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The Wulff construction for the equilibrium shape of a crystal, being in coexistence with its vapor, is applied to a situation very 
near the triple point where the liquid phase becomes thermodynamically stable, too. This is particularly interesting if some planes of 

the crystal melt and other ones do not. In this case, it is found that the equilibrium shape exhibits liquid lenses on the crystal which 

match with a finite angle to the crystalline part. The results are compared with recent equilibrium shape measurements of lead 

crystallites. 

1. Introduction 

The problem to determine the equilibrium shape 
of a crystal, if its surface tension is given as a 
function of orientation, is very old and was for- 
mulated as a variational problem in the last cen- 
tury. In 1901, Wulff [l] answered this question 
giving an explicit geometric construction which is 
the Legendre transform of the surface tension with 
respect to the orientation angle. This was proved 
rigorously later on by Dinghas [2], for a review see 
Herring [ 31. 

In the usual Wulff construction one considers a 
crystal in coexistence with its vapor, far away 
from the triple point where the liquid becomes a 
third stable phase. Therefore, a quite natural ques- 
tion concerns the application of the Wulff con- 
struction to a three-phase situation. One then starts 
from three given surface tensions (solid-gas, 
solid-liquid, liquid-gas), one of them (liquid-gas) 
being orientation-independent, and looks for the 
equilibrium shape which minimizes the total free 
energy. 

This is also motivated by recent equilibrium 
shape measurements on lead crystallites near the 
melting temperature by MCtois and coworkers [4- 
6] and by Pavlovska, Faulian and Bauer [7]. For 
lead, the interesting situation occurs that some 
planes (e.g. (110)) do melt and others (e.g. (111)) 
do not [8]. 

The experimental situation, however, is still 
somewhat inconclusive. There is clear evidence of 
surface melting of the looser packed planes, 
whereas it is still controversial how surface melt- 
ing does influence the equilibrium shape of the 
crystal. In ref. [5], it is found that the equilibrium 
shape consists of facets and rounded parts. The 
matching of these parts becomes angular some 20 
K below the triple temperature. The matching 
angle and the facet size increase with increasing 
temperature T. Pavlovska et al. [7], however, ob- 
served a ring around the (111) facet, which was 
not seen in ref. [?I]. The width of the ring decreases 
with increasing T. As in ref. [5], the facet size 
increases with T. Another interesting experimental 
finding [6] is that facetted nonequilibrium crystals 
can be overheated, which is very unusual. 

Recently, Nozieres [9] made a qualitative study 
of the influence of surface melting on the equi- 
librium shape for two-dimensional crystals. In this 
work, the occurrence of liquid lenses and finite 
angular matching are explained qualitatively and 
several mechanisms which may produce the tem- 
perature-dependence of the matching angle and 
the facet size are proposed. Furthermore, super- 
heating of a facetted crystal is explained and an 
estimation for the superheating temperature is 
given. 

It is the aim of the present paper to understand 
generally the connection between the equilibrium 
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shape of a crystal near the triple point and the 
associated three surface tensions (solid-gas, 
solid-liquid, liquid-gas). A simple model is pro- 
posed where a generalization of Wulff’s construc- 
tion is possible in two dimensions and an attempt 
is made to compare quantitatively with the equi- 
librium shape measurements on lead crystallites. 

The organization is as follows: First, we con- 
sider two-dimensional crystals. In section 2, a 
generalization of Wulff’s construction is described 
and an illustration of the solution is given. For a 
simple model of a two-dimensional square lattice 
crystal, numerical results for the equilibrium shape 
are presented in section 3. As already obtained 
qualitatively by Nozibres [9], it exhibits liquid 
lenses on the crystal which match with a finite 
angle to the crystalline part. In three dimensions, 
the situation is more complicated. This is briefly 
discussed in section 4. Then the theory is applied 
to lead. We adopt experimental data for the surface 
tension extrapolated to the triple point and calcu- 
late the equilibrium shape. This is compared with 
the experiments which were mentioned above. 

