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Abstract. - Within a phase-field model that couples a nonconserved order parameter to the
temperature field, we study the crystal growth velocity v in a supercocled liquid as a function of
the undercooling A. The velocity shows critical behavior in 4 depending on a the ratio p of
effective diffusion constants and on 2, which measures the coupling between the order para-
meter and the temperature field. As A becomes smaller, there is a transition from steady-state
growth to a diffusive regime. At the phase boundary, v remains nonzero for p > p,; otherwise, it
vanishes as (4 — 4, with v=1 for p<p,, v=1/2 for p=1p,, and v=1/3 for p=p, and =4,
which corresponds fo a critical point (4., p., 4.} in the (4, p,d) parameter space. Typical
experimental systems have p < p.; however, if impurity concentration gradients dominate over
temperature variations, p is much larger and ¢ may be tuned by varying the overall impurity
coneentration.

Recently, several unusual features of the phase-field model of solidification have been
discovered [1,2]. In this model{3-5], a nonconserved order parameter is coupled to a
temperature field, thus taking into account not only finite interface width and nonequilib-
rium kineties, but also the release and subsequent diffusion of latent heat. The usual models
of solidification have tended to focus on the former {6] or on the latter [7] aspects.

The phase-field model is defined in terms of a nonconserved order parameter m(z, £) and a
dimensionless undercooling u(z, {), which is given by w = (1'— Ty)/ (Lic,), where T(z, t) is the
temperature field, 7 is the solid-liquid coexistence temperature, ¢, the specific heat, and L
the latent heat of transition. The scaled equations of motion for 7 and « in a one-dimensional
geometry are .

1
w=Fum, (1)
=L, - L (ab)
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where space and time are scaled by [,=KV2/A, t,=1I, K being a microscopic
correlation length of the order parameter m, A a dimensionless scale of the bulk free-energy
density, and I' the kinetic relaxation rate for m. The two dimensionless control parameters
in egs. (1) are p = K2I/o, which is the ratio of order-parameter diffusivity (K2 to thermal
diffusivity («), and &= @)(L/(kg Ty))XL/(c, T)), which measures the coupling between m
and u. For the free-energy density f(m) at Ty, we choose a piecewise parabolic potential [8}:

f(’n%)—~mm [m#, (m — 1)7]. (2)

The order parameter m is 0 in the liquid and 1 in the solid. This form of f(m) makes the
equations of motion piecewise linear, but preserves the essential physics.

We shall focus on steady-state solutions of the form m(z, t) = m(z — vf), u(z, t) = u(z — vi),
where v is the solid-liquid interface velocity, which must be determined. The original
interest of the phase-field model for solidification arose when it was shown that, for unit
undercooling, one could find steady-state solutions for which the front veloeity was uniquely
determined [3, 4]. This is in contrast to the analogous situation in standard diffusive models,
where the velocity is undetermined.

This result was for fixed control parameters ¢ and p. Schofield et al. then found, at the
same «unit> undercooling, that for a sufficiently large value of the thermal diffusivity (i.e. a
sufficiently small value of p), there is no steady-state solution at all[l1,2]. Instead, the
interface velocity decays as t™, with v=0.2[9]. Note that the value of this exponent is
different from that expected from dimensional analysis of diffusion-dominated growth
{(v=10.5).

In this paper, we elucidate the conditions under which steady states exist, for arbitrary
material constants p and ¢ and for arbitrary undercooling A. The motivation is twofold: first,
diffusion models that incorporate kinetic undercooling predict[10,11] that below unit
undercooling of the liquid, the steady-state velocity should grow as voc (A —1), and it is
interesting to know how this prediction fares in a more detailed model. In fact, it turns out
that the behavior is more subtle: we shall find a eritical point (4., p., &.). As one varies 4,
there can be discontinuities and associated hysteresis in v. Second, whereas p and ¢ are fixed
material parameters, 4 can be varied in an experiment. Thus, critical behavior in 4 is
directly observable in growth experiments.

To begin, we define carefully the undercooling and the boundary conditions to egs. (1) by
generalizing the procedure of vef. [1]. We consider a solid front that starts at 2= — o« and
invades a liquid phase extending out to z = + «. In a reference frame moving at a velocity v,
eq. (la) becomes

ity + 2pv)u, — Cprym, =10, €}

This can be integrated twice to give

u(z)=C + 2pv f dz’ expi—2pviz — 2" )]ml2') =

(Z)

=C +m(2)— J dz' exp[— 2pv(z ~ 2 )] @

where the second step is via an integration by parts, C is an integration constant, and m(@)
is treated formally as a source term for an inhomogeneous equation for %. Since 3m(2)/3z=0
at 2=+ «, we have the boundary eonditions

