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We perform a critical analysis of the concept of phonon-induced phase transitions in connection
with (Wannier) exciton-phonon systems. Particular attention is paid to the frequently discussed
phenomena of self-trapping and overscreening. We demonstrate for a large class of (generalized
Frohlich) models that a phase-transition-like behavior can be excluded: The ground-state energy,
ground-state wave function, and the formal free energy are smooth functions of the electron-phonon
and electron-hole coupling parameters. Analogous results hold for a magnetoexciton-phonon sys-
tem, moving unrestricted or, e.g., within a quantum well. Our proof makes use of functional-
analytic and functional-integral methods, which have been successfully applied in previous studies

of polaron systems.

I. INTRODUCTION AND STATEMENT
OF PROBLEMS

The purpose of this paper is to clarify the analytical
properties of an exciton-phonon system and to resolve
some related problems, which have controversially been
discussed for a longer time. Our considerations are based
on the model Hamiltonian due to Toyozawa' and Hak-
en;? that is,

H::HP+HP]’1+HI N (l)
where
2
Hp:= 3 p2/2m,+V(r,—r1,), )
n=1
Hypy,:= [d%k fo(k)a*(k)a (k) (3)

2
H;=Va 3 (—1)" [ d’k[g(k)a (kexp(ik-r,)+H.c.] .

n=1
4)

In Eq. (1) the indices P, Ph, and I indicate “particles,”
“phonons,” and ““interaction,” respectively. In Eq. (2) we
characterize the particles by momenta p,, positions r,,
and masses m,. Equation (3) introduces the free-phonon
part of the Hamiltonian: k, w(k), a*(k), and a (k) are
the wave vector, dispersion, and creation and annihila-
tion operators for the phonons of interest; throughout
this paper we assume w(k)=w(—k) and g(k)=g(—k).
Finally, the interaction term is given by Eq. (4). The
reader will notice that H; describes a dipole-field interac-
tion, with no mass dependence appearing: the electron
and hole constitute an electric dipole, and the phonons a
scalar field. For later use we have extracted the familiar
electron-phonon—coupling parameter V'a, @ >0, from the
coupling function g (k).

It is obvious that H is a generalized Frohlich Hamil-
tonian; the two-particle potential ¥V (r;—r,), the phonon
dispersion w(k), and the coupling g(k) are hitherto
unspecified. Of course, a first choice would be

Vit,—1)=—i/lr,— 1,/ ; &)

that is, a Coulomb potential. The standard Wannier-
exciton-phonon problem is additionally defined by the
conditions

o(k)=w=const

and (6)
Vag(k)=Vtod 27k ,

where d is fixed as
d=(1—€,/€)Ar (7

(see, e.g., Pollmann and Biittner,” or Bednarek,
Adamowski, and Suffczynski,* providing involved varia-
tional calculations and further references). Our treat-
ment, however, is not restricted to these special cases.
One reason is that we intend to generalize our results (see
Sec. IV). It should be possible, for example, to include
central-cell corrections in V(r)—after all, it is an ap-
proximation to replace the total electron-hole potential
by the Coulomb expression (5). A second reason to have
V(r) and g (k) unspecified (as long as possible) is that the
formal structure of the more general theory proves to be
more transparent.

To display all relevant physical parameters, we shall
frequently write

Vir)=AU(r), (8)
introducing a second coupling constant A besides a. If
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not explicitly stated otherwise, we assume A >0 and
U(r)=<0, and therefore V(r)<0. Abbreviating the two
mass parameters available as m:= (m,m,), a complete
parametrization of the Hamiltonian is

H=H (a,A,m) . 9)

In the following sections we shall entirely be concerned
with the analytical behavior of physical quantities
(ground-state energy and wave function, formal free ener-
gy, etc.) as functions of the parameters a,A,m. A partic-
ularly interesting question is whether or not these func-
tions can have points of nonanalyticity. In fact, a posi-
tive (negative) answer to this question will decide whether
the frequently used concept of phonon-induced phase
transitions is appropriate (inappropriate) in connection
with exciton-phonon systems.

We have to complete our notational preparations be-
fore we can discuss this point in some more detail. Let us
introduce center-of-mass and relative coordinates R,P
and r,p as usual, M and p being the total and reduced
mass. Then we find

Hp,=P?/2M +p?/2u+AU(r) , (10)

2
H=Va 3 (=1 [d%k[g(k)a(k)explik-R+iy k1)

n=1
+H.c.], (11)

where y,:=m,/M and y,:= —m /M. Of course, Hyp,
remains unchanged. One may verify that H commutes
with the operator

P := P+ [d% fika*(k)a (k) =:P+Py, (12)

of total momentum. This property can profitably be used
to eliminate the center-of-mass coordinate from H, as was
demonstrated by Lee, Low, and Pines:’ Defining the uni-
tary transformation

