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Dynamicatl Mechanism for the Formation of Metastable Phases
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Rapid temperature guenches have long been known to produce metastable thermodynamic phases.
We study Landau-Ginzburg models of phase transitions for free energies having three local minima and
show that metastable phases can be formed via a dynamic instability that splits the front separating the
stable high- and low-temperature phases. Even though quenching may nucleate the stable phase, the
splitting instability we discuss will favor the formation of the metastable phase.

PACS numbers: 64.60.My

For at least a century, it has been known that rapidly
cooling a liguid may produce a solid phase whose crystal-
line structure differs from that obtained by slowly freez-
ing the same liquid [1]. Although these metastable
phases obviously correspond to local but not to global
minima of the free energy, little has been said about the
precise mechanism by which these phases are formed.
Why does quenching produce metastable phases? What
driving force (undercooling, cooling rate, or front veloci-
ty) is needed to produce the new phase? Is it always pos-
sible to produce a given metastable phase by a fast-
enough quench? The considerable amount of empirical
data collected about metastable phases has led to a quali-
tative picture: When a material is cooled rapidly encugh,
the stable phase might not have time to form. One finds
instead a close-by phase, which, although higher in free
energy, can form more rapidly.

In this Letter, we describe a model in which these
eiusive notions are mapped onto more precise theoretical
constructs, whose relation to materials parameters is
known. Specifically, we show that, in Landau-Ginzburg
models of phase transitions [2], fronts separating the
stable high- and low-temperature phases can split apart
into two independently moving fronts. The first front
separates the phase that is stable at high temperatures
(phase 0) from the metastable phase (phase 1). The
second separates the metastable phase from that stable at

low temperatures (phase 2). Because the 01 front moves -

faster than the 12 front, a macroscopically large region of
the metastable phase 1 is created. The mechanism ex-
plains how metastable phases can grow given that the
stable phase has already been nucleated, but does not ad-
dress the possibility of nucleating directly the metastable
phase.

To see the mechanism in its simplest setting, we study
an infinite, one-dimensional spatial domain (—oo <x
< o). We assume that phases 0, t, and 2 may be de-
scribed by a single, nonconserved order parameter g. The
free energy F(g) has three local minima at ¢ =0, 1, and
2. The minimum at ¢ =0 represents a disordered phase
(e.g., a liquid), that at g =2 a stable phase {e.g., the equi-
librium low-temperature solid phase), and that at g=1 a
metastable phase t {e.g., a solid phase with a different
crystal structure, a martensite [3], or a quasicrystal [4]).
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The order parameter g{x,1) obeys a deterministic Lan-
dau-Ginzburg equation, which reads

dF(g(x,1)) 1
dglx,t)

Both x and g are scaled to be dimensionless. The poten-

tial F(g} and the various coefficients, which are set to

unity here, can be obtained from microscopic density-

functional theories [5]. For F(g), we choose

—g-g-#q[q—(o.s—bmq—n(q—-x.suq—zy %)
By construction, the potential F(g) always has minima at
g=0, 1, and 2. The control parameter bx Ty —T,
where T'o; is the coexistence temperature between phases
0 and 2. Thus, 5=0 corresponds to the usual meiting
temperature. When 0 <b <0.5, the stable solid phase
(g =2) invades the liquid (freezing). The liquid and
solid spinodal points are at b= 0.5, Over the range
—0.5<b <0.5, phase 2 has a lower free energy than
phase 1, which is thus always metastable. In Eq. (1), the
time scale 7o sets the relaxation rate of order-parameter
fluctuations and will be assumed to be independent of
both the temperature and g. We set 7¢(g,b) =1 in the
following.

We first examine solutions of Egs. (1) and (2) that de-
scribe fronts propagating at constant velocity v. In the
moving frame, x — x — v and g, — —vgy. The equation
of motion becomes

Tod: = dquex ™

_ dFi{g(x)) =0 )
dg(x)

As has often been recognized [5], this equation describes
the motion of a particle moving under the influence of a
potential ~F. A 02 front corresponds to a particle that
starts out on “hill” 0 at a “time” x = — <o and ends up on
hill 2 at x =ea, The friction coefficient is just the front
velocity v. Although the 02 front corresponds to the usu-
a} transition to the stable phase, clearly one can also con-
struct 01 and 12 fronts that connect the metastable phase
to the liquid and solid phases, respectively.

We solved Eq. (3) numerically to find the steady-state
velocities of the three different fronts. The infinite x
domain is first mapped to the interval (—1,1) by the

q,\’,\f + qu

© 199! The American Physical Society



YVOLUME 67, NUMBER 10 PHYSICAL

REVIEW LETTERS

7 SgrreEMBER 1991

tanh map x =tanhx/xp. The width x, was set adaptively
so that the last finite points enclosed 2 region equal to 3
times the front width. The discretized equations were
then solved by Newton’s method, for &/ =100 and 1000
points. The latter grid was necessary only when the re-
gion over which the order parameter varied significantly
became large.

