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Abstract. The free energy and the static elastic constants of a hard-sphere glass are 
calculated using density functional theory. More specifically, Bennett’s glass model 
is used where the packing fraction of random closed packing, VRCP, is taken as 
an adjustable parameter. As regards the density functional, the modified weighted 
density approximation ( M W D A )  is employed. The results are compared with the 
FCC hard-sphere crystal. It is found that the free energy of the glass is always higher 
than the crystal free energy; however, for high densities and high VRCP, it  is lower 
than the free energy of a fluid resulting in a first-order liquid-to-glass phase transition. 
For the same temperature and densities, the bulk modulus in the glass is higher than 
that in the FCC crystal. For high QRCP and high densities, the shear modulus is 
smaller than that of a polycrystalline sample. 

1. Introduction 

The freezing mechanism of a supercooled hard-sphere fluid into a glass is a fascinating 
subject and, in order to understand it theoretically, several methods have been used: 
computer simulation (see e.g. [ l ] ) ,  density functional [a, 31 and mode coupling theories 
(see e.g. [4]). As regards density functional theories, which were originally developed [5] 
t o  describe freezing into a regular solid lattice, the first attempt to  calculate the limit 
of stability of a fluid with respect to  the glass was made in 1985 by Singh, Stoessel and 
Wolynes [2]. This was then reconsidered by Baus and Colot [3] within an improved 
density functional. In particular, Baus and Colot used Bennett’s [GI dense random 
packing model of hard spheres to  describe the st,ructure and especially the site-site 
correlation function of the glass. Here, by simple scaling, the packing fraction of 
random closed packing, vRcp, was used as an additional parameter of the theory. 
It was found that the glass is stable with respect to the fluid for vRcp > 0.69, but 
remains metastable with respect to the FCC crystal. 

In the last few years, considerable success in the description of the hard-sphere 
crystal was made with socalled weighted density approximations for the density func- 
tional [7,8,9,10,11],  see [12] for a recent review and a compilation of the data.  I t  is 
the aim of the present paper to  apply the weighted density functional technique to  
Bennett’s hard-sphere glass and to calculate the static elastic constants of the glass as 
a function of qRcp and density. This can be done along similar lines as the calculation 
of the elastic constants in the FCC hard-sphere crystal [13,14]. It turns out that  the 
bulk modulus E of the glass is higher than that of the FCC crystal but lower than 
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that  of a liquid. The shear modulus G,  on the other hand, is smaller than that of a 
polycrystalline sample if the density and qRcp are high. As is well known, concerning 
elastic response the glass can be viewed as something intermediate between a crystal 
and a liquid. 

It is interesting to  compare this result with simulations of a simple amorphous 
binary alloy near the glass transition by Barrat et a1 1151. They also found that the 
bulk modulus of the glass lies between fluid and solid, the shear modulus being smaller 
than that of a polycrystalline sample for any density or temperature, respectively. 

2. Density functional theory 

Several different versions of weighted density techniques have been proposed. We 
choose the most simple one of Denton and Ashcroft [9], called modified weighted 
density approximation (MWDA) which is optimal in an expansion of a coarse grained 
reference functional up to  second order [lG]. 

Let us first outline how to apply the ~ ~ I W D A  to the hard-sphere glass: The local 
density of the glass, p ( ~ ) ,  is assumed to be a sum of isotropic Gaussian peaks centred 
around a set of prescribed sites {Ej 1 

The sites {R, }  are distributed randomly, e.g. according to Bennett’s cluster growth 
law, and a is the single variational parameter. The free energy density functional for 
hard spheres, F [ p ] ,  can be split into an ideal part, Fi,[p], and an excess term, F,,[p], 
where 

PFid[p] = /d3vp(~)[1n(A3p(v)) - 11 x N { -T ; + In [ A3 (4)7} 
for large a ,  P = l/k,T being the inverse temperature and A the thermal wavelength. 
Within the M W D A ,  F,,[p] is given by 

F,,[PI = N Q ( 8  

where Q is the excess free energy per particle in a homogeneous system. The weighted 
density p is given by 

Here, the weight function is det,ermined by the condition that the Ornstein-Zernike 
direct correlation function of the homogeneous system, c(r;  p ) ,  is reproduced exactly. 
This yields 
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where V denotes the volume of the system and the primes derivatives with respect to  
p.  Inserting (4), ( la)  and (16) into (3) yields the fundamental implicit equation for p :  

where p = N / V  is the mean density. The essential input, characterizing the glassy 
state, is the site-site correlation function gL(R). Following Baus and Colot [3], we 
choose 

where r )  denotes the packing fraction, r )  = Qnpa3, ( U  being the liard-sphere diameter) 
and gB(R) is Bennett’s site-site correlation function. 

