computed a 
number of static and dynamical properties associated with 
the macroion and counterion components of the colloidal 
suspension; the results have been compared systematically 
to the predictions of the pairwise additive DLVO model in 
its initial’ or modified8,g’17 versions. 

The starting configuration {Rj} and velocities {vi> of 
the macroions in an ab initio simulation were taken from a 
well-equilibrated MD run based on the corresponding 
DLVO potential. For momentarily fixed macroion posi- 
tions {Rj), the counterion density pro) (r,{Ri}) was ob- 
tained by simulated annealing. The initial guess of the den- 

(a) The first quantity which we have analyzed is the 
time dependence of the counterion density profile 
p:” (r,{Ri( t)}) and a number of statistical averages and 
diagnostics based on this profile. The DLVO result for pc is 
given by Eq. (26). A typical projection of pc along a one- 
dimensional cut through the centers of two colliding mac- 
roions is shown in Figs. 3 (a)-3 (c) at three instants during 
the collision. It is seen that the corresponding DLVO den- 
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FIG. 3. One-dimensional cut of the counterion density p,R) through the 
center of two colliding macroions during the collision. The hatched part 
is the physical density outside the hard cores. The dashed line is the 
DLVO result for the same macroion configuration.’ The time interval 
among (a), (b), and (c) is 0.1-r,,. The parameters are Z= 150, R=53 nm, 
T=300 K, e=78, and 9=0.3. 

FIG. 4. Averaged counterion density profile of run B, &(r)R3 vs r/R. 
The density is compared with the DLVO theory (dotted line) and the 
corresponding result of a spherical Wigner-Seitz cell (dashed line). 

. . 

sity profile, computed for the same macroion configura- 
tions, underestimates pc outside the macroion cores, while 
the artificial counterion. density inside the cores is, accord- 
ingly, too high. In particular, the mean charge inside the 
cores calculated from the DLVO counterion density (26) 
is considerably larger than Z~~vo-Z, thus illustrating the 
inconsistency of the DLVO approximation at high macro- 
ion concentration. The ab initio profiles plotted in Fig. 3 
also nicely illustrate the pseudopotential construction and 
the stabilization of the counterion charge density inside the 
macroion cores. The.importance of nonlinear screening ef- 
fects are also apparent, in particular, in Fig. 3(c). When 
two macroions come very close, the counterion density 
between them piles up much more strongly than predicted 
by linear screening (i.e., DLVO) theory. 

One can also define a counterion density averaged over 
macroion configurations according to 

p,(r) = ( ‘U N, i=l zz ,r,--Ri,=rd2r’pc(r’~(RjJ) ) * 
(44) 

This quantity is plotted in Fig. 4 for run B, and compared 
to the prediction of the DLVO theory and to the density 
profile calculated within a spherical Wigner-Seitz cell. As 
already pointed out in relation to Fig. 3, the DLVO density 
is too high inside and too low outside the macroion cores. 
The Wigner-Seitz profile, on the other hand, agrees rather 
closely with the ab initio result, thus justifying a posteriori 
the portability of the pseudopotential parameters. In prin- 
ciple, p,(r) is also measurable, e.g., by small angle x-ray 
diffraction.26 

Similarily one can define the mean counterion charge 
inside the macroion cores 

z= (& g Jr,-,, <R w%wRil)) (45) 
and the corresponding relative fluctuation 
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TABLE II. Average inside charges 2 and charges in a spherical layer 
around the macroions (R <r< l.ZR), F, and their relative variances as 
defined in the text for run A and run B. AI means ab initio and the other 
pairwise potential models (a), (b), and (c) are also defined in the text. 

Run Model 

;‘a: 
(b) 
Cc) 

pa: 
(6) 
(cl 

66.6 0.005 29.0 0.024 
63.6 0.011 24.0 0.035 
73.8 0.005 27.5 0.029 
47.2 0.010 18.1 0.037 
67.7 0.005 35.7 0.044 
60.4 0.020 27.6 0.045 
80.1 0.020 36.3 0.048 
42.0 0.016 19.3 0.044 

(46) 
Results for Z and Sz are listed in Table II and compared to 
the values Z’ and Sg obtained when the integration domain 
is R < Ir’-Ril < 1.2R in Eqs. (45) and (46), well beyond 
the Stern layer. Z is seen to deviate from P by less than 
1% confirming once more the validity of our pseudopoten- 
tial approach. The fluctuation S, turns out to be consider- 
ably smaller than its DLVO counterpart, while Si are of 
comparable magnitude. Furthermore, as already noted ear- 
lier, the mean DLVO charge Z is significantly larger than 
ZF&‘““-Z, thus confirming the inconsistency of the 
DLVO theory due to overlap of screened Coulomb orbitals 
in the superposition (26). 

