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The influence of gravity on planar surface melting is 
studied if the surface normal is parallel to the gravita- 
tional acceleration. We find that gravity prevents com- 
plete melting. At the triple point, the solid is covered 
with a liquid film whose thickness is of the order of 
a micrometer. We suggest to use a centrifuge with high 
centripetal acceleration in order to observe the deviation 
from the usual melting law experimentally. 

I. Introduction 

Surface melting is an interesting current research subject, 
both experimentally and theoretically. Concerning recent 
reviews on this topic, we refer to van der Veen et al. 
[1] and Dash [--2]. Extensive studies were made for lead 
where now the dependence on the orientation of the 
surface plane [3] and the role of the long range forces 
[-4, 5] are well understood. In this case, one could ap- 
proach the melting temperature up to the order of mK! 
In particular, the (110)-plane was shown to exhibit com- 
plete melting. 

In the interpretation of the experimental data and 
also in current theories of surface melting, gravity is ne- 
glected. On the other hand, it is known from the Mol- 
dover-Cahu wetting experiments on three coexistent liq- 
uids [-6] that gravity limits the width of the wetting layer 
[7]. It is thus tempting to examine the influence of gravi- 
ty on surface melting. 

In our chosen geometry the normal of the solid sur- 
face has the same direction as the gravitational accelera- 
tion [8]. Then our main result is that, at the triple point, 
the solid is covered with a liquid layer with a finite width 
l* and can even be overheated, l* is given by 

l* = (2 Wps/(m g P L  ( P s  - -  PL))) 1/4" (1) 

Here, g is the acceleration, m denotes the mass of a parti- 
cle and W the Hamaker constant of the material. Fur- 
thermore, Ps and PL are the solid and liquid densities 

at the triple point. The triple gas density Pc is assumed 
to be small 

Pa ~ Ps, PL (2) 

and we suppose 

PL < PS" (3) 

For lead and for the gravity acceleration on the earth 
(g -go=9 .81  m/s2): I*=580 nm, rather insensitive to 
m, W,, etc. In typical experiments [4] one can approach 
widths of l__< 8 nm. That means that the deviations from 
complete melting due to gravity are nonobservable be- 
low the triple point. However, for very large g, l* is re- 
duced. In a centrifuge, one can achieve up to g = 106 go. 
Then, the deviations from the usual complete melting 
law are accessible by experiments. 

The physical reason of the finite width l* at the triple 
point is a competition in the free energy between inter- 
face repulsion, which drives complete melting and is for 
non-retarded van der Waals forces --~ l-2 (l denoting the 
width of the liquid layer), and the contribution ,~g/2 
which arises from gravity and prevents melting for large l. 

II. Theory 

We start from the grand canonical energy functional 
Q [{p(r)}, T, #] of the particle density p (r) in an external 
potential V(r) for a given temperature T and chemical 
potential #. It may be written as [-9, 10] 

O[{p(r)}, T,#] =~d3rfh[ ,T ,{p(r)}]+~d3r(V(r)-#)p(r)  

+(1/2) ~d 3 r~d 3 r ' #  ( I r -  r'[) p(r) p (r'). 
(4) 

Here, fh(T,p) is the free energy functional for a system 
with pure repulsive forces which we assume to be local. 
For  small densities, fh(T, p) equals the ideal gas part 

fh (T, p) = kB Tp(ln(A 3 p)-- 1) + 0 (02). (5) 



442 

A being the thermal wave length. Furthermore, #(r) is 
the attractive part of the interparticle potential. 
In what follows we specify the external potential to 

V(r)-  V(z) = { 2 g  z<O 
z z>0 .  (6) 

As in (1), m means the particle mass and g the gravita- 
tional acceleration. 

The occurrence of V(z) implies that the system can 
be viewed as one with z-dependent chemical potential 
which may be called gravito-chemical potential 

#( z )=#-V( z ) .  (7) 

We consider a process with a chemical potential # 
= # ( T ) = # o + # s ( r  ) with #(r)>>ps(r ) where #o is fixed 
and #s(T) is the chemical potential on the sublimation 
line. Then, the gravito-chemical potential equals #s(T) 
at a macroscopic T-independent height (see Fig. 1) 

Zo = po/m g. (8) 

Then we raise the temperature T towards the triple tem- 
perature Tr. 

Concerning the density parameterization, we use a 
sharp kink approximation [11, 10] for the solid and liq- 
uid density Ps, pL. As a crucial approximation we neglect 
the #-dependence of Ps, PL. This should be a good ap- 
proximation since the solid and liquid are nearly incom- 
pressible. It is merely for very high g that the #-depen- 
dence of the solid and liquid density becomes essential, 
see Chap. 3. The vapor density is small and we assume 
that the vapor behaves like an ideal gas. Then, the total 
density contains two free paramters l~, 12 which deter- 
mine the width of a liquid film between the solid and 
vapor phase, measured from Zo, see Fig. 1. 