2. Application of Wulff’s construction to the triple 
point 

In this section and in the following one, we 
consider two-dimensional crystals or - equiv- 
alently - cylindrical three-dimensional ones. Gen- 
eralizations to three dimensions are addressed in 
sections 4 and 5. The orientation of a crystal plane 
can then be characterized by a single angle 8 or by 
a two-dimensional unit vector ri = (cos 8, sin 0). 
Let ysv(ri), ysr(R), yLv denote the surface tension 
between the solid/ vapor, solid/ liquid and 
liquid/vapor phases at the triple point. In con- 
trast to ysv and ysL, yLv does not depend on 
orientation. If, for a given orientation 5, the 
surface of the solid which is in equilibrium with its 
vapor is wetted by the liquid, ysv(fi) is not well- 
defined. We then set ysv()i) = y&R) + yrv. 

Consider now a situation sketched in fig. 1. In 
general, a two-dimensional crystal with an n-fold 
symmetry has a solid/vapor z,(x), solid/liquid 
z*(x) and liquid/vapor zs(x) interface which meet 
at a trijunction point with Cartesian coordinates 

Z 

z, 

0 x, x2 x3 X 

Fig. 1. Geometry of the situation and nomenclature. One 
sector of the crystal which has an n-fold symmetry is shown. 
Three kinds of interfaces occur: solid/vapor rl(x), solid/liquid 

P*(X), liquid/vapor zj(x). They meet at a trijunction (x0, zO). 

(Jql, to). In fig. 1, only one sector of the crystal is 
shown with angle (Y = 27r/n. 

The problem then is to minimize the total 
surface free energy Z, 

+ 1 x3 d-G_v(z;(x))~ (1) 
-93 

with the constraint of fixed total mass M of the 
solid/liquid system 

M = ~s-4 + PLA,, (2) 

where 

As/n = /b;” dx zi( x) + lx2 dx z,(x) 
x0 

- (x2’ tan (~)/2, (3) 

(4 
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In eq. (I), the functions f. are given by 

i = SV, SL, LV, (5) 

and ps and p,_ are the densities of the solid and 
liquid, usually ps > pL. Furthermore, z;(x) = 
dz;/dx. 

So far, a situation directly at the bulk triple 
point TT was considered. For a temperature T 

slightly below T, on the sublimation line, the 
quantities ysL(fi) and yLv are not any longer 
well-defined. However, they can be fixed by ex- 
trapolating from higher temperature. For T < T,, 
the bulk liquid is thermodynamically unstable, i.e. 
it costs energy to create a liquid lens on the 
crystal. This can be incorporated if one adds 

F,=tA, (6) 

to the functional 2. The physical meaning of t 
becomes clear in the thermodynamic limit of very 
large crystals (A,, A, -+ co). Then, t equals the 
difference in bulk free energy between solid and 
liquid. Hence, in this case, t = C(T, - T), C de- 
noting a latent heat. Strictly speaking, this is not 
any longer true for a finite-size system. However, 
in order to keep the model as simple as possible, it 
is assumed that the differences in free-energy den- 
sity between solid and liquid are the same for an 
infinite- and a finite-size system. 

t can also be related to other physical quanti- 
ties, see below. 

The model defined by (l), (2) and (6) neglects 
interactions of interfaces. This interaction is ex- 
ponentially (like an inverse power law) as a func- 
tion of the interface distance for short-range 
(long-range) interparticle interactions. The range 
of the effective interface interaction is restricted to 
atomic distances. If the liquid has macroscopic 
size, the corrections due to interface interactions 
are negligible. This is indeed the case very near the 
triple point. In the opposite case where the thick- 
ness of the liquid film is comparable to atomic 
distances, one can define an effective solid-vapor 
surface tension ysv by taking the minimum of ysv 

and ysL + yLv + A where A includes the interface 
interactions. The crystal shape is then determined 
by a usual Wulff construction with ysv. This 

method is explicitly used for lead crystallites in 
section 5. 

