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The growth of a crystal into an undercooled liquid is studied within a phase field model. In 
contrast to the usual Landau-Ginzburg approach, the free energy as a function of the order 
parameter is taken to be a pair of intersecting parabolas. This model is completely solvable and 
shows a transition from heat-diffusion allowed to disallowed steady-state crystal growth. 
Analytical expressions for the interface velocity and for the order parameter and temperature 
profiles are obtained and extensively discussed. In comparison with the Landau-Ginzburg 
model, most qualitative and quantitative features are the same. However, the solution of the 
present model is more general, avoiding perturbation theory, and gives a clearcut picture of the 
underlying transition. 

I. INTRODUCTION 

The kinetics of a first-order transition is governed by 
two dynamical processes: nucleation and growth. The rates 
and mechanisms of nucleation and growth are important in a 
number of applications. The crystallization of metals and 
metal alloys significantly affects their microstructures and 
thus many of their mechanical properties.’ The phase sepa- 
ration and crystallization of compounds from molten mag- 
mas has a profound effect on the distribution and morpholo- 
gy of minerals in natural ores. First-order solid-solid phase 
transitions (such as order-disorder2 or martensitic3 transi- 
tions) also play an important role in materials science. 

Nucleation corresponds to the first appearance of the 
new phase as a fluctuation in the original phase; if the cost in 
free energy to create the critical nucleus of the new phase is 
large enough, the rate can be quite small and the original 
phase can persist in a metastable state for a considerable 
period of time.4 The growth process involves the propaga- 
tion of a stable phase into the unstable phase and can be 
controlled by several factors. One of these is the rate of at- 
tachment of individual atoms or molecules to the new phase 
across the interface, and another is the rate of disposal of the 
heat evolved in the phase transition. As latent heat is pro- 
duced in an undercooled system, the temperature rises and 
the driving force for growth is reduced. 

It thus appears evident that a full theory of the kinetics 
of growth in a first-order transition would involve the vari- 
ation in space and time of at least two quantities: an order 
parameter that distinguishes the two phases, and the tem- 
perature, which affects the local driving force for the forma- 
tion of the new phase. Most theories, however, include one 
or the other of these quantities but not both. The “standard 
model” for growth’ assumes that the phase boundary is infi- 
nitely narrow, so that the order parameter changes discon- 
tinuously across it. It is treated as a delta-function source of 
heat, and the equation to be solved is the heat flow equation 
with a moving boundary condition. On the other hand, “ki- 
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netic” models for growth6 assume a uniform temperature 
through the interface and calculate the velocity of the propa- 
gating interface as a function of the driving force for the 
transition. 

In a recent paper two of us examined the steady-state 
solutions of the coupled equations for temperature and a 
nonconserved order parameter in one dimension.’ In agree- 
ment with earlier work,8 we found that incorporation of the 
order parameter equation gave “velocity selection.” Where- 
as in the standard model all velocities are possible, the intro- 
duction of a finite order parameter length and time scale 
allows at most one particular steady-state velocity to occur 
for a propagating interface. The surprising result from Ref. 7 
was that such steady-state solutions do not exist for all 
choices of system parameters. If the thermal diffusivity be- 
comes large enough (or, equivalently, if the latent heat be- 
comes small enough), the solutions abruptly disappear at a 
critical value. 

Reference 7 employed a quartic Landau-Ginzburg free 
energy as a function of order parameter (a 4” field theory). 
Although this is the simplest smooth form of the free energy 
that allows a first-order transition, it has some disadvan- 
tages. First, because of the nonlinear nature of the order 
parameter derivative of the free energy, analytic solutions 
for the critical point at which steady-state solutions exist are 
possible only in the limit of weak coupling of temperature 
and order parameter dynamics. For larger couplings, nu- 
merical techniques were needed to explore the dynamics, 
and the equations became increasingly stiff as the critical 
point was approached because of the growing disparity in 
length scales between temperature and order parameter. 
Second, examination of the time-dependent behavior in the 
region where steady-state solutions no longer exist was nu- 
merically too time consuming to attempt. 