Figure 1 shows the three front velocities plotted against
the control parameter . The most striking feature is the
interesection of v (&), vi2(b), and vea(b) all at the same
value of b =5, ==0.15419. Although steady-state 01 and
12 fronts exist for all values of b up to the spinodal point
b=0.5, where the liquid phase becomes absolutely unsta-
ble, the steady-state 02 front ceases to exist when b > b,.
This critical value b, of ihe control parameter corre-
sponds to a physically achievable undercooling.

To understand why there is no 02 steady-state front
when b > b, we first show that vg) < vgs and vgy < v;; for
all b, provided that ve: exists. Consider, in the mechani-
cal analogy described above, a particle that moves from
hill 2 to hill 1 (see inset to Fig. 1). Because hill 1 is lower
than hiil 2, a friction v{; must be imposed to get the par-
ticle to stop at hill 1. To go from hill 2 past hill 1 to hill
0, the friction must now be reduced, so that vg; <uvj;.
Alternatively, starting from the lowest hill 0, we need
more “negative friction” to go from 0 to 2 past 1 than we
do to go simply from 0 to 1. Thus, vgy > vo1, and our re-
sult is proved.

The crucial point now is that vg; and vy, are indepen-
dent quantities. In particular, they can cross, as they do
in our example at b,. Since vy, must lie between the two
velocities, we see immediately that no steady-state 02
front exists for b > b.. At b, vot=r;2=vp: and we can
imagine constructing the 02 profile by putting the 01 and
12 solutions together, back to back. In this case, al-
though the 01 and {2 fronts each have widths of order
unity (in our scaling), the 02 front has an infinite shelf of
the metastable phase 1. Thus, as b— b,, we expect that
the particle will spend more and more “time” going over

0.5+ 0 1 2

will 1, apd that the width of the 02 front will diverge.
Figure 2 confirms this expectation and shows that the
width wgo = 1n{b, —&}. A similar divergence is predicted
in nonequilibrium studies of surface melting 16].

Beyond b, solutions connecting phases 0 and 2 are
time dependent in all uniformly translating reference
frames. To follow the front metion numerically, we in-
tegrated Eq. (1) using Crank-Nicholson time stepping for
the ¢., term and Adams-Bashforth time stepping for the
frec-energy lerms, resulting in stability and 0(r?) accu-
racy. The initial condition was the stationary solution
found for »=0. The simulation then corresponds to an
instantaneous quench from coexistence to some finite un-
dercooling. The splitting of the initial 02 front into in-
dependent 01 and 12 fronts is shown for 4=0.18 in the
inset to Fig. 3. The width wo(r) is shown in Fig. 3 for .
different guench temperatures. When & <b,, wygs co
verges 1o a constant. When b > b, it diverges linearly fb
large times. We have checked that the asymptotic rate of |
divergence satisfies o

dwq
dt

This, then, is our mechanism for the formation of -
metastable states: In the presence of the metastable
phase, the 02 front can be thought of as a combined 01
and 12 front. As long as the rear part (12) moves faster
than the leading part (01), the 02 front moves as a
“bound state” with a velocity intermediate between v
and ry2. When the rear is unable to keep up with the
leading edge, the 02 state splits into two quasi-inde-
pendent 01 and 12 fronts: A macroscopic quantity of
phase 1 is created.

One might worry that the case of a single order param-
eter is special in that the 02 trajectory must pass directly
over the metastable phase. With two order parameters
this is not so. Indeed, let g, and g, be two nonc‘onserve‘
order parameters. The free energy is then a surface, with
three wells that are not normally collinear. Thus, 02 tra-
jectories need not—and usually will not— pass directly
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FIG. 1. Calculated velocities of the 01, 12, and 02 fronts as a

function of b, Inset: Minus the free energy vs the order param-
eter g. The curve is minus the integral of Eq. (2) for b=b..
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FIG. 2. Width of the 02 front as b, is approached,

The divergence is shown to be logarithmic. The wid!]
- x4, where g{(x,) =0.5 and g{x,) =1.5. i
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FIG. 3. Width of the 02 profile vs time for b =0, 0.14, 0.16,
and 0.18. Inset: Splitting of the 02 front for b=0.18. Order
parameter g vs position x. The dashed curve is the initial sta-
tionary solution for #=0. The solid curve shows a profile for
1 =10000 time units.

over well 1. Nevertheless, we can show explicitly that in
at least one case, the same splitting instability occurs.
Our equations of motion are now

dF(q1.q2)
), ={g; )y ————, i=12. (5)

(q,); (q:)u dq,-

Since a polynomial form for the free energy is cumber-

some, we choose instead a sum of three Gaussians,

Flg,(x,1),q2(x,1)}

3

==X hjexpf—1lg1 =) +(q2—g2)' 1w}, (6

J=1 )
where the positions of the three Gaussian peaks (g1;,42;)
are set so that there are wells at (0,0), (1,0), and (1,1),
which are analogous to wells O, I, and 2, above. The
width w=0.3. Since our arguments depend only on-the
qualitative shape of the free energy, the exact analytical
form is unimportant. The well depths (or hill heights, for
the mechanical analogy) are Ay=1, h,=h3—0.1,
h3;=1+b, where b is again a control parameter that is
proportional to the deviation of temperature from the
solid-liquid coexistence value.