Another “diagnostic” is provided by the fluctuation 
Sd( r) of the instantaneous electric dipole di( r) associated 
with a spherical shell of radius r centered on the macroion 
position Ri namely, 

di( r) = 
s 

d2r’r’pc( r’, [ Rjj ) (47) 
jr’-Ril =r 

and 

&= [ (& 2 l&(r) I~)]‘“. (48) 

The latter quantity is plotted in Fig. 5 together with its 
DLVO counterpart, which is seen to overestimate dipole 
fluctuations inside the macroion core, while underestimat- 
ing these fluctuations for rk R. 

(b) An important measurable quantity which charac- 
terizes the spatial structure of the macroion component is 
the macroion-macroion pair distribution function g,,(r) . 
The ab initio results from runs A and B are compared to 
the data obtained from standard MD simulations based on 
the pairwise additive, screened-Coulomb interaction model 
(6) in Figs. 6 (a) and 6 (b) . Three choices have been made 
for the effective macroion charge Zes--the standard 
DLVO value (7) [model (a)], the effective charge derived 
from the MSA closure for both macroions and counteri- 
ons6s*g [model (b)], and the value proposed by Alexander 
ef al. I7 on the basis of a Wigner-Seitz cell calculation 
[model (c)l. In the latter model, the Debye screening 
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FIG. 5. Diinensionless dipole fluctuations Sd for run B, as defined in the 
text, vs reduced distance for ab inifio (full line) and DLVO (dotted line) 
calculations. 

length is also a bit different from its DLVO value. For run 
A, which corresponds to a fairly low macroion packing 
fraction (q =O. 1 ), standard DLVO theory [model (a)] is 
seen to do surprisingly well compared to the predictions of 
the ab initio simulation, despite the significant differences 
between the counterion density profiles discussed previ- 
ously. Model (b) (based on the MSA) strongly overesti- 
mates the macroion pair structure as anticipated in earlier 
work on less asymmetric, micellar systems,8 while model 
(c) somewhat underestimates the correlations between 
macroions. The failure of model (c) is not too surprising, 
since in the macroion “liquid” state of relatively low pack- 
ing fraction, macroions come much closer than the neigh- 
borhood of the spherical Wigner-Seitz cell boundary. 

At the higher packing fraction (run B with ~=0.3), 
the standard DLVO theory [model (a)] is seen to break 
down since now it significantly underestimates the macro- 
ion pair structure. Nevertheless, it still deviates less from 
the ab initio results than models (b) and (c); the latter is 
found to be particularly unreliable since it leads to a con- 
siderable underestimation of macroion correlations signal- 
ing a poor choice of the effective macroion charge. 

Model (b) may be improved by taking the hybrid 
HNC-MSA approach of Khan et al9 In this theory, the 
height of the first maximum of g,,( r) is 2.27 at r/R = 3.65 
for the parameters of run A and 2.11 at r/R =2.11 for that 
of run B leading to better agreement with the ab initio 
results. 

The pair distribution functions in a crystalline state 
(run C) are shown in Fig. 6(c). Due to the small size of 
the simulated sample (N,= 16), only the first peak of 
g,,(r) is obtained. The important observation here is that 
the DLVO theory [model (a)] overestimates the macroion 
pair structure in the solid in contrast to the opposite ten- 
dency observed in the fluid phase [Fig. 6(b)]. These oppo- 
site trends may lead to a significant shift of the macroion 
freezing line, as suggested by recent experiments.15 The 
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FIG. 6. Macroion-macroion pair correlation function g,,,,,,(r) =g(r) vs 
reduced distance r/R for (a) run A; (b) run B, (c) run C (solid lines). 
The other curves are based on screened Coulomb pair potentials calcu- 
lated from standard DLVO theory (a) long-dashed line; (b) short-dashed 
line, and (c) dotted line. 
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FIG. 7. Bond angle distribution function g, (0~) of particle triplets that 
have two interparticle distances smaller than (a) r=3.2R; (b) r=2.5R vs 
reduced bond angle 19/n (run B) . The line types are the same as in Fig. 6. 
The units of gs(6.r) are arbitrary. 

mean-square displacements of the atoms calculated from 
DLVO and ab initio simulations are comparable within 
statistical errors and system size limitations. 

