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Abstract, — We introduce a multi-order parameter van der Waals theory for surface melting
near the triple point 7 which is based on density functional techniques and ineludes long-range
interparticle forces. As a result we establish that long-range attractive forces induce a stretched
exponential decay as T — 7} of the residual crystal order in the guasi-liquid interfacial layer. If
these forces are weak, a crossover from logarithmic to power law growth in T, — 1" of the
interfacial width oceurs.

It has been suggested long ago[1] that the melting of a solid might start at the surface,
which is a natural defect in the erystalline order. Recent ion back-scattering experiments [2}
on Pb and calorimetric studies [3] with adsorbed multilayer rare-gas films provide strong
evidence for the ides of surface melting. These measurements may be interpreted by
assuming that near the triple point temperature T, some faces of a crystal in coexistence
with its vapour are covered by a liquidlike layer whose thickness increases steadily as T\ is
approached. Hence, surface melting may be viewed as an instance of interfacial wetting.

Although the theory of both wetting phenomena [4] and bulk freezing [5] has advanced
considerably in the last few years, the molecular aspects of surface melting are still not well
understood. The difficulty is to cope with the strong spatial density oscillation in a crystal
lattice as well as the inhomogeneous decay of lattice translational order in the interface.

Qualitative features of the wetting layer may be explained within phenomenological
Landau models [6-8], originally deviced to deal with interface delocalization at geometric
surfaces. A more detailed picture of the interfacial profiles has been supplied by a numerical
mean-field study of a discrete lattice model[9].

In this letter we present a van der Waals-type variational free energy for the solid
(liquid)vapour interface which is derived from the density functional theory (DFT) of bulk
freezing [5]. The strategy of DFT is based on the assumption that the short-distance
structure of a bulk solid can be described by a hard-sphere reference fluid with the
intermolecular attractive forces treated perturbatively. For the hard-sphere system,
reliable approximations for the equation of state and for two-body density correlation
functions are available. A notework feature of our approach to surface melting is that only
those tnicroscopic input data are required which are supplied by the current DFT of bulk
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freezing. The main additional assumption we have to make is that the interfacial profiles of
the local mean density and of the crystalline order vary slowly over lattice distances. As an
application, we congider the effects of the range of molecular forces on the residual crystal
order in the quasi-iquid film and on the growth of its width.

Let us first outline the arguments leading to the van der Waals expression for the
interfacial free energy. The grand canonical functional for an inhomogeneous system with
local density (r), chemical potential x and velume V reads [10]

QU= Falel + Fald—u [ dire ), (W

where #; denotes the ideal gas term. We assume a pairwise potential ¢ (r) which is divided
Into a shortrange part, ¢.(r}, and long-range tail £/(v). Besides a repulsive core, £.(r)
includes a short-range attractive part. The excess Helmholtz functional #,,, is then given by
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with ¢, treated in mean-field fashion. Finally, #,[¢] may be written in the form
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where c(r, r'; [¢]) denotes the direct corvelation function (d.c.f.) arising from the short-
range repulsion and attraction combined in &,(»).
Consider now a semi-infinite crystal in coexistence with the vapour phase and with a
planar interface perpendicuiar to the z-axis. For this geometry the local density may be
written as o(r, I'(2)) = po(2) + 5(r, T'(2)) with I'= {2, 1, 22, ... }; 20(2) is the local mean
density and g;, 1 2 1, are local crystal order parameters such as Fourier coefficients of 2 () or
functions thereof. In the bulk phases we have

v

{F(z—» —w)=T5={zs, ¢15,...}, in the crystal,
(4)

Pe—om)=ly={s,0,...}, in the vapour.

¢(r, I's) 18 defined such that its average over the unit cell vanishes.

To proceed, we now assume that the parameters I'(z) vary slowly within the range of the
d.c.f. in eq. (3). Therefore, we may perform a gradient expansion in ¥,[¢] with respect to
I'(z). To leading order we obtain a free energy functional per unit area for the interface
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In (5), summation on 4, jz 0 is implied; the matrix g,;(I") is given by
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and the fimit V — = iz understood. In (5), — v(I"} denotes the grand canonical potential per
unit volume of a system with spatially uniform parameters I’ and w(z) is the laterally
integrated tail potential & (+).

Note that the gradient expansion is made only in F,,[s] but not in the mean-field term in
(2). The latter is dominated by the profile g (2), since the density deviation &(r, I'(z))
osclilates rapidly over distances where ¢,(r) remains practically constant.

The final input required o specify ¥ ig the d.c.f. in (6) for a erystal with uniform I". This
quantity also enters crucially in »{I"), which yields the bulk phase diagram. The usual
procedure is to treat ¢, perturbatively and to set

{

clrr I =cys(r, vy 1)~ r—r). (M)

A
kBT 7°
The first term, cus, may be construcied from the d.e.f. of a uniform hard-sphere fluid using
the weighted density techniqueill]; ;33(7") is the WCA-modification {12] of ¢,r) whereby
short-distance hard-core effects are taken into account approximately.

The equilibrium profiles I'(z) = {3(2), é(7), ...} are cobtained from minimizing X[I']
subject to the boundary conditions (4) with v»(I'y) = v(I"}. We note that the functional X [I']
may be viewed as the mechanical action of a fictitious particle in I'-space with metric g;{I")
and where z plays the role of time. The particle moves in the potential ©(I"t and behaves as a
polaron in ge-direction. _

In the subsequent discussion, approximations suech as (7) are not required. Instead, we
assume that the bulk system displays three phase coexistences at a triple point.
Accordingly, on the sublimation curve in the vicinity of T\, the potential exhibits a three-
peak structure with two maxima of equal height at I'; and I's and a lower maximum at
Ip=A{g1, 0, ...} rising with c= (T, - T)/T,— 0 so that v(I") =) = v{) for t=0; ¢ is
the density of the bulk liquid at the triple point. In the dynamical terminology we look for
solutions of the Euler equations 3X/8¢,(z) =0 which correspond to trajectories starting on
top of the vapour peak and terminating on top of the solid peak.