% 

Fig. 1. Schematic plot of the density parameterization in a gravita- 
tional field: exponentially decreasing gas density, liquid layer with 
width l and solid density in a sharp kink approximation 

Summarizing, we assume 

tpG(z) 

z < 0  

O < z ~ z o - I ~  

Zo- I i  <z<=zo+12 

z > z 0 + / 2  

(9) 

with the gas density 

PG (z) = A - 3 exp ((#-- m g z)/kn T). (10) 

Note that we assume (2), i.e. the gas density is small. 
We insert the density p(z) into the grand canonical 

free energy functional and minimize with respect to l~ 
and Iz. It may be more convenient to use 11 and the 
total width l=ll+12 as variable. Then, minimization 
with respect to 11 leads to 

11 =PL I/ps" (11) 

The remaining functional f2 is merely a function of 1 
and has to be minimized with respect to I. This function 
(2 per area A reads as follows 

f2 (1, T, #)/A = (o s (Ps, T, #s (T)) (zo + kB T/(m g)) 

- m g P s Z ~ / 2 + a s  .... + a  ~ • S,L T L,G 

+ 1 [co L (PL, T,, #s (T)) - cos (Ps, T, #s (T))] 

"~- ~grav  "7(- ~w + 0 ( [ m  g (Ps --  PL) 1/(kB Zps) ] 3) (12) 

with 

Zgr,v =mg  PL(Ps--PL) 12/(2ps), (13) 

Zw = --(Ps--PL) PL S dy t(y). (14) 
l 

Let us explain the notation: COs(Ps, T, #s(T)) is the grand 
canonical free energy density of the bulk solid on the 
sublimation line. Near the triple temperature TT, the dif- 
ference of the (metastable) liquid and solid free energies 
equals 

COL(PL, T,#s(T))--COs(Ps, T ,#s (T) )~L(TT-  T). (15) 

L denoting a specific heat. Furthermore, 

co 

t(Y) =- I dx  fd2rw(]/ f i  + x2) �9 (16) 
Y 

Usually, the long ranged part of the particle interaction 
is of van der Waals type, proportional to r -  6. Hence 

~grav  ~ W~ 12, (17) 

o-ex for large l, W being the Hamaker constant, o- s . . . . .  s,L, 
ex ~ ex O-L,~=aL .. . .  are the (extrapolated) surface tensions be- 

tween solid/vacuum, solid/liquid and liquid/gas. Their 
explicit form is given in [9J. Finally, we remark that 
the corrections of third and higher order in l are very 
small and can be neglected for micro- and mesoscopic 
widths. 
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Fig. 2. Width of the liquid film versus reduced temperature (T-  TT)/TT 
for lead (TT=600.7 K): The solid line corresponds to g=0 and 
is the usual (TT--T)l/3-1aw for complete surface melting. The dot- 
dashed and dotted line are for g = 10 s m/s 2, 10 9 m / s  2 respectively. 
For T= Tr, I is finite and the crystal is overheatable 

Minimizing (12) with respect to l and adopting (16)- 
(17), we arrive at an implicit equation for l=/(T):  

L ( T  r -  T)= - r a g  PL(Ps--PL) I/pL + 2W/13. (18) 

Discussing (18), we obtain that the width of the liquid 
layer remains finite for T--Tr  and even for T>  Tr, i.e. 
the crystal can be overheated. For  T=  Tr, the width is 
given by (1). Using the material parameters for lead as 
given in [-5], the function l(T) is illustated in Fig. 2 for 
different accelerations g. 

Let us finally comment on improvements of the 
theory and their influence on the result (18). First, one 
can use a better description of the reference free energy 
functional ~d 3 rfh({p(r), T) in the spirit of a weighted 
density approximation [12]. Second, a more realistic 
density parameterization can be employed including 
Gaussian peaks for the solid density [13] and smooth 
interfaces [14] but still neglecting the #-dependence of 
the solid and liquid densities. These improvements mere- 
ly lead to corrections of 1 which are of the order of atomic 
distances and thus can be neglected if l* is large enough. 