(c) Higher-order-correlation functions are more sensi- 
tive to details of the spatial distribution of particles in dis- 
ordered media than the standard pair distribution func- 
tions. A convenient measure of triplet correlations is the 
macroion bond angle distribution function g3 (@r) which 
characterizes the distribution of bond angles 8 in macroion 
triangles with two adjacent sides of length less than r. Ex- 
amples from run B are shown in Figs. 7 (a) and 7 (b) for 
two cut-off distances (r=2.5 and 3.2R). The qualitative 
conclusions-which may be drawn from inspection of these 
figures confirm the observations made for the correspond- 
ing pair distribution function. 

(d) The ab initio approach is based on Newtonian dy- 
namics of the macroions as derived from the Lagrangian 
(35). This does not take into account the velocity- 
dependent interactions of the macroions with the solvent 
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FIG. 8. Normalized macroion velocity autocorrelation function for run C 
(MD); Z(t) vs reduced time t/‘re; the line types are the same as in Fig. 6. 
This clearly shows the sensitivity of dynamical quantities to many-body 
forces. 

(due to friction and hydrodynamic back flow) implying 
irreversible Brownian dynamics. The static properties con- 
sidered so far are independent of the nature of the dynam- 
ics, but this is, of course, not the case of time-dependent 
correlation functions and transport properties. Neverthe- 
less, since dynamical properties are very sensitive to the 
precise form of the interactions, it is instructive to compare 
some results of the ab initio and DLVO models for time- 
dependent quantities. An example is shown in Fig. 8 which 
compares the macroion velocity autocorrelation function 
Z(t) computed in the crystal phase (run C) by the ab 
initio MD, and by MD based on the pairwise additive 
screened Coulomb interactions with the three choices [(a), 
(b) and (c)] for Z,, introduced earlier in this section. The 
differences in the predictions of the various models are 
considerable; since Z(t) is a superposition of phonon 
modes, the comparison shows that the latter are extremely 
sensitive to the nature of the effective forces between mac- 
roions, and that DLVO-like models are quite incapable of 
reproducing correctly the ab initio data. The phonon den- 
sity of states g( w >, which, in the harmonic approximation, 
is proportional to the spectral function of Z(t), cannot be 
extracted from the data in Fig. 8 because the simulations 
do not extend over sufficiently long times to allow a rea- 
sonable estimate of the Fourier transforms. 

(e) In order to model, at least approximately, solvent 
effects, we finally carried out some exploratory Brownian 
dynamics (BD) simulations27 using the following algo- 
rithm for the irreversible evolution of the macroion posi- 
tions: 

Ri(t+At) =Ri(t) +’ Fi(t)At+ CARlrandom 3 
4- 

(49) 

where c is the friction coefficient which sets the Brownian 
time scale 7B according to 

TB=gR2/k,T. (50) 
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FIG. 9. Time-dependent reduced diffusion coefficient o(t)/&, vs time for 
the parameters of run B (Brownian dynamics): ab inifio calculation 
(solid line) and the corresponding DLVO result (dotted line). 

f also determines the short-time diffusion constant of the 
macroions Q,= k,T/g. ( AR)random is a Gaussian- 
distributed random displacement of zero mean and vari- 
ance 