U:=exp |—~R-Pp, (13)

#i

and calculating H':=U'HU as well as
P,..:= U~ 'P, U, we arrive at

P,,,=P, (14)
H'=Hp+Hp, +Hj, (15)
where
Hp=(P—Pp,)*/2M +p*/2u+AU(r) (16)

2
Hj=Va 3 (—1)" [ d*[g(k)a(klexp(iy,k-r)+H.c.],

n=1

(17)

The conservation of total momentum is now equivalent
to [H',P]=0 and permits us to restrict H' to the sub-
space of eigenfunctions of P with some eigenvalue #Q.
We are thus led to

H'(Q):= (#iQ—Pp,)*/2M +p*/2u+AU(r)+Hp, + H; .
(18)

Clearly, H'(Q) no longer depends on the center-of-mass
variables. Moreover, it is sufficient to discuss H'(Q) in-
stead of H or H'. Let us now turn to the ground-state en-
ergy E(Q,a,A,m) of H'(Q)—that is, the lower limit of
the spectrum of H'(Q). The reader will notice that the
existence of E(Q,a,A,m) is directly connected with a
proper mathematical definition of H'(Q), which, in turn,
presupposes the specification of admissible dispersions
o(k), couplings g(k), and potentials V(r). We discuss
this point in full detail in Secs. II and III. For the mo-
ment, we take the existence of the ground-state energy
for granted. Even more, we assume E (Q,a,A,m) to be a
simple eigenvalue of H'(Q), the corresponding eigenfunc-
tion being ¥(Q,a,A,m). In view of our central topic we
state the following.

Problem 1: What is the domain of analyticity of
E(Q,a,A,m) and Y(Q,a,A,m) as functions of Q,a,A,m?

Our solution of problem 1 will make extensive use of
functional-analytic theorems. An alternative and, in
part, complementary approach to spectral properties of
Hamiltonians is possible by means of functional-integral
techniques. In connection with exciton physics, we refer
to Haken,® Moskalenko,’ Schultz,® and Adamowski, Ger-
lach, and Leschke.’ Let us introduce the diagonal ele-
ment of the reduced density operator; that is,

pla,B,A,m):= trp,{r},r5le PH|r,r,) . (19)

Here, trp, indicates the trace operation with respect to
phonons, >0 is a formal inverse temperature, and r,, is
the position of particle n. We remark that the right-hand
side of Eq. (19) depends on the relative coordinate
r=r,—Tr,; nevertheless, we skip this dependence in p, as
it is irrelevant for our considerations.

It proves useful to relate p(a,3,A,m) to the readily ac-
cessible expression p(0,53,0,m) for a (hypothetical) free-
electron-hole pair and to define a formal partition func-
tion

Z(a,B,A,m):= p(a,3,A,m)/p(0,3,0,m) . (20)

On one hand, Z can conveniently be expressed by a func-
tional integral, namely

Z(a,B,A,m)={exp(—S;—S,)) , 1)
where the expectation value of a quantity A is defined as

[&R, [8°R, A[R},R,lexp(—So[R},R,])
f 83R1 f83R2 exp( _—SO[RI’RZ])

(A4):

(22)

In (22) the integration is of Wiener-Feynman type and
has to be performed over all closed, real paths R, (7) with
R,(0)=R,(B)=r,. In particular, one has
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B, & .
So[R,,R,]:= deT S m,R%(7)/2,
n=1
2
S/[R,R,]:=

nn'=1

2
= 2 Snn'[Rl’RZ]’

nn'=1

S,[R,R,]:= xfo”df U(R,(1)—Ry(7)) .

G, (7) is the temperature-dependent Green function of a
harmonic oscillator and is given by

G,(7):= cosh(Bfiw /2 —#w|7|) /[ 2sinh(Biw/2)] .  (26)

On the other hand, Z(a,B,A,m) is connected with the
formal free energy F(a,3,A,m) as follows:

Z(a,B,A,m) =:exp{ —B[F(a,B,A,m)—F(0,3,0,m)]} .
27

From F we can derive all spectral properties by familiar
manipulations. We state the following.

Problem 2: Is F(a,B,A,m)—F(0,8,0,m) a real analytic
Sfunction of a,B,A,m for 0<a< x, 0<B< w0, 0SA< o,
and 0<m, < »?

Having posed the problems, we close this section with
some comments on the phase-transition concept in con-
nection with exciton-phonon interactions. Starting from
expressions (10) and (11) for the Hamiltonian H, one real-
izes that the total problem incorporates aspects of free-
and bound-polaron motion: The center-of-
mass—coordinate part mimics the former property and
the relative-coordinate part the latter. Accordingly,
several possibilities for an eventual nonanalytical behav-
ior of E(Q,a,A,m), ¥(Q,a,A,m), and F(a,B,A,m) have
been discussed.