In this paper, we examine the solution of the coupled 
equations for temperature and order parameter dynamics 
for a different free energy, one which consists of a pair of 
intersecting parabolas. This gives differential equations that 
are piecewise linear, so that analytical solution is possible for 
arbitrary coupling between order parameter and tempera- 
ture. Such a model was used earlier by two of us to study the 
“kinetic model” for growth of a nonconserved order param- 
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eter at a fixed temperature.’ Here we find that the qualita- 
tive features found for the quartic Landau-Ginzburg model 
in the earlier work are robust; the same conclusion results 
that for large enough thermal diffusivity the one-dimension- 
al steady-state solutions cease to exist. We can now go much 
farther with the equations, however, and draw conclusions 
that were explored only numerically or not at all in the ear- 
lier work. 

In Sec. II, we outline the general theory for coupled 
temperature and order parameter dynamics and introduce 
the new free energy functional. The calculation and results 
of Sec. III describe the steady-state solutions, which we show 
vanish above a critical value of the thermal diffusivity. Sec- 
tion IV describes the method for calculation of relaxation to 
the steady state, and of growth kinetics where the steady 
state no longer exists. Section V points to some general con- 
clusions. 

II. GENERAL THEORY 

The general formulation of the theory begins with a con- 
sideration of one hydrodynamic variable, here the tempera- 
ture, coupled to one nonconserved order parameter. This 
produces a phase field model, embodied in the following 
equations?I0 

au - aV2u + 5% dt- at ’ 
am I- 6F -= --- 
at pQ Sm To 

- yu. (2.2) 

The two variables are m, a nonconserved order parameter, 
normalized to be 0 in the liquid and 1 in the solid, and 
u = c( T - T,)/L, a reduced temperature, where L is the 
latent heat of fusion, c the heat capacity, and To the equilibri- 
um coexistence temperature. The other parameters are the 
thermal diffusivity a, the kinetic relaxation rate l?, the bulk 
number density pO, and a coupling parameter y, equal to 
I’L ‘/k,cTz. These equations will be applied to a one-di- 
mensional system. We take as the free energy per unit area A 
of interface (measured in units of k, To ) 

l - dz .x2 -- f s 4 -02 
dz'w((z-z'l)(m(z,t) 

--m 
- m(z’,t))‘. (2.3) 

The first, square-gradient, term accounts for correlations in 
the system with K the correlation length. The second term 
consists of the local free energy f (m ), that is the free energy 
which a spatially uniform system with order parameter m 
and temperature u = 0 would have. The last term is a nonlo- 
cal term which can account for long range interactions. The 
importance of such interactions in an application to surface 
melting was pointed out in Ref. 11. 

The particular version of the model depends on the form 
that is assumed for the local free energy f(m). Using the 
common Landau-Ginzburg (4”) form, 

f(m) = Em’(m - 1)2 (2.4) 

gives a continuous though nonlinear kinetic equation. E /16 
is the height of the barrier between the two wells in the free 
energyf(m). The combined model of Eqs. (2.1)-(2.4), 
with w = 0, has been studied by two of us7 for steady-state 
one dimensional growth, with analytic solutions obtained by 
treating y as a small parameter. Another set of equations 
results from using a double parabola model, 

f(m) =max 
[ 

A -m’,- 
2 

“; (m-1)2], (2.5) 

which gives a piecewise linear kinetic equation. Here R is a 
parameter that can be used to adjust the height of the inter- 
section of the two parabolas relative to the barrier height E of 
Eq. (2.4). Letting ;1 = E/2 allows the barrier heights to 
match, whereas when /z = 2E the curvatures of the minima 
at m = 0 and m = 1 match (Fig. 1). These two bounding 
values of R will be used in later sections to compare the re- 
sults of using the two equations (2.4) and (2.5). Using the 
parabola model, the kinetic equation includes a step function 
at the intersection z, of the parabolas. Equations (2.2)- 
(2.3 ), and (2.5 ) are then supplemented by a boundary con- 
dition locating this intersection at the interface, that is 

