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A polaron, bound in an external attractive short-range potential, exhibits a pinning 
transition, which is connected with a change from a delocalized to a localized polaron 
ground state, as the potential strength increases. We describe this transition in more 
detail, determining the associated critical exponents. For a screened Coulomb potential, 
we calculate the critical potential strength as a function of the electron-phonon coupling 
parameter. The result is compared with the effective mass description of the problem. 
Furthermore, experimental consequences of the pinning transition are discussed. 

I. Introduction 

Recently, the question whether or not a polaron sys- 
tem, described by a generalized Fr6hlich Hamilton- 
ian, exhibits 'phase transitions' gained new interest. 
Basic works of the rigorous study of this question 
were done by Spohn [1, 2] and by Gerlach and the 
author [3, 4], who found that for a free large polaron 
no 'phase transition' does occur. The same negative 
answer was obtained for a small polaron [5] and a 
magneto-polaron [6]. Spohn [1] also pointed out the 
possibility of a pinning transition for a polaron bound 
in a short range potential, a mathematical proof of 
the existence of this transition was given in [7]. 

Summarizing these results, we state that the only 
possibility of a polaron 'phase transition' is the pin- 
ning transition for a polaron bound in an attractive 
short range potential. This transition really is an in- 
trinsic property of the Fr6hlich Hamiltonian. We also 
refer to [8] for a review of the 'phase transition' prob- 
lem. 

Interestingly enough, up to now no calculation 
of the pinning transition was presented, although a 
related system, namely a polaron bound in a Cou- 
lomb potential, is a well studied problem since the 
early work of Platzman [9]. 

The present paper is devoted to a calculation and 
discussion of the pinning transition. We start in Sect. 
II, giving an introductory physical description of the 
pinning transition. We found that it is a second order 

transition, accompanied by a potential assisted 
change of localization of the polaron ground state 
wave function. The inverse of the ground state expec- 
tation value of the squared electronic position opera- 
tor is a suitable order parameter and the associated 
critical exponent is determined. In Sect. III, we calcu- 
late the critical potential strength in the case of a 
screened Coulomb potential, using a variational 
method of Adamowski [10], and compare the results 
with the effective mass approximation. Finally in Sect. 
IV, we conclude our results and discuss physical and 
experimental consequences and applications of the 
pinning transition. 

II. Description of the pinning transition 

II.I Pinning transition 
in ordinary quantum mechanics 

The effect of the pinning transition is well-known 
from the theory of bound states in ordinary quantum 
mechanics, for a compilation of the literature see 
Spohn [1]. However, its name 'pinning' originates 
from an analogy to statistical mechanics of surfaces. 
Let us briefly recall the basic facts. 

In three spatial dimensions, the existence of a 
bound ground state of a one-particle Hamiltonian 

H~ = p2/(2 m) + ~- V(r) (1) 
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V(r) being an attractive short range potential, de- 
pends sensitively on the potential strength ft. For a 
more precise definition of short range, see again the 
literature quoted in [1]. It turns out that for fi<flc 
the ground state is delocalized, its associated energy 
E(fl) is zero, being the lower edge of the continuous 
spectrum. On the other hand, for fl > tic the Hamilton- 
ian He possesses a bound localized ground state with 
strictly negative energy E(fl). Consequently, at fl=flc 
the ground state energy E(fi) exhibits a nonanalytic- 
ity. 

Looking for a suitable order parameter M(fl), 
which describes the pinning transition, it is natural 
to take the inverse of the ground state expectation 
value of r 2, i.e. 

M (/~) = 1/(  r ~) (2) 

Then, M(fl)=0 for fl<flc and M(fl)>0 for fl>flc. 
The next question of interest concerns the critical 

exponents associated with the pinning transition. 
Here, two different exponents 7 and 6 are relevant. 
Firstly, 7 is defined by 

e(/~) ~ (/~-/~c)', /~-,/~+ (3) 

determining the order of the pinning transition. Sec- 
ondly, we define 6 as 

M (fl) ~ (fl -- tic) ~, fi ~ fi{ (4) 

In order to determine 7 and 8 let us be more specific 
and consider cutoff-potentials of type 

ft. V(r)={~.v(r) for r < L  
otherwise (5) 

Since ~ and 6 are expected to reflect universal features 
of the pinning transition, the critical behaviour should 
not change, if one considers more general short range 
potentials. 