In analogy to the free-polaron case, center-of-mass
motion was supposed to show a delocalization-
localization transition, mostly denoted a self-trapping
phenomenon (as for this idea in general, we refer to
Landau’s early paper!® on polarons and the extensions of
Rashba!! and Toyozawa!? for excitons). The numerical
work in favor of this hypothesis is entirely of variational
type and related to the standard model, defined in Egs.
(5)—(7). The decisive conclusions are as follows (see, e.g.,
Pekar, Rashba, and Sheka!’ and Shimamura and
Matsuura'®): There exists a finite value A=A, such that
the ground-state wave function of H is delocalized for
A <A, and localized for A > A, (we insert as a remark that
only one coupling parameter appears in the standard
case; a depends on A and the electron mass). The corre-
sponding upper bound for the energy exhibits a
nonanalyticity for A=A,. Surprisingly enough, these
variational results proved to be artifacts of the approxi-
mations made. The present authors demonstrated in Ref.
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(23)

—a' S (—1)"+"'fd3k|g(k)|2f0BdeOBdr’Gw(k,(T-—T’)exp{ik-[Rn(T)—-R,,'(T')]}

(24)

(25)

15 that the ground-state wave function is always delocal-
ized. We generalize this discussion in Sec. II.

The relative motion can qualitatively be discussed by
means of the functional-integral expressions for S; and
S, given in Egs. (24) and (25). Both are negative definite:
S, =0 is a consequence of AU(r)=0; S; <0 can be de-
rived from Eq. (24), if one inserts a Fourier representa-
tion of G,(7) (see Adamowski, Gerlach, and Leschke in
Ref. 16). One should notice, however, that the sign of the
electron-hole part of S;, namely s,,+s,, =2s,,, is not
generally fixed. Insofar as this is concerned, the original
electron-hole interaction S, can partially be weakened or
strengthened by the phonon-induced one, provided g (k)
is correspondingly chosen. We comment on both alterna-
tives: s;,[R;,R,] can be positive for all paths R,(7); an
important example is g (k)= k ~!. In this case, 2s,, may
even overcompensate S, —the phenomenon of “over-
screening” is definitely possible, if V'ag(k) and AU(r)
are unrelated. If we suppose that AU (r) as such is bind-
ing, the appearance of a repulsive, phonon-induced in-
teraction between electron and hole may cause a
localization-delocalization transition with respect to rela-
tive motion. Consequently, ground-state quantities such
as the energy will be nonanalytic functions of the cou-
pling parameters (also see Sumi'’).

Irrespective of the form of g (k), s;, cannot be negative
for all paths R(7), but, at most, for a certain subset. This
is an important difference in comparison to deformation-
potential couplings, which cause an expression ¢, /c, in
Eq. (24) instead of (—1)"*", ¢, being a potential
coefficient. Then, s, can, in fact, be negative for all
paths R, (7) and will strengthen the potential AU (r) in
any case. Sumi!’ claims that under such circumstances a
self-shrinking transition can occur. At first glance, the
situation reminds one of the bound-polaron system. This
does exhibit a nonanalyticity (the so-called pinning
transition)—but only for potentials of short-range type
(see Spohn'® and Lowen'). Of course, the electron-hole
potential is a long-range potential; with this in mind, the
assertion of an excitonic self-shrinking transition appears
to be doubtful.

Summarizing our introductory discussion, the
relevance of problems 1 and 2 should be clear. If self-
trapping, self-shrinking, or overscreening transitions
occur, they induce a nonanalytical behavior of
E(Q,a,A,m) and/or F(a,B,A,m). In the following sec-
tions we specify conditions which guarantee an analytical
behavior of both quantities and exclude any phase-
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transition-like behavior of the systems under considera-
tion.

The organization of the rest of this paper is as follows.
We discuss the ground-state properties in Sec. II and
those for finite temperature in Sec. III—for technical
reasons, we have to separate both cases. In Sec. IV we
provide some extensions of the results in Secs. II and III,
and include some comments on related, unsolved prob-
lems. We close with a short summary in Sec. V.

II. ANALYTICITY OF GROUND-STATE ENERGY
AND WAVE FUNCTION

The solution of problem 1 is technically involved; be-
fore we can list three statements and prove their validity,
some remarks are necessary.

The first is concerned with the free-polaron system. In
this case the analytical properties of such ground-state
quantities as E (Q,a) and ¢¥(Q,a) have been clarified in a
pioneering paper of Frohlich.? If the inequalities

ok)Zw>0, ok, +olk, ok, +k,)
and (28)
[ d*klg (2 /[1+(ak)?] < o

are valid (a:=V#%/mw being the polaron radius),
E(Q,a) and ¥(Q,a) are real analytic functions of Q and
a for #2Q*/2m <#w and 0<a < «. Condition (28) is
basic to our discussion also. We anticipate that
(k)= >0 is particularly important, since thereby the
existence of an energy gap above the ground-state energy
is guaranteed. The latter property, in turn, will prove in-
dispensable to ensuring the analyticity of the exciton
quantities E (Q,a,A,m) and ¥(Q,a,A,m).