m(z,) = 4. (2.6) 
The combined model of Eqs. (2.2), (2.5) and (2.6) for 

constant u has been studied by two of us9 for, among other 
situations, steady-state one-dimensional motion, exactly in 
y. (The product yu here replaces E of Ref. 9.) This exactness 
in y is a significant advantage of using Eqs. (2.5) and (2.6) 
rather than (2.4) to obtain steady-state solutions, because it 
applies also when Eq. (2.1) is included; this is not the case 
for the Landau-Ginzburg kinetic model. It will be shown in 
the following section that the result of the critical depen- 
dence of the steady-state velocity on a, obtained treating y as 
a perturbation in the Landau-Ginzburg model of Eqs. 

4 I I * 
,t 

1 I 
* I 

16f 

FIG. 1. The local free energy as a function of order parameter, for the pa- 
rabola model, with A = l/2 (long dashed line) and R = 2 (short dashed 
line); and for the Landau-Ginzburg model with E = 1 (solid line). 
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(2.1)-(2.4), can be obtained also using the parabola model 
ofEqs. (2.1)-(2.3), (2.5) and (2.6), however, exactly in y. 

III. STEADY-STATE SOLUTIONS 

We now look for steady-state solutions for the general 
equations of motion (2.1) and (2.2) in one dimension. These 
will depend only on the variable z - vt, v being the velocity, 
and not separately on z and t. Introducing I,, = Km and 
i-ml = 1/;2r as natural length and time scales, respectively, 
we get the following steady-state equations, where for sim- 
plicity (z - vt)/l, has been replaced by z and v is now the 
dimensionless velocity in units of I,, /r, : 

1 
-VU, =-u, -urn,, 

20 
- urn, = ‘- m + 8( - z) + ;m, 

- 
I 

dzw(z-z’)[m(z’) -m(z)] --$. 

(3.2) 
Derivatives are indicated by subscripted letters, and B(z) is a 
step function. The key dimensionless parameters 
p = K ‘r/a and S = 2L 2/(Ak,cTi ) have been introduced, 
and the function w(z) has been made dimensionless. 

We intend to perform an analytical solution of the cou- 
pled integro-differential equations (3.1) and (3.2) as far as 
possible. The basic idea is to apply Fourier transformation 
defined as follows for a z-dependent function b(z) : 

Oc h(k) = 
I 

dz eik%(z). 
-cc 

The back transform is 

(3.3) 

b(z) = -!- 2~ 
s 

; dke-‘6(k). (3.4) 
oc 

We can summarize (3.1) and (3.2) in the following matrix 
equations: 

m(co)= [l+(s/2)] * 
(3.12) 

Notice that up to now v is not determined. An equation for v 
is obtained by the requirement [see Eq. (2.6) ] m (0) = l/2 
which leads to the basic equation 

I - m, 2 

’ -dz - =- 
s s n- 0 -iT dke-ik’ 

X 
k + 2ipv 

(k+2ipv)(2ikv+k2f2+2W(k))+2i&p’ 
(3.13) 

k2 ikv + - - ikv 
2P 

s 
-T 

ikv+$+ 1 + W(k) 

/iCk6(k) \ 

with 

We emphasize that we have obtained analytical expressions 
for the steady-state profiles, see Eqs. (3.7) and (3.8), as well 
as for the interface velocity v, given as a root of Eq. (3.13). 
From now on we simplify our model further by assuming 
W(k) to be zero; that is, we neglect nonlocal long range 
interactions for the order parameter. Then a complete analy- 
tical treatment is possible. 