Before discussing the results, two remarks are in order: First, one should note 
that the VRcp-dependence in (6) is obtained by simple scaling. This should be a 
good approximation for 0.6 < 1iRCp < 0.66. Higher qRCP are relevant if one considers 
finite clusters [3]. In this case i t  is doubtful whether the qRcp-dependence of g L ( R )  
is still given by (6). Nevertheless, let us take (6) as an approximation in order to  
have an easily comprehensible model for the glass where gL(R) is known explicitly. 
Furthermore, the results can then directly be compared with that of [3]. For a more 
realistic gL(R) the free energy of the glass increases. 

The  second remark is more general concerning the description of a glassy state 
by the function g L ( R )  within density functional theory. This is only possible, if the 
densities are coupled quadratically in the functional which is the case in the MWDA [9] 
but not in the original weighted density approximations [7,8]. 

The general steps are now clear. The free energy of a Bennett glass, characterized 
by qRCp and mean density p,  can be calculated by minimizing F[p]  with respect 
to CY. For each minimization step, the implicit equation (6) for has to  be solved. 
Throughout this paper, we use the Percus-Yevick expression for c(r;  b)  and 9(p) .  This 
is justified since p turns out to  be considerably lower than p. 

The result for the free energy is displayed in figure 1. The free energy of the 
glass is always higher than the free energy of the FCC crystal. But the glass can 
become stable with respect to  the fluid for high densities and high vRcp. This is 
accompagnied by a first-order phase transition which can be calculated using the 
familiar double-tangent construction. Within the MWDA, a fluid-glass transition takes 
place if vRcp > r)gcp = 0.672. At this stage a remark is in order (see also the 
discussion at  the end of section 3): Since, within the density functional approach, 
merely free energies are compared, one does not obtain information on the dynamics 
of the phase transition. For the glass transition dynamic diagnostics are important, 
which, however, are missing in our approach. 

Baus and Colot set gB(R) = 0 for 1 < R / u  < 1.025 and obtained v icp  = 0.69. In 
the MWDA the free energies of the glass are reduced further if this modified gB(r) is 
used. In the considered p and vRcp range, the differences are between 2% and 12% 
and qgCp = 0.668. As is also known from the hard-sphere crystal [17], the density 
functional of Baus and Colot yields coexisting densities that  are too high. 
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Figure 1. Helmholtz free energy of a Bennett hard-sphere glass versus density 
for five different random close packing fractions VRCP (- . -). F decreases for 
increasing VRCP. We choose the thermal wavelength to be A E U .  For comparison, 
the corresponding fluid and FCC solid values are also shown (from [9]). The glass 
remains metastable with respect to the crystal but becomes stable with respect to 
the fluid if VRCP > 0.671. e ,  glass density, p g l ,  coexisting with the fluid. 

Figure 2. Localization parameter, cy, versus 
density for the hard-sphere glass. For compar- 
ison, the data for the FCC crystal from [9] are 
also shown. 0, coexisting glass density p g l .  
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Figure 3. Pressure (in units of (Po3) - ’ )  ver- 
sus density for the hard-sphere glass. - , liq- 
uid data from the Carnahan-Starling equation 
of state. *, hard-sphere FCC crystal, from [22]; 
o,  coexisting glass density p g l .  

The results for the localization parameter CY, used as variational parameter, and 
the pressure p ,  obtained by differentiating the free energy per volume, f = F / V ,  as 

af 
P = P - - f  

8P (7) 

are shown in figures 2 and 3, respectively. In analogy with the solid one can define a 
Lindemann parameter L as the ratio of the mean square displacements of the atoms 
and the mean interparticle spacing 
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with 

I t  turns out that  for a glass L is not very different from the crystal value. This is 
consistent with the molecular dynamics simulation of a soft-sphere binary alloy by 
Roux et  a1 [18]. Explicit results for the coexisting fluidlglass data  are summarized 
in table 1. 

Table 1. Fluid-glass coexistence data for three different random close padting 
fractions, VRCP. pfl and pg' are the coexisting fluid and glass densities, respectively, 
p is the corresponding pressure, a the localization parameter and L the Lindemann 
parameter of the hard-sphere glass. The units of p ,  p and L are u - ~ ,  (Pc3)-' and 
U-*, respectively. 

VRCP PR Pg' P a L 

0.68 1.055 1.111 19.9 362 0.094 
0.70 0.963 1.060 12.9 161 0.14 
0.72 0.899 1.016 9.6 87 0.18 

It would be interesting also to  test other density functional approaches (e.g. the 
recently proposed form of [lo]) and to compare with [3] and our results. 

3. Elastic constants 

Let us now turn to  the elastic properties of the glass. For a crystal with cubic sym- 
metry, three independent elastic constants C,,, C,,, C,, are present (throughout the 
paper the notation of Xu and Baus [14] is used). Alternatively, one can also introduce 
the bulk modulus E and two shear moduli G and G' as independent constants, see [15]. - .  