Another assumption which was made implicitly 
is that the solid exchanges mass with the liquid 
but not with the vapor or - in other words - that 
the crystal/liquid system does not change its size 
via evaporation and condensation of matter from 
the gas phase. The dominant process by which 
equilibrium is achieved then is surface diffusion. 
For lead this is a reasonable assumption [lo]. 

The equilibrium crystal shape is obtained by 
minimizing the total free energy, consisting of (1) 
and (6), with respect to zi(x), zZ(x) and zs(x) 
with constraint (2) of fixed total mass. Before 
doing that, one should recall the usual Wulff 
construction with only one given orientation-de- 
pendent surface tension (e.g. ysv(fi)). A suitable 
reference is van Beijeren and Nolden [ll]; we 
adopt their notation with one exception: they set 
ps = 1 whereas we keep ps general, since we have 
also a liquid density pL. Let us briefly describe the 
procedure. 

The constraint of fixed solid mass M is treated 
by adding h(M - / dx z(x)) to the surface free 
energy where X is a Lagrange multiplier [12]. 
Then, the minimization yields a second-order dif- 
ferential equation in z(x) whose solution is the 
Legendre transform of the surface tension. This 
solution has two simple properties: First, it is 
unique up to translations in z and x, which corre- 
sponds to the two free constants of the second- 
order differential equation. The second feature is 
that the solution has a simple scaling property: for 
a different total mass M, the shape of the solution 
does not change, merely its size is altered by 
simple scaling and he2 a M. 

The same procedure can be applied to a situa- 
tion near the triple point as sketched in fig. 1. The 
constraint of fixed total mass M is incorporated 
by adding 

F,=X(M/p,-A,-A,P,/P,)/~ (7) 

to the functional (.E + 6)/n, X being again a 
Lagrange multiplier which can also be given a 
physical meaning, see below. 

Let us first minimize with respect to z,(x), 
z2(x) and z3(x) with fixed trijunction (x,, za) 
and then minimize the resulting free energy with 
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respect to x0 and I,,. This gives the minimizing 
solution. 

The minimization with respect to zr(x), zZ(x) 
and zg( x) again yields second-order differential 
equations which are solved by usual Wulff con- 
structions with ysv( fi), ysL(S) and yLv respec- 
tively. Here, the solution for the liquid/gas inter- 
face is a circle. However, the occurrence of F, and 
of two different densities results in different 
Lagrange multipliers X for the usual Wulff con- 
structions. 

This leads to the following illustration of the 
minimizing solution of 2 + F, where the symme- 
try of the crystal is taken into account, see fig. 1. 
The solution consists of parts of three usual Wulff 
constructions with ysv(fi), ysL(ij) and yLv. Let us 
now describe this illustration of the minimizing 
procedure: 

Choose an arbitrary trijunction point (x,, zO). 
Then draw the usual Wulff line for zr(x) using 
ysv(P) such that it is inversion symmetric with 
respect to x + -x and crosses the trijunction, see 
fig. 1. This procedure fixes the Lagrange multi- 
plier X which we choose to be nonnegative. 

As a second step, draw the usual Wulff line for 
z2(x) using ysL(S) and the Lagrange parameter 

A(1 - PJPS) + t (8) 

as indicated in fig. 1 such that it is inversion 
symmetric around the symmetry line 0s and 
crosses the trijunction point. Two situations are 
possible: z*(x) may be “innerconvex” (as indi- 
cated in fig. 1) or “ innerconcave”. The reduced 
temperature t and the ratio pJps determine which 
situation is actually realized; of course it is that 
one with minimal surface tension, see also the 
discussion in section 3. If, by this construction, the 
trijunction point cannot be crossed, choose other 
values of x0 and zO. 