First of all, one has to find the zeros of the cubic expres- 

(3.5) sion in k in the denominators of Eq. (3.13) and of D( k) in 
Eqs. (3.7) and (3.8). After integrating over k in the complex 
plane, the remaining space integration can also be evaluated 
analytically. Let us first describe the result for Eq. (3.13 ). 
Define 

W(k) = w(k) -w(O). (3.6) 
Here, C is a purely real constant which is determined by 
fixing the boundary conditions of the problem. The final re- 
sult for u(z) and m (z) can be obtained by matrix inversion 
and back transformation, yielding 

1 m u(z) = ug + - 
s s 

dz’ ikv dkeik(z’-z) 

2a - ,XI - oc D(k) 
(3.7) 

and 

m(z) =m, +’ 
s’ I 

dz’ O” dkeik(z’-z) ikv -I- k ‘/2p 
2a --lr --lo D(k) 

(3.8) 
with the abbreviation 

D(k) =(ikv+$-) [ikv+tk’+ 1 + W(k)] +F. 

(3.9) 
Here, 

C 
u” = 27rv[l+ (S/2)] ’ 

mo=Z!Z l+$ -‘. 
4rrv ( ) 

We study situations where u( - CO ) = 0. Hence C = - 2rrv 
and 

1 u() = - 
[l+ (S/2)1 ' 

s 1 m, =- 
2 [1+ (S/2)1 . 

The other boundary conditions are then 

-1 
u(oo) = [ 1 + (S/Z)] 

m(-oo)=l, 

s/2 
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r = v(2p + 2), s= -(2--p’), t= -2pv(2+6) 
(3.14) 

and 

p’ = 3s-r2 
-9 

3 
,+k+, d=$+!.$ 

(3.15) 

The nature of the solutions depends on the sign of d. If d<O 
(which is the normal case in our problem), define 
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p = J--p’3/21, q5 = arccos --4 , 
( > 2P 

(3.16) 

and obtain three roots xj as 

X,=23~COS- --y 
( > 

X2 =23~cos(;+~)-i, 

x3 =23&Tcos(f+& 

V/vmax 

In the opposite case, d > 0, define 

y1 = 3d - (q/2) + IF, y, = 3J - (q/2) - J;T, 
(3.18) 

and obtain three complex roots xj = ikj given by 

Xl =y, +y2 -+, 

0 I I I 

0 0.5 1 1.5 2 
logIP/Pt 1 

X2 = --icy, +y,) +iy$--J, 
3 

(3.19) 

X3 = -~Cv, +y,) --I ~~&f. 

With these definitions the basic equation can be simplified as 
follows: 

FIG. 2. Velocity as a function ofp. The results of the parabola model (three 
dotted lines with Sp equal to 0.2.0.98, and 1.6 from bottom to top), showing 
a nonuniversality in 6 in the parabola model. They are compared with the 
result of the perturbation calculation of the Landau-Ginzburg model 
(dashed line), for a,, = 0.1. 

l -MO= 2 (3.20) 

situation intermediate between the two extreme cases of cur- 
vature fitting (R = 2E) and barrier height fitting 
(/1 = E/2). Further, comparing the results of the models, 
Eqs. (3.21) and (3.22) apply over the entire range of S, 
giving a different quantitative dependence on 6. 

which is an equation for the velocity. Thus a unique velocity 
is selected, as in the Landau-Ginzburg phase field model.’ It 
is however more easily obtained and understood in the pres- 
ent parabolic model, from the variation of roots of a cubic 
equation. 

For analytical results, let us first study the limiting case 
p -+ CO. Then simple algebra leads to the velocity 

V =- 
max 

(3.21) 

For comparison, the Landau-Ginzburg model of Ref. 7 gave 
the perturbation result v,,, = 35/4. For smaller p, Eq. 
(3.20) can be solved numerically to obtain v. There is a non- 
trivial solution v(p) > 0 only for p >p,, whereas for p<p, 
only the trivial equilibrium solution v = 0 is realized.13 This 
is the same qualitative result as obtained with the Landau- 
Ginzburg form fox-f(m) : a large enough thermal diffusivity 
a prevents the existence of steady-state solutions. 