In general, the Euler equations may have several solutions. For a simplified model with a
single-crystal order parameter I'= {g, &1}, and with short-range forces only (w = (0}, we can
show that the number of extremals, N, is odd(}). Furthermore, there is always a
«melting» trajectory which visits the liquid peak and approaches its top as +— 0. The other
solutiens (if they occur) qualify as «nonmelting» or «plocked melting», Of course, the
physically realized trajectory is the one having minimal «action» X (%).

In the case of long-range forces (w # 0) we have no proof but numerieal evidence that
N, = odd remains true.

Let us focus attention on the melting trajectory. The analytic results listed below are
based on the following approximation for v(I") in the vicinity of the liquid peak at I':
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with a finite but arbitrary number D of crystal order parameters. Furthermore, we assumed

) A proof of this siatement and further details will be published elsewhere,

(*) Tt might be expected that the «blocked melting» solution is normally unstable. Indeed, we found
numetically that this appears to be the case for physically reasonable potentials v{I"). However, we
have no compelling argument to exclude in general substructures in v(I") which would render the
blocked melting trajectory into a stable one, at least in some range of the thermodynamic parameters.
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the metric tensor at I’ to be diagonal, ¢,(I'y) = ¢::¢;. The attractive tail potential is taken as
Gi(r}~»"", n>3, at large distances. The results for short-range forces (¢,=0) are given
within brackets.

As in previous models [4, 6] the gross asymptotic features of the liquid layer such as its
width 1(7) or the surface excess specific heat C (1) are insensitive to the detailed form of the
profiles I"(z) and follow already from a crude sharp-kink approximation which yields
(o) = CHiM ¥ [—In], and C )~z D=2 [271] H denotes the Hamaker constant.

Important information on the molecular structure of the wetting layer is provided by the
temperature dependence of the residual crystal order {5,(1), Z(z}, ...} at the vapour/liquid

interface. We obtain
Gl ~expl—w QH® <7, [+7], )

where o, = VAJ/g; and & = Min (wg, 2wy, ..., 2wm,).

The decay law (9) in the case of long-range forces agrees with numerical findings [9] and
can be tested experimentally, for instance with X-ray surface-scattering.

The mean-density profile z(z) approaches its bulk vapour or solid value as |z
-{exp{— Alz|], 2 nonuniversal); the order parameters g(2), 1= 1, decay exponentially in z
within the quasi-lquid film for both short- and long-range forces, whereas they approach the
golid bulk in the same way as gy(2).

To obtain some insights into the global features of the meiting trajectory, we adopt the
strongly simplified model mentioned above [7] with a single order parameter ¢;, which may
denote the width of the density peaks in the crystal, for instance. The matrix g, is taken to

|—(n—3) .
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Fig. 1. — Melting (r=10.0033} and sublimation (7-» %) trajectories in order parameter space in
arbitrary units. The solid line is for a short-range potential (« = 0), whereas the dot-dashed and the
dotted line correspond to a long-range attractive (a = — 1) and repulsive (« = 1) potential. The ellipses
are given by v(IM = —2. We choose g =1, gy =0.485, a=1, o=1.
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Fig. 2. — Width of the liquid film vs. reduced temperature T in arbitrary units for different kinds of
potentials. The line type and the parameters are as in fig. 1. The dotted curve for =<0 corresponds
formally to a nonequilibrium situation where the solid and the vapour are overheated. The inset ghows
the crossover from a logarithmic to an algebraic divergence law for a weak attractive long-range
potential (x = 0.05).

be diagonal and constant; the potential »(I") is approximated by the truncated paraboloids

vl =

1 9 . s . 5
=g max {= 2 (o= p6)* — daph; — 2am — Ay — o) — 2neh; — 2 {po— ps)f — 2s(p1 — ey, (A0)

with Ag>ip>As>0. The curvatures in gpdirection are chosen to be equal, since the
qualitative behaviour of the trajectories is insensitive to A. With expression (10) we adopted
the model of Levi and Tosatti [7] for the contribution of the short-range forces. However, in
contrast to ref. [7] we include long-range forces with w(z) = «/(¢” + 2%, corresponding to
#(r) ~ 7%, In the case of attractive forces we have « <, but we may also consider repulsive
tails by taking « > 0 although their occurrence is not immediately obvious. Results are given
in fig. 1. For comparison, «sublimation» trajectories are also shown as obtained in the formal
limit +— . Remarkably, the trajectory approaches the solid peak nonmonotonically if the
tail potential is repulsive.

The «resting time» of the melting trajectory near the top of the liquid peak is a measure
for the width of the interfacial layer, see fig. 2. If the strength of the Lennard-Jones
potential & ~» ¢ is weak (e.g., as in metals) the numerical solution displays a crossover at
some small finite 7, from I(7) ~In(1/7) to I(t} ~ =¥ as ¢ — 0. This behaviour also induces a
crossover in the residual crystallinity from a power law to a stretched exponential (9). The
crossover in () has apparently been cbserved in recent measurements [13] on Pb. In the
case of a repulsive tail, the width of the interfacial layer remains finite as -— 0 (blocked
melting).
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