Our second remark refers to the electron-hole potential
AU(r). According to our introductory discussion, we
should know about the binding properties of
H,., :=p?/2u+AU(r). This is the case for the so-called
Rollnik class R of potentials, defined by the inequality

R [dr [dr U U/ Ir—rP<eo . (©29)

The reader will notice that the left-hand side of (29) is
proportional to the Birman-Schwinger bound for the
number of bound states of H . Therefore, the physical
significance of R is clear (also see Reed and Simon?!).
Unfortunately, the Rollnik class is too small for our in-
tentions; in fact, it contains the familiar short-range po-
tentials, but not the long-range ones of Coulomb type.
To incorporate these too, we consider the extension

R':=R+LZ(R% (30)

of R. Any element AUER’' can be represented as
AU =AU'+AU", where AU'E€R and |AU"| <€ for arbi-
trary € >0. As for a detailed discussion of R’, we quote
Simon?? and again Reed and Simon.?!

Throughout this section we assume AUER’. To facili-
tate further reading, we note two relevant properties of
AU: First, H,, is well defined—in particular, it is self-
adjoint and bounded from below in the sense of forms;
secondly, AU is infinitesimally form-bounded with respect
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to p?/2u; that is,
Y Ul < eClp?/2ul¢) +b(e)X¢lY) 31)

for any € >0 and some positive b (€).

Finally, we add a remark on the continuum edge
E_(Q,a,A,m) of the Hamiltonian H'(Q) under considera-
tion [to be explicit, we shall write H'(Q)=H'(Q,a,A,m)
if necessary]. Intuitively, we can imagine two types of
continuum states: On one hand, the electron and hole
could be sufficiently separated such as to “escape” from
the potential AU (r). Consequently, the energy of relative
motion would become continuous. Defining

E)Q,a,m):=info [H'(Q,a,0,m)] , (32)

where o, [ H'] denotes the essential part of the spectrum
of H', we expect E! to be one upper bound on E,. On
the other hand, a ground-state exciton of energy
E(Q—k, a,A,m) might absorb a phonon of energy
fiw(k), thereby reaching a continuum state too. If we
define

Eé"(Q,a,A,m):=iilf[E(Q—k,a,k,mH-ﬁw(k)], (33)

we should obtain a second upper bound on E.. We shall
subsequently prove that

E.(Q,a,A,m)>min{ EXQ,a,m), EX(Q,a,A,m)} (34)

is true, providing us with a lower bound on E,. It is very
probable that (34) is an equality rather than an inequality.
In any case, this inequality is sufficient to proceed.

We are now prepared to make our first statement.
Considering the alternative E2<E/ in inequality (34), we
state the following.

Statement la: Assume the validity of (28) for the
dispersion w(k) and the coupling g(k); let AU(r) be nega-
tive and an element of R'. Furthermore, H,,; should have
at least one bound state for any A >0, the corresponding
energy being strictly negative. Finally, let E<E/. Then,
E(Q,a,A,m) exists and is an isolated, simple eigenvalue of
H'(Q) for 0=a< o, 0<A<ow, 0<m, <o, and Q in a
certain surrounding of Q=0. E(Q,a,A,m) as well as
Y(Q,a,A,m) are real analytic functions of Q,a,A,m in
the specified domain.

We believe that this statement is even true for
#Q?%/2M < #w, which would be in accordance with the
free-polaron result, mentioned before. Our proof, howev-
er, will be restricted to a smaller-Q regime.

Let us now turn to the case E2>E/!. Here, the ex-
istence of a discrete ground state depends sensitively on
the specific form of w(k) as well as g (k) and AU (r). Re-
calling our introductory discussion, the overscreening
phenomenon has to be excluded; of course, this is in gen-
eral impossible, but has to be done as an additional
presupposition. We find the following.

Statement 1b: As for w(k), g(k), and AU(r), assume the
conditions of statement la. Consider the case E2>E! and
suppose additionally that the ground-state energy is an ei-
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genvalue of H'(Q) for Q below some positive constant.
Then, E(Q,a,A,m) is a simple eigenvalue of H'(Q) for
O0<a<w, 0<A< o, 0<m, < o, and Q in a certain sur-
rounding of Q=0. E(Q,a,A,m), as well as Y(Q,a,A,m),
are real analytic functions of Q,a,A,m in the specified
domain.