An analytical expression can be obtained for pc. Differ- 
entiating the right-hand side with respect to v and setting 
v = 0 givesp, as a function of 6. One obtains the rather sim- 
ple result 

2 
PC == (3.22) 

The same result, p,S = 2/3, was obtained in Ref. 7 from the 
Landau-Ginzburg free energy, but only as a perturbation 
result for very small 6. Recall, however, that S is defined in 
terms of E in the earlier work and in terms of ;1 in this paper; 
therefore we have to choose/z = E to fit this result. This is a 

In Figs. 2 and 3, the results of finding u numerically by 
solving Eq. (3.20) are shown and are compared to those 
from the Landau-Ginzburg free energy. The latter consists 
of a perturbation result valid only for small 6, and numerical 
data for higher S. From Fig. 2, the Landau-Ginzburg results 
for S = 0.1 are nearly identical to those of the present calcu- 
lation for S = 0.2. This means that the correspondence 
/z = E /2 (barrier height fitting) gives results in close agree- 
ment between the two calculations, and suggests that the 
barrier rather than the curvature is crucial for comparing the 
different models. The scaling assumption of Ref. 7 states that 
in a plot of v/v,,, against log(p/p,) all points fall on one 
curve. Within our model we examined this (Fig. 2) and find 
an explicit dependence on S. In particular, v/u,,, increases 
for fixed p but increasing 6. This shows that the scaling as- 
sumption is not generally valid. Concerning the numerical 
data for u (see Fig. 3) we mention that they lie within their 
error bars between the two extreme cases ;1 = 2E and 
R = E/2. This shows consistency between the two models 
used. 

Let us now discuss the steady-state profiles. Calculating 
the integrals in Eqs. (3.7) and (3.8) gives the following re- 
sults: 

Rex,<0 Xj His/j (Xj -Xi) 

+2ReT>OX. n. tr. --X.) I J ‘#I J 1 

X ( 1 - P) (3.23) 
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0 0.5 1 1.5 2 
lWP/P~ 1 

“0 0.5 1 1.5 2 
lWP/Pcl 

FIG. 3. Velocity as a function of p. The results of the parabola model 
(p, = 2/36) are compared with the scaled results (p, = 1/2u,,, ) of the 
numerical calculation of the Landau-Ginzburg model. (a) 6,o = 0.1 (tri- 
angles), compared with 6,, = 0.05 (short dashed lines) and 6, = 0.2 (long 
dashedlines). (b) 6,, = 0.49 (squares), compared with 6, = 0.245 (short 
dashed lines) and 6,, = 0.98 (long dashed lines). 

for z<O and 

X 
2PV 

( > 2pV + Xj 
(3.24) 

for z > 0. Here the xJ are given by the definitions (3.14)- 
(3.19). These analytical expressions are displayed graphi- 
cally in Fig. 4. Here we keep S fixed and choose three differ- 
ent values for p, one of them being very near top, . As pe is 
approached U(Z) becomes longer and longer ranged up to 
the point p = pe. At this point, heat diffusion is large enough 

1 

0.8 

0.6 

m 

0.4 

0.2 

0 

u 

“\ 
\ 
\ 
I 
\ 

\ 

\ 

i \ \ 
2- 
\+r _ ----~-=-au--- 

I I 
\ I --- 

-3.5 -1 1.5 4 6.5 9 
2 

h '*' 
-,- . I I I 

-\1 - 
I 1 

-O.l- 
'\\ \ 

. \ .\ \ ’ \ \ \ \ \ \ \ \ \ \ \ 
-0.3 \ \ 

\ \ \ \ I \ i 

-3.5 -1 1.5 4 6.5 9 
2 

FIG. 4. Spatial profiles, calculated with the parabola model for S = 0.2. The 
raxis is in units of i,,/fi and the interfacial point m = l/2 is at z = 0. The 
values ofp/p, are 9 (short dashed lines); 1.5 (dashed lines) and 1.05 (long 
dashed lines) for (a) the order parameter and (b) the temperature. 

to prevent the crystal from growing in a steady-state man- 
ner. 

