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A microscopic theory of planar crystal surface melting is described and applied to rare gases with
Lennard-Jones potential. Explicit results for the solid-vapor density profiles are presented that ex-
hibit surface melting in the vicinity of the triple point. Our approach is based on density-functional
techniques combined with a van der Waals approximation and a hard-sphere fluid as a reference

system.

I. INTRODUCTION

It is a common experience that liquids may easily be
undercooled but crystals can hardly be overheated. This
disparity between freezing and melting gives a clue that
melting initiates at the crystal surface, which is a natural
and omnipresent defect in the crystalline order, whereas
freezing has to overcome kinetic obstacles of nucleation.

Over the years empirical evidence has accumulated to
demonstrate that the melting action is indeed on the sur-
face.! In particular, the experiments confirm older ideas?
that melting of a solid in coexistence with its vapor starts
in a continuous fashion well below the triple point and
evolves via the growth of a quasiliquid surface layer as
the triple point is approached. Accordingly, surface
melting is an example of interfacial wetting.

The phenomenon occurs in rare-gas crystals’ as well as
in metals* 1 and appears to be universal with the
qualification that on metals the equilibrium thickness of
the molten layer depends sensitively on the lattice orien-
tation of the interface.*’ The decisive role of the solid-
vapor interface to initiate melting is further underlined
by the observation that Ag crystals (melting temperature
1234 K) covered by a thin film of Au (1337 K) can be sub-
stantially overheated.!!

These findings have attracted much attention since
they may provide a key for a deeper understanding of the
molecular melting mechanism, which is still unsatisfacto-
ry. Quantitative aspects of surface melting have been
studied by classical phonon theory,!? lattice models,'>!*
phenomenological Landau theories,’> ™13, a Kosterlitz-
Thouless approach,'® and by computer simulations.?’~2°

A first-principles description of interfacial features re-
quires a realistic theory of coexisting bulk phases. For-
tunately, this prerequisite is supplied by the density-
functional method,?® which has been developed into a
fairly accurate scheme, allowing one to compute equilib-
rium properties of bulk crystals from those of the
fluid.?’ ~?° In particular, the short-distance structure of
the liquid is carried over to the solid phase and the crys-
talline order is viewed as a condensation of density waves.
Recently, we extended this approach® to cope with inter-
faces involving a spatially varying multiple order parame-
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ter, such as in quasiliquid wetting layers. In this paper
we apply this theory to examine surface melting in
Lennard-Jones-type crystals.

In Sec. II we briefly recall the steps leading to a van-
der-Waals-type variational expression for the interfacial
free energy with the hard-sphere fluid as a reference sys-
tem. Section III outlines the computation of the
coefficient functions in the free-energy functional. We
employ the modified weighted-density approximation
(MWDA) recently introduced by Denton and Ashcroft.>!
The MWDA is simple to implement and yields satisfacto-
ry results for the freezing of hard spheres. However, in
the present case the MWDA must be adapted to allow
for an unbiased variational calculation of the local order
parameters in the interface. The problem is that a
weighted-density approximation does not automatically
rule out unphysical configurations with overlapping hard
spheres.*2.

The treatment of the attractive part in the atomic in-
teraction is described in Sec. IV which also contains the
resulting bulk phase diagram. In Sec. V we present our
main results for the interfacial profiles displaying surface
melting near the triple point. Section VI is a brief sum-
mary with some concluding remarks.

II. INTERFACIAL FREE ENERGY

In order to treat the thermostatistics of a strongly in-
homogeneous system like a solid-vapor interface, we use
the density-functional formalism,?® which rests upon a
variational principle. For a one-component many-body
system with volume V, temperature 7, and chemical po-
tential u there exists a wunique Gibbs functional,
Q(V,T,u;[p]) of the single-particle density p(r) such
that

Q(V,T,u)=min

LoV, Tous[p]) (1)

equals the grand canonical potential. The minimizing
density distribution is the equilibrium distribution within
the given boundary conditions supplementing (1).