U(+ ©) — m+ ») = y{— ©) - p(— 2)=C, (bat)
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In addition, we require that the order parameter relax to its local equilibrium value at
z=+ =, Referring to eq. (2), we have on the solid side (z = — )

4 N S

W | ey U T A= m gl ), )
while on the liquid side (2= + )

g - __ 2

Taken together, eqs. (5) highly constrain the form of the boundary conditions. Indeed, if we
hold the liquid at an undercooling A, i.e. if u(+ x)=—A, then egs. (5) imply that

1
1+4/2

-4, m(—oo)=zli‘+ 1

ul= )= 2 1+e2

m=) =47 ®)

For A = 4,=1/(1 + é/2), we recover the boundary conditions in {2}, They correspond to unit
undercooling in the pure diffusion models, since &= 0 in the latter. For unit undercocling,
the latent heat is just enough to reheat the solidified matter back up to the coexistence
temperature, If A > A,, the solid will be slightly undercooled far away from the interface, as
is implicit in eqs. (5). If A < 4,, the solid is overheated and the liguid supercooled, so thisisa
globally metastable situation; any steady-state solution is dynamiecally unstable [12]. In fact,
we shall consider below situations where A< A,, which corresponds to a slightly super-
heated solid propagating into a strongly undercocled liquid. See the discussion below.

In [2], the above model was solved at 4 = A, by Fourier transformation. The calculations
are similar here(!), and we find that the steady-state velocity obeys the equation

3 @; + 2po '
1_4é_, 3 _ e , n
2 2 Reay<0 H ((Ej - xi)

i

where {x;, =1, 2,3} are the complex roots of the cubic equation
e+ 2v(p + Daf—2(1 - 2pvhye ~2pu2 + 8) =0. ' 8
In the hnut p—> %, the velocity reaches a maximum;:

Vmax = '—"4'_— ’ )

V2424424

where A =2/(1 — 4¢) — 2 — 8. The velocity v, is a monotonically increasing function of 4.

The transition from a steady-state regime to a diffusion-dominated regime, where the
interface slows down, can be found numerically by seeing where eq. (7) has no solutions,
Since at the point where the steady-state solution disappears, v is either zero or small, we

3V2e

0=2-2)+ 22 0 pyv—B(p, 50"~ 6p, 9 + 00", (10)

(!} Compare eqs. (8.19) and (3.20) in ref. [2].
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with p, = p{é) =2/(39) and where E(p, d) is given by

L _PE 1(1 p 2y P
E(p, 9 = +2<4 C)(b—t—(a+c))+4(2a+c),
where
_pé‘ e D2 _ « _—CS 2
a—"—zwml, b=3c"+4a(p+1)+4p, c=p2+4), and d——2—+(p+1)c — 2pe.

When p = p,, E(p, ) is a continuous function that is positive for 0 < £ < 4/3 = 4, but negative
for ¢>4,. In particular, one finds

E(pde),&)=E (»% ,

a) =-Le-w+oe-an. (an

Furthermore, the coefficient & of the stabilizing cubic term is nonzero here: G(p,, &) =
= {).06.

Equations (10), (11) are the central result of this paper. Although the algebra is
complicated, the results have an easily understood interpretation: there is a point
(A, Per 2) = (3/5, 1/2, 4/3) where the first three coefficients in the small-v expansion vanish
simultaneously. This is completely analogous to the Landau theory of second-order phase
transitions {13] if one identifies v with the order parameter, —p with temperature, and
4 — A, with an external field. The quadratic coefficient E in eq. (10) vanishes in the usual
Landau theory of the second-order liquid-gas tramsition but is nonzero for second-order
phase transitions in liquid erystals. In terms of this analogy, the point (4., p., &.) may be
called a critical point.

Let us now derive the different scaling laws implicit in eq. (10). If the material
parameters are set to p, and 4., the boundary between the steady-state and diffusion-
dominated regimes is given by

=BG (., 20 (4 — AV =~ 1.7(4 — A",

If ¢ <4,, there is a square-root decay for p = p, = 2/(39) given by v = \/&4E(p,, &) (4 — 4%
However, if p <p,, we have a linear law v={4/3v2(p — - p)ld — A,) for A > A,. For p>p,,
the phase boundary occurs at a different undercooling A, that is smaller than A It p=p,

one finds A = (9/512)(¢¥E* p,, O p ~ p). For A= Ac, the velocity has a finite value

v, £ 0. Near AE, one has v, = V&2E(p,, HA. — 4.)%. In fig. 1, the velocity v is plotted against
4. The curves are based on numerical solution of eq. (7) for three different values of p/p..
The critical velocity v{4,) is clearly indicated (dashed line). Note that there are two
solutions (with differing velocities v) in the region 4, <A < A, for p > p,. The lower branch
(short-dashed line in fig. 1) corresponds to a front that traveis faster as the underceoling is
reduced. Physically, this seems unlikely, and the solution is presumably unstable. See [14]
for a similar situation. Indeed, since in the regime A, <A <A, the system is globally me-
tastable, any steady-state solution—including the upper branch—is dynamically unstable.