On the other hand, the corresponding order parameter 
profiles, m(z), show no drastic variation in their interfacial 
widths as p decreases. However, since m follows the tem- 
perature which is not at its boundary value, it overshoots the 
boundary value considerably on the liquid side, resulting in a 
nonmonotonic behavior. 

Another interesting remark concerns the existence of 
xi’s with nonvanishing imaginary parts [the case d > 0 in 
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Eqs. (3.18) and (3.19) 1. As one sees easily from the explicit 
expressions (3.23) and (3.24) for the u and m profiles, this 
corresponds to an oscillatory behavior in the wings of the 
profiles. From our numerical analysis, we generally can ex- 
clude such a phenomenon for pzpc and for very large p. 
However, for intermediate values (e.g, S = 0.2, p = lo), we 
find this oscillatory behavior on the liquid side of the system. 
We must mention, however, that this effect is scarcely visible 
because the imaginary parts of x2 and xj are very small 
(0.127 for the parameters quoted above, which corresponds 
roughly to a length of one oscillation of 50 I,,, ) . Therefore it 
is not at all visible in a plot as in Fig. 4. The physical origin is 
somewhat obscure. The system tends to develop heat waves 
into the undercooled liquid as the crystal grows in a steady- 
state manner. This is similar to the qualitative shape of the 
order parameter profile for the kinetic depinning transition 
studied by Meister and Miiller-Krumbhaar. I2 

In conclusion, our model shows the same qualitative 
behavior as the previously studied model. However, a nearly 
complete analytical treatment is possible and perturbation 
theory in S is not necessary. The underlying mathematical 
reason for the transition to heat diffusion disallowed growth 
becomes more transparent. As a function of S and p, the 
solvability of a transcendental equation for u [see Eq. 
(3.10) ] decides whether there is a steady-state solution or 
not. 

IV. BEYOND THE STEADY STATE 

In this section we focus on an analytical treatment of the 
full equations (2.1) and (2.2). The general method was de- 
veloped in an earlier paper by two of us9 for a one-variable 
system. The generalization to the present two-variable sys- 
tem (u,m) does not entail conceptual difficulties but the cal- 
culations are more tedious. Therefore we do not carry them 
out in great detail because they are similar in spirit to those of 
Ref. 9. In order to have a definite starting point, let us return 
to Eqs. (2.1) and (2.2) rewritten in the reduced time and 
space units defined at the beginning of Sec. III: 

au i a% -=-- 
at 

+ant 
2p a2 at ’ (4.1) 

am 1 a2m 
dt= -m+B(z,(t)--z)+~~ 

- dz’u(z-z’)[m(z’) -m(z)] -9. 
f 

(4.2) 
We can rewrite this as 

L u = 0 ( 0 
m > @o(t) -z) ’ (4.3) 

where 

( a 1 a2 a ---- -- 
L = at 2~ a2 at 

s 
1 

(4.4) 

z 
&-J&+1+@ 

is a linear nonsymmetric operator. In Eq. (4.4), % denotes 
the nonlocal linear integral operator defined by 
Wm = Jdz’ w(z- z’) (m(z’) - m(z)). 

The quantity z, (t) represents the position where the 
order parameter profile moves from one parabola to the oth- 
er. In a first step, it is assumed to be known, but it has to be 
determined implicitly later. This was the main idea of the 
exactly soluble model in Ref. 9; the nonlinearity of the start- 
ing equations is hidden in z, (t). Equation (4.3) can then 
generally be solved by Green’s function techniques. Let us 
define a 2X2 matrix, G(z,t), as the solution of the matrix 
equation 

LG(z,t) = I&z)S(t) (4.5) 
wherelis the 2 X 2 unit matrix. Then G(z,t) can explicitly be 
calculated by Fourier transformation. In order to give the 
final result in a condensed form, we define two functions e 
andf by 

e(k) =+[(i+$k2+ 1 + W(k) +6], (4.6) 

f(k) =e2 -$k2 [+k2+ 1+ W(k)], (4.7) 

where W(k) is given by Eq. (3.6). Let us now introduce two 
frequencies 

w,(k) =dk) -m, w,(k) =e(k) +m. 
(4.8) 