W);m,,,=6Wt. (51) 
The practical implementation of BD differs somewhat 
from the MD procedure described earlier. Indeed, the ir- 
reversible macroion dynamics, embodied in Eq. (49), can- 
not be combined with the reversible fictitious dynamics of 
the counter-ion density governed by Eq. (37). Conse- 
quently, the macroions were moved according to Eq. (49) 
with the random displacement (51), whereas, for each 
macroion configuration ( Ri) , the counterion density 
p,[r(Ri)] was obtained by simulated annealing, starting 
from the profile determined at the preceding time step. 
While this procedure allows the use of a longer time step 
At compared to the MD case, the number of annealing 
steps increases with At so that, on balance, the BD proce- 
dure is considerably less efficient than its MD counterpart. 
For a given computational effort, the BD statistics are ac- 
cordingly poorer. In practice, we chose At/r,=O.O02, and 
N,=50 annealing steps were taken for each BD time step. 
Data were collected for physical parameters identical to 
those of run B and averages taken over 500 BD time steps. 
Figure 9 shows the results for the time-dependent diffusion 
constant 

D(t)=; ; ,_ (y 2 [Ri(t)-Ri(o)12) 3 (52) 

while the time dependence of the self part of the density 
autocorrelation function 

Fs(kt)= (& 2 COsCk. [Ri(t)--Ri(O)l>) (53) 

is plotted in Fig. 10 for three different wave numbers 
k= ] k I. Comparison with the corresponding data from BD 
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FIG. 10. The same as Fig. 9, but now for the self-part of the van Hove 
correlation function F,(&,t). kd is 2.3, 2.9, and 3.5; the upper curve 
corresponds to lower k,,R. 

simulations based on the pairwise additive DLVO interac- 
tions between macroions shows that diffusion, and the de- 
cay of Fs(k,t), are slower when the forces between mac- 
roions are calculated from the full ab initio scheme, an 
observation which correlates well with the stronger static 
correlations observed in that case [cf. Fig. 6(b)]. However, 
in view of the limited BD statistics, the present conclusions 
must only be regarded as qualitative. 

X. GENERALIZATION IN THE PRESENCE OF ADDED 
SALT 

So far we have restricted ourselves to the simplest, 
two-component situation involving only macroions and 
counterions. This is an important limiting case, but, more 
generally, charge-stabilized suspensions also contain added 
salt, and hence microscopic ions that carry charges of the 
same sign as those of the macroions (referred to as coions), 
and an oppositely charged species, which plays a role sim- 
ilar to that of the counterions. We shall only consider the 
case where the two latter species are identical, so that the 
suspension is made up of n, macroions per unit volume of 
charge Ze (which will henceforth be assumed to be posi- 
tive, without loss of generality), n, coions of charge q+e, 
and n- counter-ions of charge q-e. The electroneutrality 
constraint (4) now reads 

n,Z+n+q++n-q-=0, (54) 
while the Debye screening length (5) is generalized ac- 
cording to 

&=$ 

1 

47re2 -l/2 

w (n+q: +n-45) 1 . (55) 

The formalism of Sets. III-VI is easily extended to treat 
the three-component case. The dynamical variables are 
now the macroion positions (Ri) and the two density pro- 
files p+ (r,{Ri]) and p- (r,{Ri}). The various contribu- 

tions to the free energy functional (lo), which generalize 
the expressions ( 1 1 )-( 14), now read 

Fid=kBT C 
s 

drp,(r) b(&,(r) I- 11, a=+,- 
(56) 

dva(rha(Ir-Rjl), (57) 

FCC=& II 
dr dr, PQ(~)PQ(“) 

lr-r’[ ’ (58) 

where PQ(r)=q+P+(r)+q-p-(r) denote the local 
charge density of the microscopic ions (coions and coun- 
terions) . 

For the correlation part of the free energy functional 
F[p+(r>,p- (r)l, we adopt once more the LDA 

Fcorr=kBT 
I 

dr PN(r)Yexc[T,p+(r),p-(r)l, (59) 

where PN( r) = p+ (r) + p- (r) denotes the local number 
density of microscopic ions, while YeXC is the reduced ex- 
cess free energy of a homogeneous fluid of coions and 
counterions with densities ~+=p+(r) and p-=p-(r) 
immersed in a uniform, positive neutralizing background 
of density pQ= -~pQ( r), which COmpenSateS for the excess 
of negative counter-ion over positive coion charge. Due to 
the Coulomb attraction between coions and counter-ions, 
this model is stable only for finite size ions. If the latter are 
taken to be spheres of diameter a, the required excess free 
energy Yexc may be calculated from the analytic solution of 
the MSA for this mode1.28 For sufficiently weak Coulomb 
coupling J=e2/(EkBTa), the MSA result goes over into 
the Debye-Htickel limit for the excess free energy per ion 
\y~&=P~~/(Nk,T), namely 