Finally, draw a circle with origin on the line OS 
and radius 

R=Y,,/~,/Ps--tl (9) 

in order to obtain the liquid/gas interface zs(x). 
This circle should cross the trijunction and zg(x) 
2 z2(x) (x0 I x 5 x2) should be valid, otherwise 

x,, and z,-, are to be chosen newly. 

NOW, the actually realized situation is the 
minimum over x0 and z0 with constraint of fixed 
total mass M. In this equilibrium situation, there 
is a balance of forces at the trijunction point [3]: 

(10) 

In eq. (lo), ai is the normal vector of the i-inter- 
face at the trijunction and ay,/%, is a vector 
perpendicular to ri, and of length equal to the rate 
of change of y, with respect to 8. Eq. (10) is the 
generalization of the well-known Neumann trian- 
gle [13,14] for fluid trijunctions with orientation- 
independent surface tension. This was first pointed 
out by Herring [3] who also gave the modification 
of (10) if ayi/Xj has to be taken at a cusp of 
y,(i?;), see ref. [3]. 

Summarizing, the equilibrium crystal shape 
consists of three lines of usual Wulff construc- 
tions, but with different X’s such that it is the 
minimum with respect to the trijunction point 
with constraint of fixed total mass. 

The geometry of the situation, illustrated in fig. 
1, is fairly general including a solid which is 
totally covered with its liquid and a nonwet solid. 
However, a liquid drop is another trivial situation 
which is not included. Therefore, the surface ten- 
sion of the solid/liquid system has to be com- 
pared with that of a liquid drop in order to obtain 
the physically realized situation. This can give rise 
to a first-order phase transition from a situation 
“solid covered with liquid” to a liquid drop. In 
our model, finite size effects imply that this phase 
transition does not occur exactly at t = 0 but for a 
certain t * a L-’ where L a fi is a typical linear 
dimension of the solid/liquid system. The same 
behavior for the shift t * in the phase transition 
temperature was found by Lipowsky and Gompper 
[15] for interface delocalization transitions. 

In the variational derivation of the Wulff con- 
struction we followed ref. [ll]. One could also use 
the physically more transparent approach from 
ref. [9]. Then, the Lagrange multiplier acts as an 
effective chemical potential which is the same in 
all phases. The curvature of each interface be- 
tween phases 1 and J is then related to the 
difference in pressure, ApIJ, between the two 
phases 1 and J (I, J = V, L, S) by the usual 
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Laplace law (where in the anisotropic case the 
surface energy has to replaced by the surface 
stiffness). The angles at the junction obey eq. (10). 
Of course, this point of view is completely equiv- 
alent to the more mathematical variational 
strategy. The advantage of the latter is that X and 
t can be related [9] to Ap,: 

h=A~sv(~s-~vV~v, 

and 

t = AP,,(P~ - pd 

/PL - Apsv(ps - p&s - d/(w,)~ 

pv being the vapor density. 

3. Melting of a finite-size crystal 

In this section, we present numerical results for 
the equilibrium shape of a two-dimensional 
square-lattice crystal near the triple point. 

In order to make the model as simple as possi- 
ble, we assume temperature-independent surface 
tensions us.(h), ysL(S) and yLv. In the model, 
analytical expressions for the surface tensions are 
used. With ri = (cos 8, sin 0) these expressions are 

&v(P) = Y& - a + a a sin(lf3) + a/4)), (11) 

YSLH = wYsv(nL (12) 

YLV = constant. (13) 

with 0 I a I 1 and w = l/10, which is the right 
order of magnitude found in experiments. 

Eq. (11) implies that the equilibrium crystal 
shape consists of lines and a quarter of a circle 
which match smoothly, see fig. 3a. The number a 
fixes the ratio of the total facet length and the 
radius of the circle, this ratio equals 2a/(l - a). 