In the case [5], for fl>flc, ~ and ~ are readily 
calculated. Obviously, the ground state wave function 
~(r) fulfills (see Messiah [11]): 

1 

~O(r)~exp( - ( -  2mE(fl))~r/h)/r for r > L (6) 

The continuity of the logarithmic derivative at r = L 
yields 

1 

( -- 2 m E (fl))5/h = d/d r (r ~ (r))/(r ~ (r)) 1, = L- (7) 

Now, we assume that the right hand side of (7) is 
analytical in (fi-tic) for fl > tic, i.e. it is proportional 
to (fl-tic) as f l ~  fl~+. This assumption can explicitly 
be verified e.g. for a spherical square well but it should 
also be valid for more general potentials. However, 
it is an essential input in our determination of the 
critical exponents. By this assumption, we obtain 7 = 2 

and inserting E(fl) in (6) and evaluating M it turns 
out that also ~ = 2. Therefore the pinning transition 
is a second order transition. 

11.2 Pinning transition for the polaron 

It is an interesting task to study the influence of the 
electron-phonon interaction on the pinning transi- 
tion. The problem we are dealing with is a conduction 
electron bound in a short range impurity potential 
and interacting with the LO-phonons. Such a system 
is described by Fr6hlich's Hamiltonian 1-12] 

U F = H e -]- Hop h --}- H I (8) 

where 

Hoph -- ~ d 3 k h ~o (k) a + (k) a (k) (9) 

HI = ~�89 3 k [g(k) exp(ikr)a(k) + b.c.] (10) 

Here, we have used standard notation, a + (k), a(k) 
are the creation resp. annihilation operator of the 
phonons, c~ denoting the dimensionless electron- 
phonon coupling parameter. The phonon frequency 
og(k) and the coupling function g(k) are given by 

o ~ ( k ) = ~  (11) 

g(k)= h~(h/(2m~o))�88 n2) -�89 1/k (12) 

In [7], it was proved that the pinning transition, 
which was well-known to exist for ~--0, survives for 

>0.  The ground state energy E(~, fl) is nonanalytic 
in fi at fl=flc(O 0 where 0__<flc(~)=<flc(0) and flc(~) is 
continuous in ~. For fl<flc(~), E(~,fl) is identical to 
the polaron self-energy E(~, 0), which is the position 
of the continuum edge. 

Therefore the influence of the phonons is to shift 
the critical potential strength to smaller values. This 
can be qualitatively be understood as a consequence 
of the enhanced phonon-induced effective mass of the 
polaron. 

The definition (2)-(4) of the order parameter M 
and the critical exponents 7, 6 are readily transferred 
to the polaron case. However, as indicated by Spohn 
[1], it is not expected that the phonons change the 
critical exponents V and 3. 

In order to show this more explicitly, we propose 
the following intuitive argument, which works for the 
case (5) of cutoff potentials with cutoff L large com- 
pared to the polaron radius and which is a generaliza- 
tion of the discussion in Sect. II.1. 

Performing a Lee-Low-Pines transformation [13], 
we obtain a new Hamiltonian H~ which is unitarily 
equivalent to HF: 

n ~  = (p -- Pph)2/(2 m) -~ Hop h -[-/~. V(r) -1- H i  (13) 



with 

H[ = ~�89 3 kg(k) (a(k)+ a + (k)) (14) 

where Pph = ~ d3 k ka + (k) a(k) is the usual phonon mo- 
mentum operator. We look for a solution of H i  4~ 
=E(~, t ) ~  for t > t c  and r > L w i t h  E(~,t)<E(cq0).  
Since r > L, H i  does not depend on r any longer and 
the eigenstates of H i  are linear c.ombinations of free 
polaron like product states. Since L is large compared 
to the polaron radius and since we are only interested 
in studying the critical regime t > t~, only large values 
of r are relevant. A reasonable form of the ground 
state wave function 4~ is as follows: 

= C ~ d 3 q a 2 e iq''/h/((tr + q2) (a 2 + q2)) 

�9 ~b(q), a>>~c, ~ > 0  (15) 

Here, C is the obvious normalization factor. For a 
-> oo the first part of the right hand side of (15)just 
corresponds to the Fourier transform of (6). We 
choose a very large but a < o% so that the integrand 
vanishes sufficiently rapidly as q ~ oe. Note that, since 
r is large, only small q's contribute to the integral 
in (15)�9 Finally, ~b(q) describes the phononic part, be- 
ing a normalized eigenfunction of (p-Pph)//(2m) 
+ Hoph + H}; its associated energy eigenvalue is 

Eq (a) = E (c~, 0) + q2/(2 m (a)) + 0 (q4) 

=E(a,  0).cos(q(--2m(c0 E(e, 0))-�89 a) (16) 

re(e) being the polaron mass. 
Assuming 4~=~ and O(-q)=O(q) ,  we may re- 

write 4~ as follows: 