At first glance, this statement appears to be a rather for-
mal one. To correct such an impression, we stress two
points: It is not at all trivial that the existence of a
ground-state eigenvalue E(Q,a,A,m) is sufficient to
guarantee its nondegeneracy and analyticity as function
of a,A,m. Furthermore, statement 1b is well suited for
direct applications: In many cases the existence of a
ground-state eigenvalue can be established by variational
methods. The standard Wannier-exciton-phonon prob-
lem as defined in Eqgs. (5)—(7) is an illustrative example.
Here, we arrive at the more specific statement that fol-
lows.

Statement Ic: Consider the standard exciton-phonon
problem. Then, the ground-state energy E(Q,\,m) exists
and is an isolated, simple eigenvalue for 0<A< o,
0<m, <o, and Q in a certain surrounding of Q=0.
E(Q,\A,m) and Y(Q,A,m) are real analytic functions of A,
m, and Q in the specified domain.

We list some direct consequences of these statements:
Many ground-state observables can be calculated as
derivatives of E (Q,a,A,m) with respect to one of the pa-
rameters, or as expectation values of the type
($(Q,a,A,m)|X|(Q,a,A,m)), where X is an operator
independent of Q,a,A,m. As examples, we mention the
total mass of the polaronic exciton, its radius, or the
mean phonon number associated with the state
¥(Q,a,A,m). Statements la-lc demonstrate that all
these quantities are smooth functions of Q,a,A,m in the
surrounding of Q=0. The smoothness of the total mass
is of particular interest. If a self-trapping transition
would occur for a certain critical value a=aqa_, the total
mass should become infinite. This is excluded—in com-
plete agreement with the previous result that the
ground-state wave function of H is always delocalized
(see Ref. 15).

We mentioned before that some authors found a self-
trapping transition for the standard system or one under
the conditions of statement la (see, e.g., Refs. 13 and 14).
The weak point of their arguments is that they have to
rely on approximate (variational) expressions for the en-
ergy. Without underestimating the merits of the varia-
tional results as such, the nonanalyticities have to be
classified as artifacts of the approximations made.

We are now going to prove the above statements. It
may be helpful to indicate the basic steps of our discus-
sion. First, we shall fix the position of the continuum
edge E.(Q,a,A,m) of H'(Q,a,A,m). Secondly, we shall
show that the ground-state energy E(Q,a,A,m) exists
and is below E.(Q,a,A,m). Thirdly, we have to guaran-
tee the nondegeneracy of the ground state. If this can be
taken for granted, we finally apply analytical perturba-
tion theory to assure the analyticity of, e.g., £ (Q,a,A,m)
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as a function of Q,a,A,m. We shall make extensive use
of the quoted work of Frohlich®® and the extensions of
Lowen.!>2* Particularly important for this work is the
treatment of a polaron in an external potential, which can
be found in Ref. 19; if details of that discussion can be to-
tally transferred, we shall not repeat them here.

Let us begin with the first step as enumerated above
and fix the continuum edge of H'(Q). First, we introduce
a large-k (or uv) cutoff in the coupling g (k) as described
in any of the pertinent references.!®%%® This assures us
that the resulting cutoff Hamiltonian H'(Q) is self-
adjoint and bounded from below. Secondly, we redefine
H'(Q) on a discrete phonon-momentum lattice. In a first
step we admit only a finite number of phonon modes, the
corresponding Hamiltonian being A'(Q). Clearly, the
essential spectrum of H'(Q) can only originate from the
relative motion of the electron and hole. In fact, the ap-
plication of Weyl’s essential spectrum theorem proves
that Eq. (32) yields the correct continuum edge, if A "(Q)
is inserted instead of H'(Q) (see Refs. 19 and 21). We
mention that here the condition AUER’ is important.
Finally, we have to remove the momentum lattice and the
large-k cutoff. The corresponding procedures are well es-
tablished and can be traced back to a paper of Nelson.?*
Admitting continuous k values, one creates new,
phonon-induced continuum states. Using the property
o(k,)+o(k,) > o(k,+k,), one can show that the corre-
sponding continuum edge is produced by one-phonon
states and bounded from below by E? according to Eq.
(33), but still evaluated for H '(Q) instead of H'(Q). The
remaining large-k cutoff can be removed by a canonical
transformation, which is well known as the ‘“‘oscillator
transform”’; the technical details can be found in Ref. 19.
We note that in this context the inequalities (28) are
essential.