In fig. 2, the surface tensions ysv(ri) and ySL(R) 
+ yLv are shown as a function of 8. For the 
chosen parameters yLv/yO = 1.09, a = 0.52, ysv is 
smaller (larger) than ysL + yLv for ~9 = 0 (0 = n/4). 
This means that the closest packed (10) plane does 
not melt but the looser packed (11) plane does. 

In fig. 3 the results of the numerical minimiza- 
tion of the model (ll)-(13) are shown for differ- 
ent temperatures. 

The typical scenario for finite-size melting is 

1.25 

orientation 0 
Fig. 2. Surface tensions ysv (solid line) and ys,_ + yLv (dashed 
line) as a function of orientation 13 within the simple model. 

The parameters are a = 0.52, y,, = 1, yLv = 1.09. 

dominated by a competition between free energy 
and geometry. 

First, the situation without liquid is illustrated 
(fig. 3a). This is a usual Wulff plot with ysv(B) 
consisting of facets (lines) and rounded parts 
(quarters of a circle). Near the triple point, the 
orientations near the (11) plane do melt and a 
quasi-liquid film is formed on the crystal surface. 
Simultaneously, a change in the macroscopic 
crystal form takes place. This form can be ob- 
tained approximately by a Wulff plot with 
min(ysv(ri), ysL(lj) + yLv). The crystal reduces its 
total length in order to save surface free energy at 
the expense of higher surface tension at the 
rounded parts, see fig. 3b. 

Starting from this situation, the crystal melts 
further for increasing temperature in a simple 
way: The liquid lens becomes larger and grows 
inwards the crystal. For 

1, =X(1 - PL/PS) (14) 

the lens changes from “innerconvex” to “in- 
nerconcave”, see figs. 3c and 3d. Physically, this 
means that the pressure difference Aps,_ vanishes 
for t = t,. 

At a certain t *, the phase transition to a liquid 
drop occurs. For t < t *, the situation with a liquid 
lens corresponds to an overheated crystal. For the 
chosen parameters in fig. 3, the situations in figs. 
3c and 3d are overheated configurations. 

The solid/vapor interface of figs. 3b, 3c and 3d 
is not a plane facet but also contains a small 
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Fig. 3. Equilibrium shapes of a two-dimensional crystal for different temperatures near the triple point in arbitrary units. The 
parameters of the model are as in fig. 3 and ps = 1, pt_ = 0.97, M = 40. The double-hatched area corresponds to the solid, the 

hatched area to the liquid phase: (a) Usual Wulff plot with ysv(R). (b) Situation with a very thin liquid lens (t = 0.003). (c) Emerging 

of the liquid lens: “innerconvex” situation, t = -0.007 (overheated). (d) Emerging of the liquid lens: “innerconcave” situation, 

t = -0.02 (overheated). The transition to a “innerconcave” situation occurs for t = r, = -0.009. (e) Liquid drop, stable for 

t<t*=0.0004. 
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rounded part near the trijunction which can hardly 
be seen in the figures. At the trijunction, the liquid 
lens matches with a finite matching angle to the 
crystalline part. 

An important remark concerns the outer crystal 
shape involving solid/gas and liquid/gas inter- 
faces. It is this shape which can be seen experi- 
mentally. In the simple model where temperature- 
independent surface tensions were used, this outer 
shape remains practically constant. As mentioned 
before, it is given by a usual Wulff construction 
with min( ysv(R), ysL(B) + yrv). Therefore a 
change in this shape with increasing temperature 
is primarily connected with the temperature-de- 
pendence of the surface tensions. This will be 
useful in section 5. 

4. Three-dimensional case 

In three spatial dimensions, the trijunction is 
not a point but a closed line. The simple model, 
discussed in section 2, can be generalized to three 
dimensions in a straightforward manner. In gen- 
eral, a simple graphical illustration is lacking in 
three dimensions. Nevertheless, even in the 3D 
case, liquid lenses should occur which match with 
a finite matching angle to the crystalline part. 