We add a remark to the peculiar case where the liquid 
is denser than the solid 

PL > Ps (19) 

which is indeed realized e.g. for Bi, Si, Ge. As is clearly 
seen from (14), (17), the Hamaker constant W becomes 
negative in this case. It has been denoted by many au- 
thors [-15] that this leads to blocked (incomplete) surface 
melting if g=0 .  However, with an external potential 
present the situation changes drastically. One has to re- 
call that usually the liquid is thermodynamically stable 
for T=  Tr, #>#s(TT) if (19) is fulfilled. This means that 
the solid melts from its bottom for T <  Tr. At the triple 
point two situations may occur. Usually 

aLS + aS~ > aL~ (20) 
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where ats means the surface tension between phases I 
and J for T--Tr .  In this situation there is no solid for 
T= TT. In the opposite case 

aLS + aSG = aLG (21) 

the solid covers the liquid phase. This is the same situa- 
tion as for Ps > PL, but now the roles of solid and liquid 
are interchanged. 

I l l .  Discuss ion for large accelerations 

In conclusion, complete planar surface melting becomes 
incomplete if an external potential is present, and then 
the crystal is overheatable. This result is similar to the 
effect of finite size on surface melting [16, 17] where 
the melting can be incomplete, too. In the gravitational 
field of the earth, this effect is too small to be observable 
in experiment slightly below the triple temperature. 

In order to observe this effect in experiments, we 
suggest to use a centrifuge where higher accelerations 
up to 10 v m/s z are available. In a centrifuge, the centrifu- 
gal potential is radially symmetric and reads as 

V (r) = -- me) z rZ/2 (22) 

where co is the angular velocity. If R denotes the distance 
of the solid surface to the rotation axis, the potential 
V(r) can be approximated linearly provided R >> 1 is valid 
where I is the thickness of the liquid layer. The accelera- 
tion in a centrifuge is then given by 

g= R co 2. (23) 

For very high g, the effect of gravity is dominant for 
T ~  T T. 

One remark concerning the density profile is in order. 
For small g(g ~ 100 m/s 2) the y-dependence of the solid 
and liquid densities is very weak and can be neglected 
as done in Sect. II. A sharp-kink approximation works 
well in this regime. If g increases (100m/s 2 
~ g ~  104 m/s 2) the solid and liquid densities depend 
weakly on # or equivalently on z. Nevertheless, since 
this dependence is weak, the result for 1" (1) remains 
valid if one replaces PL and Ps by mean densities of 
the interface region. 

For  very high g(g> 1 0  4 m/s 2) the real density profile 
p(z) is not of sharp-kink type, but depends strongly on 
z, being a rather smooth decreasing function of z with 
two interfaces, p(z) will be the thermodynamically stable 
(metastable) solid (liquid) density for given T and the 
gravitochemical potential #(z). Since these densities are 
not known, in general, they cannot easily be incorpo- 
rated into the effective interface potential and no general 
definitive prediction for l* can be made. Nonetheless we 
believe that the formula (1), (18) still make at least some 
approximate sense. We therefore take these formula to 
display the temperature dependence of the width of the 
quasiliquid layer for lead, even for very high accelera- 
tions, see Fig. 2. Here strong deviations from the usual 
complete melting behaviour are visible. Denoting these 
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deviat ions  by A l(T)= l (T) - lo  (T) where 

l o (T) = ( L ( T r -  T)/(2 W))-  1/a 

is the liquid film width wi thout  gravi ty  for a t empera tu re  
T <  Tr, we find for small  A/(T):  

A l ( T ) / l o  ( T )  ~- - (lo ( T ) / I * ) 4 / 3  (24) 

with l* given by (1). This implies tha t  for  g =  107 m/s 2 
which is avai lable  in a centrifuge, the deviat ions  are large 
enough  to be observable  experimental ly.  

A second r emark  concerns  the effect of  a ' cylindrical 
shaped crystal  surface which is enclosed in a centrifuge. 
Since l ~  R, the effect on surface mel t ing is very small 
and  negligible. M o r e  quanti tat ively,  the leading te rm for 
wett ing at  the inter ior  of  a cylinder in the effective inter- 
face potent ia l  is [-91 

d ~  . . . .  = ~LG " I / R  (25) 

which favors  surface melting. C o m p a r i n g  with (12), this 
leads to a shift At of  the reduced t empera tu re  
t=(T--Tr)/Tr.  F o r  lead, we have  aLG=0.501 J / m  2 [3] 
and for R =  1 cm we get At ~- 10 -8. The  smallest  resolu- 
t ion in t which can be realized exper imenta l ly  [-51, how-  
ever, is ~ 1 0  -6.  Therefore  it is justified to neglect the 
effect of  cylindrical curva ture  completely.  

Of  course  it is difficult to pe r fo rm an exper iment  in 
a centrifuge, to keep  the t empera tu re  cons tan t  etc., so 
it is a hard  task to m a k e  exact  measurements .  The  over-  
heatabi l i ty  of  the solid, however ,  is an effect which is 
even dominan t  for smaller  accelerat ions;  it should be 
much  easier to detect  it in a centrifuge experiment .  

It is a pleasure to thank H. Wagner for useful discussions and 
helpful comments. 
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