This variational principle only ensures the existence of
Q[p]. As a first step to construct a concrete approximate
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expression for Q[p], we assume a pairwise interatomic
potential ¢(r)=¢,(r)+¢,(r), which we split’® into a
short-range part ¢, and a long-range tail ¢;. We treat the
latter in mean-field approximation, so that

Qpl=9,pl++ [d’r [ d*rpprig(Ir—r]), @

where ) arises solely from ¢,. It is convenient to
separate the ideal gas contribution from Q[p] and to
define an excess functional by

‘Q‘exc[p]=ﬂs[p]_0id[P] B (3)
Qid[p]=/3”1derp(r){ln[Pp(r)]—l} , 4)
where A denotes the thermal wavelength and

exe; for the mo-

B=1/(kgT). Later we elaborate on Q
ment we take this quantity to be given.

Let us consider a planar crystal-vapor interface with
perpendicular z direction. We parametrize p=pp(r)
=p(r,I'(z)) by a set I'(z)=(by(z),b,(z),...) of local-
order parameters with by(z) denoting the local mean den-
sity. For instance, I'(z) may be the set of coefficients in a
lattice Fourier expansion of p(r). The next and crucial
premise is that the functions b;(z) vary smoothly over
the domain of short-range order, which is the range of
the direct correlation function (DCF)

SZQCXC[p ]

(2) )= —
¢ (6D BSp(r)Sp(r’) p=pr

(5)

In this case we may perform a gradient expansion?%33

of Q [pr], truncated after terms quadratic in b, =db, /dz,
to arrive at a van der Waals form>® for the interfacial free
energy per unit area,

2:f_-:odz[%g,-j(l“(z))5,~(z)15j(z)——u(1‘(z))]
_%f‘j-wwdzf~+°o°°dz,u(|z_zr|)[bo(z)_bo(zr)]z ,
(6)

with summation over i and j implied. The matrix g is
given by

_ksT 3 3.0 12, (2) (e o
g;(T)=—7 [ d*r [d*r'(z—=z'VeP(x,r;T)
dp(r,T) 3p(r’,T)
X .
b, b, @
The term

u(D)=—QV,T,u;[prN/V

denotes the negative Gibbs functional per unit volume of
the bulk system as calculated with spatially constant T.
Finally, u(z) is the tail potential ¢, after lateral integra-
tion. We note that in the mean-field contribution of the
tail potential [second term in Eq. (6)] the global form of
the mean density profile by(z) enters. The long range of
u(z) rules out a gradient expansion in this term.

The variational principle (1) carries over to =. The
equilibrium density profile is obtained by solving the
Euler equations
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S5 0, (8)
with the boundary conditions that I'(z) attains the bulk
solid or gas value as z—+ 0.

Apart from the contribution of the tail potential, the
expression (6) for 2 resembles a phenomenological Lan-
dau ansatz with a multicomponent order parameter. It
should be emphasized, however, that here the coefficient
functions are fully specified in terms of practically com-
putable bulk quantities. Qualitative features of surface
melting, obtained analytically with a simple model for
v(I") have been described previously.”’30 Here, we re-
quire a more advanced approximation for Q.. (). A
suitable choice is offered by the weighted-density approxi-
mation?®?° (WDA). However, because we need to specify
g;(T') and v(T') only for spatially constant®® order pa-
rameters I', we gain simplicity in replacing the WDA by
its modified version, MWDA, which is likewise based on
a spatially constant weighted density.

At this point one may object that the gradient expan-
sion is unnecessary, since the equilibrium form of pp(r)
could be obtained directly from Eq. (1) as soon as we
choose a suitable approximation for (.. that supplies
coexisting phases. Originally, we indeed followed this
seemingly straightforward procedure,’> using the WDA
(Ref. 29) to ensure a realistic DCF for the reference
liquid,>® but the interfacial density profile could not be
stabilized. After it was realized®’ that the trouble is due
to overlapping hard spheres, we turned to the van der
Waals approach where the overlap-problem can be over-
come. Moreover, we expect the gradient expansion for
I'(z) to be physically justified in the present context,
since the crystal-vapor interface near the triple point
should display distinct length scales which separate the
sharply peaked variation of the local particle density
from a comparatively smoother behavior of the order pa-
rameters I'(z).

III. APPROXIMATE EXCESS FUNCTIONAL

The MWDA, like the WDA, is based on the premise
that a crystal can be viewed as a grossly inhomogeneous
liquid with lattice-periodic density p(r). In the liquid-
based theories of bulk freezing the structure is modeled
by a hard-sphere system, which evidently undergoes a
liquid-solid transition. The attractive part of ¢ is treated
perturbatively.