In order to make the model more realistic, a 
contribution from the line tension [14] of the 
trijunction line should be added to the total free- 
energy functional. The occurrence of the line ten- 
sion combined with the fact that geometry in three 
dimensions is more complicated can induce new 
interesting properties of the crystal equ~ib~um 
shape. 

It is conceivable that a discontinuous behavior 
of the equilibrium shape occurs as the temperature 
is increased. This is connected with a first-order 
phase transition (i.e. a cusp in the free energy). 
Such a transition occurs between two different 
situations: In the first situation, the solid/vapor 
interface is a connected area with “islands” of 
liquid/gas interface. In the second situation, this 
is reversed; now the liquid/vapor interface is a 
connected area with solid-vapor islands. It is con- 
ceivable that such a transition is detectable for 
lead crystallites = 25°C below TT. 

5. Application to lead crystallites 

As already discussed in sections 2 and 3, the 
outer crystal shape which is accessible experimen- 
tally can be obtained by a usual Wulff construc- 
tion with min(ysv(iz), y2(fi)) where y2(A) is an 
effective tension incorporating the solid/liquid 
and the liquid/vapor interface and the repulsion 
between them. This was already noted in refs. 

i T=580"K 
a 

T=590"K b 

T=600"K 

I 1 

Fig. 4. Equilibrium shape of lead crystaliites near the melting 
point (TT = 600.7 K) for three different temperatures: (a) 
T= 580 K, (b) T= 590 K, (c) T= 600 K. Only the (110) zone 
is shown. The increase in the orientation cusp A6 (which 
separates a solid and a liquid surface) for increasing tempera- 
ture is clearly visible. The facet size is not directly visible since 

it is smoothly connected with a rounded crystalline part. 
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[5,9]. In this section, we adopt experimental data 
for ysv(A) and yZ(h) in the case of lead and then 
calculate the outer crystal equilibrium shape. Thus 
the temperature dependence of the crystal shape is 
governed by the temperature dependence of 

yi(R, T) = ysv(fi) and y2(A, T) = yZ(ri). Only for 
the (110) zone of the fee lead crystal experimental 
data are available, so we restrict ourselves to this 

situation. First, the temperature dependence for 

the anisotropy yi(fi, T)/y,,,(T) is extrapolated 
from the data of Heyraud and MCtois [lo]. Here, 

T was raised up to = 27 K below TT. Interest- 
ingly enough, the derivative of y with respect to 

orientation at the (111) facet seems to increase 
with increasing temperature for T 2 550 K. This 
quantity determines the (111) facet size; therefore 
an increase of facet size with increasing T is 
expected. 

Furthermore, from ref. [16], we take 

Y,,,(T) = Y: - Y,‘T, (15) 

with yp = 0.61 J/m2, yi’ = 0.11 mJ/m2. K. 
Concerning ~~(5, T), we use the empirical rule 

1171 ~~~(4 T) = ~~~(4 TV10 and yLV(T) = ~2” 
- y;(T- T-,.) with y; = 0.501 J/m2 (see ref. [S]) 

and yi = 0.11 mJ/m2. K (see ref. [IS]). y2(fi, T) 

is the sum of ySL(hr T) and yLv( T) plus correc- 
tions due to interface repulsion. We use the form 

of ref. [8]: 

~2(2, T) 

= Y,(% T)/10 + yLv(T) + W&L T)t 

+ AY(~, T) exp[ -N,,(i, T)/N,], (16) 

with 

AY(~, T) = 9~,( fi, T)/lO - Y&? (17) 

and 

%,(fi, T) 

= Max{O, N, In[Ay(fi, T)/(tL&)]}, (18) 

where L = 7.93 x lO_” J, N, = 7.32 X lo’* rnm2. 
In eqs. (16) and (18), t is the reduced temperature 

t= (T,- T)/T, (19) 

and TT = 600.7 K. 
By this way, we get a surface tension without 

any fit parameter. Symmetry arguments ensure us 
that the crystal shape in the (110) zone is obtained 