In order to clarify the crystal growth dynamics in this globally metastable regime, we
have solved the full time-dependent equations (1) starting from a finite solid germ{9]. For
¢t =0, the boundary conditions for m and u were «liquid» for z ~» £ o and «solid» for z =0, in
accordance with egs. (5) and (6). The order parameter and temperature profiles were then
followed numerically for very large times. These calculations strongly support the following
picture: after an initial rapid decay to a quasi-steady-state profile, the crystal-liquid
interface grows at a constant velocity corresponding to that of the upper branch in the
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Fig. 1. - Velocity o vs. undercooling A relative to 4., for ¢ = 0.5, which is far below the critical valie
(&= 48, = 4/3). Solid curves give the velocity for p/p, =2, 1 and 0.5. For p/p, =2 and 4 < A,, there are
two solutions: an unstable lower branch (dotted line) and a «quasi-stable» (though globally metastable)

F1g‘. 2._ - _Ve10c1ty as a fanction of & for 4 = A, and p =n..

unstable region of fig: 1. For very long times, the front slows down. Both.the «extra» heat
from. solidification and.that from the superheated solid diffuse into the liquid..Thus, by
exchanging heat through is interface, the system goes from a constant-velocity, globally
metastable state to a state where the velocity decays. However, since this final relaxation is
slow, it is conceivable that in real systems such globally metastable solutlons occur as
hyster951s effects if 4 is made slightly smaller than 4..

"Next, we consider a very large coupling ¢ between the temperature and the order
parameter field. For p =p, and 4 = 4, the interface velocity v, is shown as a functién of 2in
fig. 2. At &=, it becomes nonzero. Although for such a large coupling &, other order
parameters may become relevant and the growth behavior more subtle, one ¢an hope

- that—at least qualitatively—the velocity-undercooling scaling laws discussed above con-
¢ tinue to hold.

For succinonitrile, one can estimate {1] ¢=0.11. Using expenmental estimates of the
interface velocity per unit undercooling. ({= 20 em/s/°C) [15], we have p=0.1 and p/p;~
=~0.01. We have also examined the materials parameters for a number of other substances,
including metals, rare gases, and liquid-crystal transitions. Although the coupling ¢ ¢an be
comparable or even exceed &, the ratio p/p, seems to range from 0.1 for strongly first-order
tranmtlons to as [ittle as 107° for weak liquid-crystalline transitions. Thus, generically we
can set’ p=0in the ‘above discussion, which implies a linear velomty—undercoolmg law for
greater than critical undercoolings. Still, there may exist substances with unusually rapid
kineties, for which the effects described in this paper are relevant. Good candidates should
have very close solid and liquid densities, to minimize the distance matter must be
transported during the phase transition.

: Finally, the-most promising experimental situation may well be one in whlch impurity
dlffuswn dominates’ over latent heat diffusion. (Temperature variations can be essentially
eliminated by using very thin samples, where the surrounding glass plates conduct most of

liquid phases (as reflected in the equilibrium partition coefficient & = ¢ya/Ciigua), there will be

-alliquid . a jump in concentration of impurities across the interface. As Langer has dlscussed {161, the

equations of motion for an impurity-dominated system are formally identical to those of the

i thermal case, if one makes the following correspondences: temperature T —» chemical
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potential v, entropy density s; and s;— impurity concentration ¢, and c¢g,

eE =
Lie, (a,u/ 3c) A T L D

and the coupling

2, (1T

Here, T'=dT/dc is the slope of the liquidus line on the temperature-concentration phase
diagram, Ac= Ac(T) = ¢, — ¢ is the temperature-dependent miscibility gap, and D is the
chemical diffusivity of impurities,

In the liquid phase, D/a < 1072, implying that p is about 100 times larger in the lmpumty
case. Of course, although the thermai diffusivity « does not vary much between solid and |,
liquid, D) does, and this should be taken into account. The coupling constant & ig of particular |
interest, since it is now a function of temperature. The experiment is at fixed T (usually near
T,—T c., where ¢, is the average impurity concentration of the whole sample). Since
concentration can be varied easily by a factor of 100, so may the range of accessible d’s. For
succinonitrile doped with acetone[17], we estimate 0.003<2<0.3 for 0.1mol%<e<
< 10mol% acetone. Since now p =10, we expect 0.05 < (p/p,) <5. It should therefore be
possible to study the crossover between diffusive and kinetic motion, as Well ag the various
scaling regimes discussed above. -
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