We follow this practice and replace the potential ¢, by
a hard core plus a short-range attraction, ¢,. To first or-
der in ¢, we have

Qexclp]=Quslp]
+1fd’ [drprip(rigus(r,r,[p])
X, (lr—r']), (9)

where gys(r,1’,[p]) is the pair-correlation function of the
inhomogeneous hard-sphere system. An approximation
for gys in (9) and the choice of the effective hard-sphere
diameter d will be specified in Sec. IV. Here we focus at-
tention on Qyg[p]. The input data are the excess free en-
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ergy per particle ¥(5) and the DCF, cy (r,p), of a uni-
form hard-sphere liquid with density p(r)=p. We em-
ploy the Percus-Yevick approximation for both quantities
in order to ensure consistence with the compressibility
sum rule;*! hence

p=2|—1— —1|—(1— 10
BUP=3 | (5 n(1—n), (10
with 7=(7/6)d’p, and
3
LA e <
¢D(r;p)= a+bd+a2 FaE r=d
0, r>d,
1y
__ (1+29)? ’ p=Sn1+1/2)
(1—m)* (1—m)*

The inhomogeneous hard-sphere liquid is now matched
to the homogeneous reference system by replacing p in ¢
with a suitably weighted average of the nonuniform den-
sity pp(r). To determine the profiles I'(z), the parame-
ters b; €T should be varied independently within the ob-
vious constraint

Jare %—|r—r'| pr(r)<1. (12)

A convenient way to incorporate (12) in combination
with the Percus-Yevick approximation is offered by the
divergence of #(p) in the limit 17— 1, which inhibits
configurations violating (12) in the uniform liquid phase.
Therefore, we set

Wp)=h(p)+Pp), (13)

0, p=p,

Fo)={pp)—34_ =L Y uy o cpcpr (14)
V! apv

©, pZp*,

where p*=6/(md?). We note that ¢(p) still diverges as
p—p*. In (14), p, is an additional parameter that can be
chosen conveniently.

The MWDA adapted to the constraint (12) is now in-
troduced by
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Quslp]=NP(p)+ [ d* p(r)P[p(r)]—uN , (15)
with N = f d>r p(r) and the weighted densities
A 1 ’ PN ’ A
p——ﬁfd3rfd3r p(r)p(r)D([r—1'];p) , (16)
ﬁ(r)=p*fd3r’9 i1-—|r—r’| p(r') (17)
) .

In the spirit of the MWDA, the weight function of
(r,p) will be fixed by the condition

SZ‘QHS[P] 1
o = —r',p), 18
3p(r)8p(r') |p(r)=5 BcHS(|r rl.p) 1%
together with the normalization
fd3r D(lr—r'|;p)=1. (19)

The equations (18) and (19) express the natural require-
ment that an approximate Qyg[p] should respect the
basic relation (5) in the known case of a homogeneous
liquid. When g approaches p*, then Q. [p] increases
indefinitely and remains infinite for 5> p*. Consequently,
configurations violating (12) are suppressed by the cost in
free energy. On the other hand, if we set p,=p* and
=0, we are back at the original MWDA. Since its
weight function does not tend towards a step function
when p—p*, the MWDA fails*® to account for the con-
straint (12). In the previous MWDA calculations®' the
problem with (12) is bypassed by the constraint of fixed
mean density. In the present case the spatially varying
mean density must interpolate between the solid and the
vapor phase and thus changes significantly across the in-
terface. Our device to deal with (12) is linked with the
Percus-Yevick form of (p) and somewhat ad hoc, but
computationally natural and it does not spoil the simpli-
city of the MWDA. Table I compares results for coexist-
ing densities at the hard-sphere freezing transition, ob-
tained from the unconstrained MWDA and with the
above modification for the choice p, =0.99p*.

It should be mentioned that the MWDA has a
deficiency which also infects its modification proposed
here: The DCF of the hard-sphere solid c(r,r’;[pr]) de-
duced from the approximate (. [p] has oscillatory
terms which do not decay as |r—r’| increases. However,
the amplitudes are inversely proportional to the crystal

TABLE I. Hard-sphere coexisting liquid and solid densities, po;,ps, fcc lattice constant a,, number
of particles per unit cell, 2a3py,, and localization parameter a [see Eq. (25)] for three different versions
of MWDA: (1) original version without constraint, (2) original version with constraint 2a3p,, =1, and
(3) our adapted version with p,=0.99p*. Here we have used the Carnahan-Starling equation of state
for the liquid. The data in row 2 differ somewhat from the original work (Ref. 31) since we took more

reciprocal lattice shells to evaluate the solid density.