Then, the 2 X 2 matrix G(z,t) can be expressed as 

G(z,t) =%I- dkg 
-m 

-q(k) 
;k2i- 1+ W(k) -w,(k) - ~1 (k) 

‘f 
s -- 
2 

$k’-o,(k) 

:k2+ lf W(k) -o,(k) - ~2 (k) 
-e - o,(k)l 

6 -- 
2 

$k2-o,(k) ’ )I (4.9) 

J. Chem. Phys., Vol. 94, No. 8, 15 April 1991 
Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Lowen, Schofield, and Oxtoby: Diffusion disallowed crystal growth. II 5691 

Unfortunately, even for W(k) ~0, the k-integration 
cannot be carried out analytically. 

The second step in constructing the general solution of 
(4.3) consists of finding a particular solution, 
(u, (z,t),m, (z,t) ). Again by Fourier transformation one 
finds 

with 

f(k,@) - Jr JIw dt* r:’ dz’ e ikr’tiot’ (4.11) 

which of course has to be understood as a distribution. The 
determinant N( k,w) is given by 

N(k,cc,) = -iw+-&k’ 
> 

x [ - iw + $k2 + 1 + W(k)] -i&a/2. (4.12) 

As discussed in Sec. III, one has freedom in choosing one 
boundary condition. In fact, the additive constants (C,, 
C,,, ) have to fulfill only 

SC”/2 + cm = 0. (4.13) 

Therefore we can choose one of them (e.g., C, ) freely. In the 
following, we consider always the physical situation of a 
thermodynamically stable solid (z- - 00 ) growing into an 
undercooled liquid (z- CO ). We therefore choose 
up ( - CO ) = 0. This leads to 

c,= -1, 
1 + s/2 

c,, = .A!?-. 
1 + s/2 

Then, 

up( - co) =o, m,(-a,)=l, 

U,(CO) =C,, m,(m) =C, (4.15) 

just as in Eq. (3.12). With this notation, we are able to write 
the general solution of Eqs. (4.1) and (4.2) in an analytic 
form. Let (~~~~, ) be the initial condition for t = 0 which 
should fulfill the same boundary conditions (4.15) as 
( $$, ) does. Then the general solution can be expressed as 

ti%> = ($3 
s 
cc + 
-ma 

X 
uo (z’) - up (z’,O) 

m. (z’) - mP (z’,O) ’ 
This can be verified by showing 

for t > 0, and 

(4.16) 

!5ct:,;) = (z$gf 
Although Eq. (4.16) looks rather explicit, one has to re- 
member that the z. (t) entering in (~~~~~~, ) via Eqs. (4.10) 
and (4.11) is not known. It has to be determined from 

m(z, (t),t) = t. (4.17) 

In fact, this is an integral equation for z, (t) which can be 
written more explicitly as 

-=-&C+ 1 
2 

+-= dk~~/h~;_di’ 
1+6/2 (277.)2 - 00 

X 
s 

q~li--4(~-~,)dZ’e-‘k”-i~‘. -:z,i;‘” 

(4.18) 

with the initial condition z, (t = 0) = 0. 
Let us now discuss these results (4.16) and (4.18). For 

physically accessible parameters, the frequencies w, (k) and 
02(k)definedby(4.8)arepositivefork#Oandw,(0)>0, 
w2 (k) a k 2, as k-0. Equation (4.9) then shows that G(z,t) 
vanishes as t -+ 03. Transferred to the expression (4.16) for 
the general solution, this means that ($;f:, ) approaches the 
particular solution ( $(~$~ ) more and more closely as t + 00. 
This is consistent with the numerical results of Ref. 9 where 
it was found that a general initial condition finally ap- 
proaches the steady-state solution, i.e., the steady-state solu- 
tion is stable. 