In summary, we have established use of relation (34)
for finding the position of the continuum edge E.. To
prove the existence of eigenstates of H'(Q) with energies
below E_, we use two inequalities, namely

E(0,a,A,m)<E(Q+#0, a,A,m) , (35)
E(Q,a,A,m)<E(0,a,A,m)+#Q?/2M . (36)

Equation (35) can be shown in analogy to the free-
polaron case; we recall that the Q dependence of the
Hamiltonians of interest is exactly the same (see, e.g.,
Gerlach, Lowen, and Schliffke in Ref. 25). To demon-
strate the validity of (36), it proves useful to revert to the
cutoff Hamiltonian H '(Q) and to discuss

H'(Q)—#Q*/2M =:h —#Q-Pp, /M , (37)

where £ is independent of Q. As Py, is infinitesimally
form-bounded with respect to A, the ground-state energy
of h —#Q-Pp, /M is monotonically decreasing and con-
tinuous in Q (see Ref. 21, p. 98). Eliminating the large-k
cutoff as before, we arrive at (36).

To use relations (35) and (36), let us discuss the alterna-
tive EZ<E! in (34). In this case inequality (34) can
indeed be replaced by the equality E, =E?; the proof of
theorem IV in Ref. 19 can be directly transferred to the



3542

present problem. In any case, expression (33) for E2,
o(k) = w >0, and inequality (35) assure us that

E.(Q,a,A,m)= E(0,a,A,m)+#w (38)
is true. Contrasting this result with (36), we find
E(Q,a,A,m)<E_(Q,a,A,m) for #Q*/2M <#w . (39)

Therefore, the existence of a (discrete) eigenvalue of
H'(Q) is established in the quoted Q domain.

According to our outline for the proof, the next prop-
erty to show is the nondegeneracy of E(Q,a,A,m). To
do so, it is sufficient to demonstrate that exp[ —tH'(Q)]
is positivity improving for ¢ >0 (see Reed and Simon,?! p.
204). A corresponding proof exists for the Hamiltonian
H'’ according to Eq. (15); H’ differs from H'(Q) only in-
sofar as the operator P appears instead of the eigenvalue
#Q. Returning to the discussion of H' in Ref. 15, this
can be directly transferred to H'(Q), if Q=0. Conse-
quently, E(0,a,A,m) is a simple eigenvalue. Because of
the continuity with respect to Q, the same holds true for
E(Q,a,A,m) in a certain surrounding of Q=0 and
0<a<w,0<A<w,and0<m, < .

We now turn to analytical perturbation theory as
developed by Kato (see, e.g., Ref. 26). As an example, we
discuss the A dependence in E(Q,a,A,m) and

P(Q,a,A,m): Comparing different values of A, one
derives
H'(Q,a,A,m)—H'(Q,a,Aqm)=(A—A,)U . (40)

As AU is an element of R’, U is form-bounded with
respect to the “unperturbed” term H'(Q,a,Ay,m) (we re-
call that the relative bound is even zero). Consequently,
the Hamiltonians H'(Q,a,A,m)—A considered a variable
and Q,a,m being fixed—form a holomorphic family of
self-adjoint operators (type B) in the sense of Kato. If we
combine this property with the nondegeneracy of
E(Q,a,A,m), we can conclude that E(Q,a,A,m) and
P(Q,a,A,m) are real analytic functions of A in the quoted
domain.

Using analogous arguments for the Q, @, and m depen-
dences, we can complete the proof of statement la.

In view of the above discussion, our reasoning with
respect to statement 1b can be shortened: We presup-
posed the existence of a discrete eigenstate of H'(Q) in a
surrounding of Q=0; starting from that point, we can re-
peat the arguments of the previous proof.

We finally turn to statement lc: As the case EZ<E/ is
completely covered by statement la, we are left with
E?> E!. Recalling the functional-integral expression (24)
for S; and inequality (35), we derive for a model with
coupling g(k) = 1/k (as in the standard case)

2
E(Q,a,00m)> 3 E(a,m,), (41)

n=1

N M
ZNM(a,B,)\.,m)Z=<2 _(“Sl)n 2
n=0

1
n!
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where E(a,m,) is the (hypothetical) free-polaron
ground-state energy of constituent n of the exciton.
Therefore,
2
ENO,a,m)> 3 E(a,m,) (42)

n=1

is true. On the other hand, the ground-state energy
E(0,A,m) of the standard exciton-phonon problem was
shown to fulfill

2
E(0,Am)< 3 E(a,m,) 43)

n=1

for 0<A< o and 0<m, < o (see Adamowski, Gerlach,
and Leschke®). Therefore, E (0,A,m) is a (discrete) eigen-
value.

After this is established, we proceed again as in the
case of statement la and complete the proof.

III. ANALYTICITY OF THE FORMAL
FREE ENERGY

The central result of this part can be summarized as
follows.