%$A T,p+,p-) = -& ln(*+K*)--fr*+iK*’ 1 
4mP2J 

+ 3n”K” ’ 2 h(l+K*)-K*-;K*2 , 1 
(60) 

where n*=(p++p-)d, nz = (q+p+ + q-p-12, and 
K* =~~a. This form of the free energy of the homogeneous 
fluid of microscopic ions in a uniform neutralizing back- 
ground should be sufficiently accurate, except at high con- 
centrations of added salt. 

The ab initio scheme then follows along the lines de- 
scribed in Sec. VI. The Lagrangian (35) now contains two 
fictitious kinetic energy terms associated with the two den- 
sity profiles p+(r) and p- (r), and the equation of motion 
(37) for the counterion density must be replaced by two 
similar equations governing the evolution of p+(r) and 
p- (r). The practical implementation described in Sets. 
VII and VIII carries over to the present case. Since the 
macroions repel the coions, the local density p+ (r,{RJ) 
decreases smoothly in the vicinity of the macroion surfaces 
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( ] r-Ri] E-R), so that there is no need for a pseudopoten- 
tial construction similar to that used for the counterions 
which are strongly attracted by the macroions. 

Xl. DISCUSSION AND OUTLOOK 

In summary, we have proposed and implemented an 
ab initio procedure for the simulation of charge-stabilized 
colloidal suspensions, which combines Molecular (or 
Brownian) Dynamics for the macroions with a density 
functional description of the microscopic counterions and 
coions within an adiabatic framework inspired directly 
from the Car-Parrinello method’2’13 developed for 
quantum-mechanical ion-electron systems. More pre- 
cisely, the present scheme may be looked upon as the clas- 
sical counterpart of a recent, approximate version of the 
Car-Parrinello method, which only considers the electron 
density profile within the LDA (i.e., the nonlinear 
Thomas-Fermi approximation) rather than focussing on 
the one-electron Kohn-Sham orbitals.24 Apart from the 
use of the LDA in the calculation of rather small correla- 
tional contribution to the free energy functional (lo), the 
present scheme may be regarded as essentially “exact”, at 
least as regards the calculation of static properties of the 
“primitive model” for colloidal suspensions. The model 
does, of course, neglect the discrete nature of the suspend- 
ing fluid (generally water), but apart from hydration ef- 
fects in the vicinity of the macroion surfaces, the contin- 
uum picture should not have a significant effect on the 
density profiles and hence on the effective interactions be- 
tween macroions. 

We are able to overcome the technical difficulties as- 
sociated with the piling up of counterions at the oppositely 
charged macroion surfaces, as reflected in a sharp rise of 
p,(r,{Ri}) near 1 r -Ri] = R, by introducing a classical 
pseudopotential scheme, which is reminiscent of ion- 
electron pseudopotentials in metallic and covalent systems. 

Although our ab initio procedure can easily cope with 
the physically important situation of added salt, as shown 
in the last section, the numerical implementations pre- 
sented in this paper deal only with the simplest case of a 
fully dialized suspension, which only contains macroions 
and counterions. We have compared systematically the 
predictions of our ab initio procedure, which properly in- 
cludes nonlinear screening and many-body forces between 
macroions induced by the counterions based on the pair- 
wise additive DLVO model and two of its variants. The 
main conclusion is that standard DLVO theory [with the 
effective macroion charge (7)] yields a reasonably accurate 
description of the macroion pair structure, at least at in- 
termediate packing fraction. At higher packing fractions, 
the DLVO theory underestimates this pair structure, but 
does better than the modified versions which use different 
values of the effective macroion charge. The apparant suc- 
cess of the DLVO theory may be partially fortuitous since 
the predicted counterion density profile differ substantially 
from those obtained by the ab initio procedure. Moreover, 
it must be stressed that the salt-free states explored in this 
work belong to the weak screening regime since K&X N 1. 
We expect that in the presence of a high concentration of 
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added salt, i.e., in the strong screening regime KS> 1, non- 
linear effects will be considerably enhanced, so that the 
discrepancies between ab initio and DLVO simulations will 
become much larger. Simulations in this regime are at 
present being planned. Other extensions which are being 
considered involve low-dimensional colloidal systems in- 
cluding clays2’ and colloidal monolayers confined between 
parallel glass plates.30 