15 -- 

------------ --_ 
--_ 

10 

h 

L 
e, 
Gl 
ii 5 

o1 
560 565 590 595 6( )O 

temperature (K) 

Fig. 5. Lower angle 0,” and upper angle 6’,,, at the discon- 
tinuity in orientation (AB = B,,,,, - 6’,,,,,) versus temperature. 
The full lines are for the direction (111) -+ (llO), the dotted 

lines are for (111) -+ (100). 

by performing a one-dimensional Wulff construc- 
tion with min(y,(fi, T), ~~(2, T)), ii being now 
the orientation in the (110) zone. 

The result is shown in fig. 4 for three different 
temperatures. Both the (111) facet size d,,, and 
the inverse of the central distance h,,, of the (111) 
facet increase with increasing temperature. We get 
explicitly 

d,,,/& = 0.35 - 0.70t, (20) 

t being the reduced temperature. Starting from the 
(111) facet, both in (111) + (100) and (111) + 
(110) direction the orientation is a continuous 
function up to an angle B,,,i,. Then it jumps dis- 
continuously to an angle e,,, with A8 = S,,,,, - 
tImin. This is illustrated in fig. 5. A0 increases with 

increasing temperature. Therefore we do not ob- 
tain a ring but merely one discontinuity in orien- 
tation. 

In our approach, the (100) facet does not melt. 
In contrast to the (111) facet, its size decreases 
with increasing T. 

The increase of d,,,, l/h,,, and A8 with T is 
in qualitative agreement with the experimental 
findings [5,7]. The quantitative agreement, how- 
ever, is less satisfying; for instance d,,,/h,,, is 
larger in experiment compared to (20). At the 
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melting point, we have e,,,,, = 12.8”. This dis- 
agrees with the experimental value of 17’ of ref. 
[5] but agrees with the half-angle 13.5” of the 
(111) ring as observed in ref. [7]. This is not yet 
fully understood, see also the discussion in ref. [7]. 

Of course, our result depends sensitively on the 
experimental input data. In fact, the experimental 
error in the data for yt(n, T)/y,,,(T), for in- 
stance, is rather high [19]. Better measurements 
are necessary in order to have a more reliable 
input for the surface tensions near the triple tem- 
perature. 

6. Conclusions 

In conclusion, the Wulff construction was ap- 
plied to the triple point and properties of the 
solution were discussed for 2D and 3D crystals. 
As a result, the equilibrium shape of a crystal can 
exhibit liquid lenses which reflect the fact that 
some planes undergo surface melting and others 
do not. For such a liquid lens, finite angular 
matching was found which is in qualitative accor- 
dance with the experiments. 

Furthermore, experimental data for the surface 
tensions of lead for lower temperatures than TT 
were extrapolated to higher T and used as input in 
order to predict the temperature dependence of 
the crystal equilibrium shape. It turns out that the 
(111) facet size and the matching angle between 
solid and liquid surfaces increase with increasing 
temperature, which is in qualitative agreement with 
experiments. However, the quantitative agreement 
is not satisfying. More experimental and further 
theoretical studies are necessary to reveal the in- 
fluence of surface melting on the equilibrium shape 
of crystals. 

In simple effective interface models for planar 
surface melting, one might get the wrong impres- 
sion that complete melting means that the whole 
solid is converted into the liquid phase continu- 
ously. However, in these models, one deals with an 
infinite crystal. In practice, the finite size of a 
crystal and external wall potentials or gravita- 
tional fields [20] lead to a situation at the triple 
point where (according to Gibb’s phase rule) all 
three phases solid, liquid and gas are present. A 
continuous melting from the solid surface of a 

finite-size crystal only takes place if the solid 
melts for any surface orientation. 
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