 =�89 a2IdZ dqq  
- - o 0  

�9 eiqr' c~176162 2 -4- q2) (a 2 -4- q2)). O (q) (17) 

where we have chosen polar coordinates defined by 

q = q e = q ( s i n  O.cos  q), sin O .sin ~0, cos O), 

dr2 = sin O dO d o  

Now the q-integration can be evaluated by residuum 
techniques yielding 

q5~ - nK.�89 ~ df2 e-~r'l~~176 (18) 

Here, we omitted the contribution resulting from the 
residuum at q = -4-ia, since it leads to an exponential 
decay in r which is much faster than (18) and is there- 
fore not relevant for large r. We have also assumed 
that ~b(q) has such a form that the integrand of (17) 
vanishes either for Imq--* oe or for I m q ~ -  oe. Fur- 
thermore residuum contributions from O(q) are ne- 
glected. 

61 

Now we calculate 

H i  q~ = C~d 3 q aZeiqr/n/((~c 2 + q2)(a 2 + q2)) 

�9 Eq(~). ~k (q) (19) 

Since only small q's are relevant, we take Eq(~) as 
given by the last expression in (16). Calculating again 
the q-integral as described above, we obtain 

1 

H i  4~ ~ E(c~, 0)-cos(~c(- 2m(c 0 E(~, 0))-7) �9 4~ 

= (E (e, 0) - tc2/(2 m (c0) + O (~c4)) �9 �9 (20) 

Hence ~c~ (E(c~, 0 ) -  E(c~, t)) �89 for t---> t + . Now we pro- 
ceed in analogy to (7) to determine 7. A physical con- 
dition in order to obtain a connection between the 
ground state energy and t - t i c (e )  is the continuity 
of (Oq~/Or)/q~ at r=L .  For r--*L +, inspection of (18) 
shows that (0 ~/O r)/~b is proportional to so, i.e. propor- 
tional to (E (e, 0 ) -  E (c~,/3))7. Assuming that 
(O~/Or)/~blr= c- is proportional to t - t ~ ( e )  for t 
~t~(e)  +, we obtain 7=2.  6 is found by evaluating 
M=(<~lr2[~>)  -1. It turns out that for small K, M 

s:2"~ ( t - t~ (e ) )  2. Hence, 6 = 2 and our somewhat in- 
tuitive determination of the critical exponents is fin- 
ished. 

The fundamental quantity which describes the in- 
fluence of the phonons on the pinning transition is 
the function to(e). The next chapter is devoted to a 
discussion of the critical line in the c~ t-plane. 

III. Calculation of  the critical line 
for a screened Coulomb potential 

Calculating the critical line tc(~), one may use varia- 
tional methods well-known from the polaron bound 
in a Coulomb potential, see Adamowski [-10] for a 
review. Three aspects have to be taken into account�9 
Firstly the numerical procedure should be capable 
to treat the purely electronic problem (~ = 0) exactly, 
i.e. up to any desired accuracy. This is a one-particle 
quantum mechanical problem, which is easily solved 
using a sufficiently large number of electronic varia- 
tional parameters. 

Secondly, the polaron self energy ( t  = 0) should 
be rather accurate, because the pinning transition is 
of second order and therefore tc(c 0 depends sensitive- 
ly on the position of the continuum edge. 

As a third aspect, correlation effects between the 
potential and the phonon cloud around the electron 
are relevant resulting in a shift of fi~(e) to smaller 
values compared to pc(0). 

Unfortunately, there exists no numerical proce- 
dure which takes into account all three aspects sat- 
isfactorily. On the one hand, path integral methods 
(see Platzman [9] and Matsuura [14]) yield a polaron 
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self energy by Feynman's method [15] which is very 
accurate. However, one has to approximate the po- 
tential V(r) by a Gauss\an potential and therefore 
a systematic error in calculating //c(e) is made. On 
the other hand, other variational procedures treat the 
electronic problem exactly, but lead to a polaron self 
energy which is not as accurate as Feynman's result 
for intermediate e. 

We use some of the latter method, namely the 
method of optimized canonical transformation pro- 
posed by Adamowski [-10]. This method seems also 
to describe the correlation between the potential and 
the phonons well 

Adamowski approximates the polaron problem 
by a one particle problem; apart from the potential 
/3. V(r) the associated Hamilton\an additionally con- 
tains two screened Coulomb potentials, an exponen- 
tial potential and a self energy term. Furthermore 
the Hamilton\an depends on five phononic variation- 
al parameters. To calculate the ground state energy, 
we use an electronic trial function of the form 

4 

7J(r)= ~ c s e x p ( - T s r  ) (21) 
j = l  

which depends on seven electronic parameters 
c2, c3, c4, 71, ..., 74. cl is obtained from the normal- 
ization condition. 