Finally, the present density functional formulation 
provides a natural framework for a systematic derivation of 
effective pair and many-body interactions between macro- 
ions. More work along these lines is in progress. 
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR THE 
MACROIONS 

In this appendix, it is shown how the effective Hamil- 
tonian (9) may be derived from the primitive model 
Hamiltonian (8) within the adiabatic approximation, 
which is fully justified in view of the enormous difference in 
time scales associated with the macroions and counterions. 
To this purpose, the Boltzmann factor of the Hamiltonian 
(8) is integrated over counterionic degrees of freedom 

[exp( -kW I,= J dN,rdN,p exp ( - fiH) 

=exp[ --B(K,+ V,,) 1 
x [exp{ ---PUG+ V,,+ V,,> I I, (61) 

with & l/k,T. The effective macroion Hamiltonian is 
then defined by 

&s= -kBT ln[exp( -flH)]. 

=K,+ Vm, 

--kJ ln[exp( --P(K+ V,,+ V,,) I I,. (62) 

For a given macroion configuration {Ri}, the counterions 
form an inhomogeneous plasma of point charges -+e, in 
the “external” field due to the macroions. The correspond- 
ing exact one-particle density will be denoted by 
p,(r,CW). 

Consider an auxiliary continuous (i.e., structureless), 
inhomogeneous background of charge density 
qep(r) Eqep,(r,{Ri}). Its self energy is 

q2e2 
Vbb=2E 

p(r)pW> 
drdr’ lr-rrI y (63) 
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while the counterion-background interaction energy is 

s 
(64) 

Now add and subtract vbb+ vb, from the exponent of the 
Boltzmann factor in Eq. (62). Noting that vbb is indepen- 
dent of counterion coordinates, Eq. (62) may finally be 
rewritten as 

H.r=Km + vmm - Vbb 

--kBT ln[exP( --PC&+ V,,+ vbb+ Vd) 

x exp ( -P( vmc- vbc> 11 c . (65) 
The argument of the first exponential on the right-hand 
side of Eq. (65) is exactly the Hamiltonian of a “one- 
component plasma” (OCP) in an inhomogeneous back- 
ground of density p(r); this Hamiltonian will be denoted 
by H,[p,(r)] and the corresponding partition function by 
Qo[p( r)]. With these notations, Eq. (65) may be rewritten 
in the form 

&=L + vmm - vbb 

--kBT ln@dp(r) I <ew( -PC V,,- Vd ) )o), 

(66) 
where ( - * -)o denotes a canonical average weighted by the 
OCP Hamiltonian H,[p(r)]. We have thus derived the ex- 
act result 

-&d%- vrnrn- Vbb+FO[p(r) 1 

--kBT ln(eXP( -fl( V,n,-- vb,) ] )o, (67) 
where .Fo is the free energy of the inhomogeneous OCP. 
Noting that V,,- vb= may be expected to have only small 
fluctuations, it is reasonable to replace the last term in Eq. 
(67) by the first-order cumulant, i.e., 

--kBT ln(exP( -fi( V,,-- vbd ) >o 

= (vm,- vbc)O 

dr p(r)u,,( 1 r-&l ) 

22 

+F 
J-J 

dr dr, p(r)&‘) 

lr-r’] ’ (68) 

Substituting Eq. (68) into Eq. (67), remembering Eq. 
(63)) and separating Fo[p (r)] into ideal and correlation 
contributions, we finally arrive at the desired result 

H,R=G+ Vmm+ Vbb+~dP(r) 1 +~,,,Edr)l 
+~e,t[p(r) 1 (69) 

which coincides with the result summarized in Eqs. (9) 
and (IO), since vbb is identical with the Coulomb contri- 
bution FCC [Eq. ( 13 )] to the free energy functional. 
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