Adapted

version Constraint pod? Posd’® ay/d 2a3pos ad?
No No 0.8292 1.2444 0.8074 1.3100 160.9
No Yes 0.9119 1.0436 0.7825 1 130.1
Yes No 0.9208 1.0453 0.7795 0.9902 136.4
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volume and the oscillations tend to average out in in-
tegrals such as in (7); therefore, we shall ignore these os-
cillations.

IV. ATTRACTIVE INTERACTION
AND PHASE DIAGRAM

The interatomic forces have previously been split into
several pieces, which we specify now in more detail. We
start with the Lennard-Jones potential
12 6
g g

dry(r)=4e ,

(20)

For distances r <r,, with 7, in the range’® between 20
and 30, ¢(r) can be approximated by the sum of two Yu-
kawa potentials. This fit* is used to represent ¢,(r). The
long-range part ¢,;(r) is then defined by

V
Qexc[P]:QHs[P]+?P(2)fd3r 8us(7;p0)ds(r)
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¢LJ(r)—¢s(r),
$u(r)= diro) =@ (rg), r<ry.

r2r on
2

In the subsequent numerical computation we took
ro=2.790.

With the potential (20), our theory is applicable pri-
marily to rare gases but we also have the option to
dismiss Eq. (21) and to consider ¢,(r) to be an indepen-
dent microscopic input. In particular, we may set
#,(r)=0 to examine systems governed by short-range
forces only.

As discussed previously, the potential ¢ (r) will be re-
placed by a hard-core repulsion and a residual short-
range attractive part ¢,(7). In order to obtain an explicit
expression for the contribution of ¢,(r) in Eq. (9), we
adopt approximations introduced by Curtin and Ash-
croft,* yielding

+1 [ a3 [ @ [p(r)—pollp(r) —pold,(lr—r'NOr—r'| =1y, /2), (22)

with

r 22(1/6)0.

és(r),

—¢, r<2/0g . (23)

bulr)=
In Eq. (22), the pair-correlation function gyg(7;p) of a
homogeneous hard-sphere fluid with mean density p,
enters, for which we use the Verlet-Weis expression*!
with an effective hard-sphere diameter,*?

— B, (r)
e

d(1)= [ “dr(1— ). 24)

temperature kT/e

0.0 0.5 ' 1.0
. 3
density po

FIG. 1. Bulk phase diagram for a Lennard-Jones system
without (dash-dotted line) and with (solid line) long-range po-
tential tail. Squares denote simulation data (Ref. 43) for a trun-
cated Lennard-Jones potential.

r

The step function in (22), with r,, =V'2a, denoting the
interparticle spacing in the solid, avoids self-interaction
effects.*

In employing the approximation (22) for Q. [p] the
main difference with Ref. [40] is in Qug[p]; here we take
the MWDA for Qy4[p] instead of the WDA, for reasons
mentioned in Sec. III.

To determine the bulk phase diagram we parametrize

the local density as

372
p(r)=2a3p, -ﬂ S exp[—a(r—R)], (25)
R

where {R] label the sites of an fcc lattice; the volume of
the elementary cell is 2a .

With the input data provided by MWDA, we mini-
mized the grand canonical free energy with respect to the
three parameters a,, py, and a. The result is shown in
Fig. 1, which also displays the dependence of the phase
diagram on the long-range tail of the Lennard-Jones po-
tential, ¢-'(7). The values of the critical and triple-point
temperature turn out to be kpT,=1.47¢ (1.39¢) and
kpT,=0.74€ (0.71¢), with the values in brackets holding
for ¢, =0.

Compared to simulation results®® (kzT,=1.36g,
kpT,=0.68¢) for Lennard-Jones potential truncated at
r=2.50, and experimental data for Argon*
(kgT.=1.26¢, kgT,=0.7¢), both the critical tempera-
tures and the triple-point temperatures are reproduced
satisfactorily.

V. INTERFACIAL PROFILES: SURFACE MELTING

We examine now the solid-vapor interface when the
temperature is raised along the sublimation line towards
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the triple point. The occurrence of surface melting will
be inferred from the interfacial profiles of local mean den-
sity and crystalline order.