Statement 2: Take the existence of
F(a,B,A,m)—F(0,5,0,m) or, equivalently, the bounded-
ness of Z(a,B,A,m) for granted: 0<Z(a,B,A,m)< .
Then, F(a,3,A,m)—F(0,8,0,m) is a real analytic function
of a,B,A\,m. Sufficient conditions for the existence of

F(a;By}\';m)_F(O,B,O,m) in 05a< oo, O<B< 0,
0=A<,and 0<m, < x are
|lUk)| <c/k? (44)

[U(k) being the Fourier transform of U(r) and c some posi-
tive constant], and

fd3k g (k)|*/w(k) < o (short-range case) , (45)
or

o(k)>w>0, |g(k) <constXk ™! (long-range case) .
(46)

The preceding statement is surprisingly general, one
reason being the simple «, 3, A, and m dependences of the
actions S, S;, and S,. Furthermore, the hard part of the
proof is to establish that Z is bounded. Fortunately, the
latter problem can be reduced to the corresponding one
for a free polaron, which has been solved previously (see
Ref. 27).

Our proof starts with a discussion of Eq. (21) for Z.
We truncate the exponential function and introduce

< 1
S —((=S)U=8)m) . 47)
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Direct inspection of S; and S; shows that we can write

(=S =S, ™) =:a"A"f,. (B,m) , (48)

where f,,,(B,m) is positive because of the positivity of
—S; and —S,. Furthermore, the functional integral in
((—=S,)"—S,)™) can be evaluated according to the re-
cipes given in Ref. 28 [one has to insert a Fourier integral
for U(r), leading to functional integrals of Gaussian
typel. f,.(B,m) proves to be a finite-dimensional in-
tegral with a real analytic dependence of f and m—
provided the integral exists at all. For the moment, we
take this for granted. We obtain the following properties
of the finite series Zy,(a,B3,A,m): First, this quantity is
strictly positive and monotonically increasing as function
of N,M (a,B,A,m fixed); secondly, it is a real analytic
function of a,B,A,m for 0<a< w0, 0SA< w0, 0<B< w0,
and 0 <m, < o (N, M fixed).

Let us begin with the first property: If we can prove
that Zy,(a,B,A,m) is uniformly bounded from above by
some function C(a,B,A,m)< o, the monotone conver-
gence theorem assures us that

lim lim Zyy(a,BAm)=Z_ ,(a,B,A,m)

Noow M-

exists, and

N 1
E —_'( —SI )"

Zyy(a,B,A,m) =
n=0 n:

<

N [ —

_1
2 n=0
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Z(a,B,A,m)=2Z _  (a,B,A,m)

_ 3 @

= n,m2=O pr m!f,,,,,(B,m) (49)

holds true [clearly, this includes the existence of any sin-
gle term f,,(B,m), which was in question until now].
On the other hand, we may assume the existence of
Z(a,B,A,m). In that case, we certainly have Z >Z,,,
and (49) is valid again. Z(a,3,A,m) exists if and only if
this is true for Z _ _(a,B,A,m).

Therefore, we examine (49) in more detail. Despite its
introduction as a function of positive a,B,A,m,, the
right-hand side of (49) may be discussed as an infinite
series of complex «,f3,A,m,. This series converges abso-
lutely for all o, A, 0<ReS< «, and O<Rem, < «, and
uniformly on every compact parameter set, if (and only if)
the original series (49) converges for 0<a< o,
0ZA< o, 0<B< o, and 0<m, <. Combining this
fact and the analyticity of f,,,(8,m) for 0 <ReB < « and
0<Rem, < «, we may state the following result: The
right-hand side of Eq. (49) exists as a complex series for
all a, A, 0<Ref< «, and 0 <Rem, < «, and represents
an analytical function in this domain, if it exists as a real
seriess for O0<a<w, O0<A<ow, 0<fB< o, and
0<m, <. As the latter is strictly positive, we have
proven the first part of statement 2.

The remaining task is to establish the convergence of
the real series (49) under the conditions (44) and (45) or
(44) and (46) as given in statement 2. To do so, we derive
from Eq. (47)

2N 1 2M 1
<2 ;7(—2s,)">+< —‘(—25A)'">. (50)

According to (24), —S;[R,,R,] is bounded from above as follows:

2
—SI[RI’RZ]S -2 2 Snn[Rl’RZ] .

(51)
n=1
Inequality (51) provides us with the upper bound
2N 1 2N 1 , 2N 1
<n§0 7‘1—'( —ZSI) > .<_ <n§0 F( -4511 ) ><n§0 _n—'( '—4522 )n> (52)

for the first term on the right-hand side of (50). We have studied this bound in Ref. 27 and have found that it does con-

verge under condition (45) or (46).

Finally, we are left with the second term in (50), containing the potential. Inserting the explicit representation of S
[Eq. (25)] and U (r) as Fourier integral, we have to evaluate functional integrals of Gaussian type. As all of these are

positive, we can use condition (44) within the integral to find

2

2M 1 m
<m§0m(—25'k) >S <exp (

AC B 3 — .
oy fodrfd kk “Zexp{ik-[R (1)—Ry(7)]}

> (53)
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uniformly in M. As the right-hand side does exist (see
Ref. 27), statement 2 is proven.