In analogy to the one-order-parameter case, we find
that for b < b, ==0.168, the front moves at constant v¢-
locity, and there is no metastable phase. By contrast, for
b>b,, an ever-widening region of the (1,0) phase is
created. There are some subtleties, however. First, since
trajectories representing the front in order-parameter
space do not pass directly over the (1,0) hill, the value of
b, is no longer given exactly by the generalization of the
condition that vo; > vy3, although that relation continues
to hold approximately. Second, the metastable phase
must not lie too far from the line in order-parameter
space connecting (0,0) with (1,1). In the mechanical
analogy, it is clear that if the metastable hill is very far
from the other two, it cannot influence the particle dy-
namics. And third, there can be multiple solutions con-
necting (0,00 with (1,1) [7]. These can lead to hysteresis
in the behavior of fronts as & is varied. The two-order-
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parameter case will be discussed in detail in a Tuture arti-
cle 18], In particular, we are in the process of determin-
ing just “how close” the intermediate state must be to the
other two phases in the order-parameter space in order
for the splitting instability to occur. But what is impor-
tant here is that the splitting instability can exist even
when there are multiple order parameters.

We have thus shown that metastable wells in the free
energy lead naturally to a front-splitting instability that
generates macroscopic quantities of the metastable phase.
One might object that the metastable phase will only be a
kind of transient because the stabie phase will always be
present and will eventually replace the metastable phase.
The issue is how long is “eventually,” for materials are
often processed in just such & way as to minimize this
effect. Common techniques such as rapid cooling from
the vapor or the liquid state (often catled “splat cooling™)
[9] depend on rapid temperature changes and large
departures from thermodynamic equilibrium. As men-
tioned above, the basic time scale g is actually a function
of both the order parameter and the temperature. It will
get large either because the ordered phase has slow kinet-
ics, or because a phase with fast kinetics has been
sufficiently undercooled (as happens in the glass transi-
tion [10]1). For the particular case of metastable crystal
structure in solids, the time scale 1y in the solid phases is
several orders of magnitude larger than it is in the liquid.
This means that the velocity scale for v,2 will be corre-
spondingly smaller than that for vg). Once the 01 fronat
separates from the 12 front, the velocity scale .of the
separating subfronts will continue to be set by vo;, imply-
ing rapid creation of the metastable phase, while the 12
front between the two solid phases moves slowly, for all
temperatures.

We end with four notes. First, in the simplest case,
fronts split when vg; > vy3. For small departures from
equilibrium, vg) @ AFy and v >« AF >, where AFj; is the
free-energy difference between phases i and j. Thus, we
expect to see the splitting instability when AFg 2> AF ..
This condition formalizes the intuition that metastable
phases can form only if they are “close by” the stable
phase. For an undercooled liquid, the free energy of the
metastable solid phase would be just slightly higher than
that of the stable solid phase (AF,; small), whereas both
phases would have substantiaily lower free energies than
the liquid (F, S F) <« F¢and AFy; large).

Second, for the splitting instability to occur, not only
must there be a third well in the free-energy space, but
also the front velocities rg; and ry» must become equal as
the control parameter is varied. Since one typically
varies one—or possibly, two—control parameters, it is
clear that in a given experimental situation (e.g., fast
quenching), it may not be possible to produce the given
metastable phase. Thus, in an important sense, the
mechanism is necessarily nongeneric.

Third, the splitting mechanism differs from the “en-
tropy-production” principle [11,12] discussed recently in



YOLUME 67, NUMBER 10

PHYSICAL REVIEW

LETTERS 2 SEPTEMBER 1991

the context of pattern selection, and it should be possible
to distinguish experimentally between these two mecha-
nisms,

Fourth, certain aspects of the splitting instability have
been anticipated in studies of kinetic-depinning transi-
tions [13], surface meiting [6], and fronts separating
stable from unstable phases [14,15]. However, the work
on surface melting was for a solid-liguid-vapor system
near a triple point, and the more general applicability to
phases that are always metastable was not mentioned.
That on unstable fronts was in the context of amplitude
equations for bifurcations; the applicability to thermo-
dynamic phase transitions was not mentioned. Although
amplitude equations are similar to the Landau equations
discussed above, they often have complex coefficients and
thus cannot be derived from a free energy. But for real
coefficients (and triple-well potentials), one should be
able to see the “instability version”™ of front splitting.

In conclusion, we have described how strong undercool-
ing can lead to a front-splitting instability that produces
macroscopic quantities of a metastable phase, Because
our mechanism is highly specific, many tests can be en-
visioned. For example, certain patiern transitions ob-
served in previous experiments on directional solidifica-
tion of liquid crystals [16}] and on textures of cholesteric
liquid crystals in frustrated geometries [17,18] perhaps
are due to the front-splitting instability. Detailed calcu-
lations are under way.
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