These profiles are obtained by solving the Euler equa-
tions (8), which read explicitly,

gij5j+rijk5j6k = —%"‘Ksio > (26)
where b, =db, /dz and
98k 98
L= — 27
L= 3, " ab, b, @n
K@= [""dzulz—2'Dlboz)=bo(2)] . (28)
We also note that
p(D)=v,(D)—1b3 [d’r ¢,(r), (29)

with v (T") deriving from ¢ (7).

It is seen from the expansion (6) and the Euler equa-
tions that 3(I") may be interpreted as the dynamical ac-
tion of a fictitious particle moving in I' space with mass
tensor g;;(I") and potential energy v(T"). The coordinate
z plays the role of a time variable. This analogy*° is par-
ticularly intuitive and useful in the case ¢; =0, where the
“memory ” term K vanishes and “‘energy conservation”
yields immediately a first integral of motion.

To solve Eq. (26) we take over Eq. (25) with the para-
meters now depending on z,
3/2
p(r,T(z))=2a}py(z) :r z)

X 3 exp[ —a(z)(r—R)?], (30)
R

where a, is the temperature-dependent but z-independent
lattice constant of the fcc crystal. The parametrization
comprises lattice Fourier coefficients of arbitrary order.
It will be convenient to replace the variable a(z) by the
Fourier coefficient

Gi
x(z)=py(z)exp " dalz) (31)
with G; a basis vector of the reciprocal lattice
G?=37%/al. With the ansatz (30) we truncate I'toa
two dimensional space, so that I'(z)=(by(z)=pyz),
b,(z)=x(z)) involves the local mean density po(z) and

the crystallinity x(z). We note that the ' space is re-
stricted by the inequality }(z)=py(z). The graphs of
v,(I') and g;;(T") are displayed in Figs. 2 and 3 for solid-
vapor coexistence at the reduced temperature
t=(T,—T)/T,=0.015. The potential v (I") exhibits two
peaks of equal height corresponding to bulk solid and
gas, and a lower peak for the incipient liquid. The mass
tensor g;;(I')=g;(I') is seen to vary significantly with the
order parameters. This finding casts doubts on the quan-
titative features of models'”>'** with constant g;;. We
solved Egs. (26) numerically with a shooting method,
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starting at the gas peak and selecting those trajectories
which reach the solid peak.

Let us first consider short-range forces. For this case
and for two order parameters it has been proven®® that
the number of solutions is odd. The physically realized
trajectory (i.e., profile) is that one with minimal action
(i.e., surface tension). Here, we find that there is only one
trajectory connecting the gas peak with the solid peak,
and it approaches the liquid peak as ¢—0. Therefore,
this solution describes complete surface melting.

In Figs. 4(a)—4(c) the local mean density p,(z) and the
crystallinity y(z) are shown for the reduced temperatures
t,=0.3433, 1,=0.0149, and ¢, =1.2X 10~*. The profiles
are independent of the interface orientation. In order to
detect a possible orientational dependence of surface
melting, one has to include additional crystal order pa-
rameters allowing, for example, the width of the density
peaks in Eq. (30) to become anisotropic.

In Figs. 5(a)-5(c) we plotted profiles of the laterally in-
tegrated density

1
p(z)——A-ffAdx dy p(x,y,z) (32)

for the (110) interface (area A). p(z) varies with the
orientation of the interface for purely geometrical
reasons. The onset of crystalline order separates from the
rise of local mean density on the vapor side and a quasi-
liquid layer grows progressively as ¢t—0. The incipient
liquid-solid interface moves to the right without discerni-
ble change in its shape.

At the triple point kzT,=0.71e (¢,=0) the (10-90)
width in the gas-liquid interface is 2.1 o. Its surface ten-
sion is found to be 1.04¢ /0. By extrapolation of simula-
tion data® to the above value of T,, we find 1.5+0.30
and 0.9+0.25¢ /0?2, respectively. For the width of the
liquid-solid interface at T,(¢, =0) we obtain the value 2.0
o and a surface tension of 0.57 /0%, whereas computer

. )
0
\\\\\\\\\\\ ‘\‘\:m:!‘\: :' “,. R
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FIG. 2. Potential v,(I")o/B vs order parameters pyo’® and

xol.
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simulations?® yield the surface tension to be
0.3540.03¢ /0%, very slightly depending on orientation.
This discrepancy may be due in part to the gradient ex-
pansion for 3(I"), which is known*® to overestimate, as a
rule, the liquid-solid surface tension.