IV. EXTENSIONS

The previously used methods are well suited to treat
certain generalizations of the Hamiltonian H according
to Eq. (1). In other cases, we are still left with partially
unsolved problems. We give some examples for both al-
ternatives.

For a comparison with experiments, it may be neces-
sary to include an excitonic coupling to several phonon
branches. One ensures—via direct inspection of our
proofs—that statements la—2 can correspondingly be
generalized, if the quoted conditions are fulfilled by every
branch.

A particularly involved and unsolved question is
whether w(k)= w >0 is necessary to guarantee an analyti-
cal behavior of ground-state quantities. We are not
aware of any analyticity proof admitting an acoustical
dispersion. Obviously, this is in marked contrast to the
finite-temperature case, where a zero of w(k) is unimpor-
tant, provided inequality (45) is valid. We remark in ad-
dition that localization studies for the free acoustical po-
laron do exist and have proved the absence of a
delocalization-localization transition (see Spohn in Ref.
18). It should be possible to transfer these results to the
center-of-mass motion of an exciton.

Interesting new problems can be found if one tries to
discuss a nonparabolic band structure e(p) instead of
p?/2m. The total momentum is still conserved and per-
mits us to introduce a momentum-decomposed Hamil-
tonian H'(Q) in complete analogy to Eq. (18). Moreover,
the discussion of the continuum edge can be transferred.
Provided we can establish the existence of (discrete)
eigenstates of H'(Q), the nondegeneracy of the ground
state can be guaranteed for Q=0, if exp[ —te(p)] has a
positive Fourier transform (see Ref. 15). It may now be a
harder task than above to ensure the applicability of
analytical perturbation theory; if an application is possi-
ble, statements la—1c will hold again.

As another extension, we provide a brief discussion of
a magnetoexciton-phonon system. There exists an enor-
mous number of publications on the corresponding one-
particle system, usually denoted a magnetopolaron (see,
e.g., Peeters and Devreese?® and Lowen??).

What about the analytical properties of a polaronic ex-
citon in a homogeneous magnetic field? The generaliza-
tion of Hamiltonian (1) is straightforward. Introducing
center-of-mass and relative coordinates as before, and us-
ing a symmetrical gauge for the vector potential, one now
realizes that

P, :=P+Pp,—le|BXr/2 (54)

is a conserved quantity. One can unitarily transform P
and the original Hamiltonian into

tot
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P, =P+Pp, , (55)

H:=(—y,P+p+lelBXr/2)?/2m,
+(yP—p+lelBXr/2)2/2m,
+AU(r)+Hp, +H, , (56)

where Hpy, and H; are defined in Eqgs. (3) and (11). The
decisive point is that again a Lee-Low-Pines procedure
can be used to obtain a momentum-decomposed Hamil-
tonian H'(Q). Combining the methods of this article and
of Ref. 23, one can generalize statements la—lc for
nonzero magnetic field.

The discussion of the finite-temperature properties is
even simpler. One has to recall that a nonzero magnetic
field causes an additional, purely imaginary and bilinear
action Sy within the total action, B appearing as a simple
prefactor (see, e.g., Ref. 29). Instead of Eq. (21), we find

Z(a,B,A,m,B):= {exp(—S;—S, —Sz)) . (57)

As Sy is purely imaginary, we can immediately derive
that

|Z(a,B,A,m,B)| <Z(a,,A,m,0) (58)

is true, providing us with an upper bound on
Z(a,B,A,m,B). The further discussion can totally be
transferred from above. We conclude the following: Un-
der the conditions quoted for the statements from above,
the magnetoexciton-phonon  system exhibits no
nonanalyticities. We can slightly generalize the last ex-
ample to get a qualitative model for a magnetoexciton-
phonon system in a quantum-well structure. Assuming
the wells to be parallel to the x -y plane, we describe the
well influence by an additional potential A'U’(z) for elec-
tron and hole. Let us suppose that A'U’(z)=0 and
U'EL*R) is true. Then, we can correspondingly gen-
eralize the above analyticity conclusions.

We close this part with a brief remark concerning
discrete models. In our context, they are necessary to de-
scribe Frenkel excitons. It is beyond the scope of this ar-
ticle to analyze the corresponding literature. We stress,
however, that similar discussions of analytical properties
have been performed, leading to analogous results (as for
a reference, we quote Lowen’?).

V. SUMMARY

The intention of this article was to analyze the possibil-
ities for a phase-transition-like behavior in exciton-
phonon systems. For the class of generalized Frohlich
models, no such possibility exists: Neither self-trapping
nor overscreening can occur, provided the conditions for
statements la-2 are fulfilled. Our results complement
perfectly similar ones for free and bound polarons, as well
as polarons in external homogeneous fields.
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