They are related to  Cll, C,,, C,, by E = i(Cll +2C,,), G-= C4,, G' = i(Cll -Cl,). 
In our case, however, the glass represents an isotropic solid, hence only two indepen- 
dent elastic constants exist. The two shear moduli are equal in this case, G = G' 

The bulk modulus can simply be obtained by differentiating the free energy 

E = p26' f l a p 2  

where f = F / V .  The results are shown in figure 4.  
The calculation of G is more sophisticated. We perform an uniaxial stretch of the 

glass along the z axis. This means that the site-site correlation function gL(R) is now 
chosen t o  be 

1-E 

where E is a smallness parameter and R = (X, Y ,  2).  C,, is then given [14] by 
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Figure 4. Bulkmodulus E (inunits of (Pu3) - ’ )  
versus density for the hard-sphere glass for dif- 
ferent VRCP. E decreases for increasing QRCP. 
The corresponding fluid data, obtained from the 
Carnahan-Starling equation of state, FCC solid 
data (*) (from [22]) and coexisting glass density 
pg’ ( 0 )  are also shown. 

, z  

Figure 5. As figure 4,  but for the shear mod- 
ulus C (in units of ( p u 3 ) - ’ ) .  Also shown are 
FCC solid data: C44 (a), i(Cii  - Ciz) (0) and 
the Voigt est,imateGv = $(Cii-C12+3C44) (*) 
for a polycrystalline sample (from [22]). 

V being the undistorted volume. 
tal [13,14], it is essential to  take anisotropic Gaussian peaks for the local densities: 

As is known from elastic properties of a crys- 

exp(-(a, + ca’)c2 - (ao + c&)(y2 + z 2 ) )  (13) 
(a0 + Ea’)(ao + €&)2 

7r3 

where a. is the known value for E = 0 and &, a’ are ttwo additional variational 
parameters. If C,, and E are known, G can readily be calculated. The results are 
illustrated in figure 5 .  Compared to  the Voigt estimate [19] of an isotropic crystalline 
sample, the shear modulus of the glass is smaller if qRcp and p are high. Let us also 
remark that Poisson’s ratio defined by 

turns out to  be positive for any p and qRcp. 
As already stated, this shows that,, as far as the elastic response is concerned, 

the glass lies between liquid and solid and it also compares qualit,atively well with 
computer simulations [15]. However, a final remark has to  be added. On the base 
of simulations, it is commonly believed that the pressure is continuous but the elas- 
tic constants are discontinuous a t  the glass transition. In our approach, the glass 
transition is modelled quite simply by comparing the free energies of different density 
configurations. Therefore, it is first order, but in particular no dynamical effects are 
taken into account. The density functional approach, as it stands, is not suitable 
for studying the dynamics of the glass transition, but only for calculating the static 
properties of the glass itself. 

4. Final remarks and outlook 

First, one may worry about whether the Bennett structure is really a good description 
of the glass. In this context, it is interesting that this structure yields a glass form 
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factor which agrees faily well with mode coupling theory, see [4] for details. On the 
other hand, i t  seems to  be the simplest description where the site-site correlation 
function is explicitly known. 

Second, i t  would be interesting to compare the elastic constants directly to  the 
simulation data.  As a first approximation one could use an effective diameter of the 
binary soft-sphere alloy of [15,18] as an estimate for 0 and compare directly. This, 
however, is only a crude approximation. The difficulty is that molecular dynamics 
studies for a pure hard-sphere system yield a crystal but not a glass. This is one 
reason why an alloy was used in [15,18]. 

In conclusion, the glass transition of the hard-sphere system was investigated using 
density functional theory and the elastic constants of the glass were calculated. In our 
case, i t  was found that the glass remains metastable with respect to  the FCC crystal. It 
would be interesting to  extend the density functional approach to the glass transition 
in more complex systems. First, a binary alloy may be investigated using density 
functional theory. For such a system, the site-site correlation function can be taken 
from simulation results, e.g. from [18]. By density functional theory, the free energy 
and the elastic constants of the glass can be calculated and can, in turn,  be compared 
again with the simulation data.  

A second interesting candidate is a polydisperse hard-sphere mixture which can 
be used modelling colloidal suspensions, see Pusey [20] for a recent review. For such 
a system, the stability of a crystal with respect to the fluid was already investigated 
[21] where i t  was found that the crystal is not stable for large polydispersities. It 
might be interesting to  use a glassy density as input into the density functional for 
a polydisperse hard-sphere system and to  check the stablity of the glass for high 
polydispersities. However, this is a harder task than to examine the crystal since the 
glassy site-site correlation functions are not known directly. 
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