Let us now consider Eq. (4.18) for the interface location 
z, (t) in more detail. First, for symmetrical initial conditions 
and u = 0, z, (t) ~0 and everything reduces to equilibrium. 
This case, where the interface merely changes its shape but 
does not move, can be calculated much more simply (in fact, 
it was studied in detail in Ref. 9) but it is irrelevant for 
growth processes. Next, we can recover the steady-state the- 
ory of Sec. III by making the ansatz 

z,(t) = vt, (4.19) 

where v has to be determined from Eq. (4.18 ) . Then by sub- 
stitution x = z’ - vt, the t ’ and o integrations in Eq. (4.18) 
can be done trivially and the resulting equation is just the 
basic Eq. (3.13) from Sec. III for the velocity v. Of course, 
Eq. (4.18) is also valid in the heat-diffusion governed regime 
0 <p <pc where no steady-state solution exists. It is not clear 
apriori whether or not there is really growth, i.e., whether or 
not z, (t) diverges for t -+ CO. One can, however, surmise that 
crystal growth still occurs, not in a steady-state manner, but 
with a time-dependent velocity v(t) =dzo (t)/dt and with 
time-dependent interfacial profiles. Little is known about 
this region. It would be interesting to discuss analytic and 
numerical properties of v(t) for large t. For a numerical 
study, Eqs. (4.16) and (4.18) are not well suited because 
z, (t) is needed for negative t. We gave this expression in 
order to establish a link to the steady-state theory. Alterna- 
tively, one could express u (z,t) and m (z,t) as Laplace trans- 
forms instead of Fourier transforms to obtain a causal 
expression for the time development of an arbitrary initial 
interfacial profile that could serve as a starting point for a 
numerical and analytical calculation of z, (t) in the diffu- 
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sion-governed region. We leave this for future work. 
Let us finally make a remark concerning a conserved 

order parameter m. Then the dynamics is given by making a 
replacement in Eq. (2.2) : 

l- 6F --- 
#00 Sm r, - y” 

--p’[ -J-gy]. 

(4.20) 

The same analysis as briefly outlined in this section can be 
applied. For details of the method, see again Ref. 9. The 
results are obtained by inserting additional factors of k 2 in 
many of the Fourier space expressions given. However, for a 
conserved order parameter, there is no steady-state solution, 
even for p >p,, because the shape of the profile cannot be 
independent of time. 

V. CONCLUSIONS 

As this paper indicates, the results of Ref. 7 are robust: 
changes in the shape of the free energy do not change the 
conclusion that for large enough thermal diffusivity steady- 
state solutions for one dimensional growth no longer exist. 
The linearity of the equations allows one to procede much 
farther in the analysis in the present case, however. Al- 
though the quartic potential is undoubtedly smoother and 
more realistic than the intersecting parabolas model, both 
are evidently ad hoc. It is gratifying that two such different 
models share common characteristics. 

The double parabola model can be generalized in a num- 
ber of directions, some of which we plan to investigate in 
future work. Conserved as well as nonconserved order pa- 
rameters can be studied, and higher order gradients in the 
free energy can easily be incorporated. The role of the long- 
range interaction w(r) in physical systems needs to be 
looked at. It is possible to include additional order param- 
eters, making the free energy surface an intersection of para- 
boloids, rather than simple parabolas. In this case, Ref. 9 
showed that the dynamics could be significantly perturbed 
in the kinetic model in which the temperature is held fixed. It 
would be of interest to study this in systems which have more 
than one order parameter fully coupled to a temperature 
field varying through space. 

As described in Sec. IV, one of the most interesting ques- 
tions is the nature of the time-dependent solutions in the 
regionp <p,. Do the shapes of the order parameter and tem- 
perature profiles settle down at long times, with only the 
velocity continuing to change? Or is the non-steady-state 
region more complicated than this, with profiles also failing 
to approach fixed forms? The answers to these questions 
should be useful in analyzing growth in real experimental 
situations in which large undercoolings (approaching the 
isoenthalpic limit) can be achieved. Work is proceeding in 
these directions. I4 
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