Finally, we turn to the effect of long-range forces with
potential /. We find that the interfacial widths and the
surface tensions are not altered significantly but the in-
crease in thickness of the quasiliquid layer is substantial,
as can be seen in Fig. 6. For example, at t,=2.5X10"3
we obtain a thickness L,=3.00 for ¢,=0, while
L,=4.60 in the case of long-range forces. The latter
value of L corresponds to about eight molten (110) lay-
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ers and agrees satisfactorily with the experimental results
from argon films.> The effect of ¢, on the thickness L(¢)
of the wetting layer illustrates the general result!®1617.30
that long-range forces induce a change from a logarith-
mic to an algebraic growth law for the asymptotic behav-
ior of L(t—0).

A glance at Figs. 4 and 5 might provoke the impression
that the incipient liquid grows exclusively at the expenses
of the crystalline order, implying that no solid phase is
left at the triple point. This conclusion would be unwar-
ranted, however. The point is that the Euler equations
are translation-invariant. Hence, if I'(z) solves Eq. (8),
then I',(z)=I(z+a) is also a solution. In other words,

e
e

22
e
=

NFLZ

===
AT

FIG. 3. Mass tensor g;;(I') /(€0®) vs order parameters p,o* and xo>. (a) g, , /(ea?), (b) g,, /(e0>), (c) g, ,/(ea?).
ij p PoPo XX PoX
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the shift in the position of the entire interface corre-
sponds to a zero mode without costs in free energy. We
have tacitly and arbitrarily fixed the origin of the z axis at
the vapor side of the interfacial layer. We could do oth-
erwise and put, for instance, the origin on the solid side,

order parameters order parameters

order parameters

(a)

10 15

(b)

FIG. 4. Order-parameter profiles py(z)a? (solid line), x(z)o>
(dash-dotted line) for solid-vapor coexistence situations near the
triple point of a Lennard-Jones system without long-range tail.
We choose three different reduced temperatures (a) ¢ =0.3433,
(b) t=0.0149, (c) t=1.2X10"*.

43

so that surface melting of the crystal would turn into sur-

face condensation of the vapor.

In practice, the ultimate positions of the vapor-liquid
and liquid-solid interfaces at the triple point are governed
by symmetry-breaking constraints (leading to finite-size

density p(z) density p(z)

density p(z)

(a)

10 15

(b)

(c)

10 15

FIG. 5. The laterally integrated density p(z)o* in (110) orien-
tation at the same temperatures as in Fig. 4.
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FIG. 6. Same as Fig. 5 at the reduced temperature

t=2.5X1073, but now (a) with long-range tail compared to a
profile (b) without long-range tail at same ¢.

effects*”*®) or by external fields*® (e.g., wall potentials)
which couple to the zero mode. These interactions are
crucial in controlling the latent heat, i.e., the relative
amount of coexisting phases at the triple point.

VI. CONCLUSIONS AND OUTLOOK

We made an attempt to link up surface melting with
the current theory of bulk freezing in simple fluids. Us-
ing density-functional techniques combined with a gra-
dient expansion, we arrive at a van der Waals form for
the free energy of a planar interface, which requires the
pairwise atomic potential and the lattice structure as the
sole essential input data for computing interfacial
profiles. The results for a Lennard-Jones potential, in
particular, display a steadily growing molten layer near
the triple point. Long-range forces increase the layer
thickness significantly up to a value that is in good agree-
ment with measurements on argon.

The microscopic theory presented here -captures
features of surface melting and makes contact with previ-
ous phenomenological approaches. But, of course, there
is room for future improvements. Some of these are
presumably straightforward although they will afford
more extensive computer work than was necessary here.
To explore the anisotropy of surface melting and to allow
for near-surface relaxation of the crystal lattice, addition-
al crystal order parameters must be included.

Attempts to go beyond the gradient expansion while
keeping the link between the short-range order in the
liquid with that in the solid raise tougher questions. On
the other hand, our results are not inconsistent with the
smoothness assumption underlying the gradient expan-
sion. Moreover, the latter gives an intuitive picture for
surface melting on the basis of realistic bulk phases and
provides a starting point to explore the effects of capillary
fluctuations and local lattice defects upon the formation
of the quasiliquid layer.
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