To the end of this chapter we use polaron units 

of energy and length, hco and (h/(2mo)))~ respectively. 
Note that then the kinetic term is p2 not p2/2. 

As potential 3 V(r) we take a screened Coulomb 
potential 

V(r)= - e - u r / r  (22) 

and set # = 1, i.e. the screening length is comparable 
to the polaron radius. A physical more realistic poten- 
tial is a dipole potential (see Sect. IV), but, as the 
pinning effects are not expected to depend on the 
explicit form of the potential sensitively, we choose 
here the simple screened Coulomb potential. 

For  ~=0,  the critical potential strength is well 
known (see e.g. Kesarwani and Varshni [16]: /~j0) 
= 1.67981 .... With our ansatz we can reproduce this 
result with an error of 0.35%. 

Our results are summarized in Fig. 1. Here three 
different lines are shown. The first solid line represents 
an upper bound on the exact flc(~) and was calculated 
as follows: Of course the variational procedures yield 
upper bounds on the exact ground state energy. For  

fixed and decreasing /~, the value of fl where the 
calculated energy equals the exact polaron self energy 
is an upper bound on//~(e). For  the polaron self ener- 
gy we take the values of Larsen [17] for small c~ and 
for intermediate e we use the results of Adamowski, 
Gerlach and Leschke [18]. Of course, in a strict sense, 
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Fig. 1. Critical potential strength as function of the electron phonon 
coupling parameter e for a screened Coulomb potential. Upper 
bound (solid line), variational calculation (dashed line) and effective 
mass approximation (EMA) 

these energies are upper bounds, too. However, the 
deviation from the exact energies is negligible for our 
purposes. By that way, we obtain an upper bound 
on/?c(c~). Unfortunately, for e ~ 2.6, this upper bound 
is larger than/~j0).  Therefore in this case the bound 
/~c(e) </?c(0) known from [7] is better. Since the polar- 
on self energy is not reproduced with sufficient accu- 
racy by the variational method of Adamowski, our 
upper bound is a rather crude one. 

To get a reasonable/~c(e) by our method, it seems 
helpful to calculate the continuum energy E(~, 0), too, 
and to take 3c(e) as that potential strength, where 
the calculated ground state energy abandons the cal- 
culated continuum energy. By this way, a cancellation 
effect of the errors in the polaron self energy occurs. 
The result is the dashed line; it is monotone decreas- 
ing in c~. Of course, it is not any longer a definite 
bound on tile). 

The third line represents the effective mass ap- 
proximation (EMA). The EMA is obtained by replac- 
ing the free polaron Hamilton\an by the effective one 
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particle Hamiltonian 

Heff= p2/m(e) + E(cc, 0) (23) 

Thus only the ground states of the momentum de- 
composed Hamiltonian with small total momentum 
are taken into account by H e f  t . The excitation spec- 
trum of one and more real phonons is completely 
neglected. In the neighbourhood of the pinning transi- 
tion, however, just the ground states with small total 
momentum are relevant. Therefore it might be conjec- 
tured that the EMA describes the function tic(e) cor- 
rectly. At least, it should represent a lower bound, 
on tic(e) for a small e. This belief is based on a work 
of Mason and das Sarma [19]. They study a polaron 
bound in a Coulomb potential and compare the 
ground state energy shifts for fixed small c~ and varied 
fl between the perturbational solution and the EMA. 
It turns out that the EMA yields an overestimation 
of the energy shifts. 

Let fl~rf(c 0 denote the critical potential strength 
of the EMA. Then performing simple scaling argu- 
ments for the effective mass Hamiltonian pZ/m(~) 
+E(e, 0)--ft. V(r) we obtain 

fl~ff (~) = tic (O)/m (~) (24) 

The polaron mass m(~) is well known, we take values 
from [20]. The limiting cases are fl~ff(~)=flc(0)(1 
-~/6) for small ~ and fl~ff(~)=44.05.flc(0)-~ -4 for 
large ~. As a final remark, we state that the EMA 
reflects a universal behaviour, for the a-dependence 
of fl~fr(~) doesn't depend on the explicit form of the 
potential. 

Our results show that the EMA is lower than the 
other lines for small and intermediate ~. For strong 
~, however, the result obtained by the method of Ada- 
mowski is lower. 

IV. Experimental consequences 
and generalizations 

To begin with, let us summarize the theoretical pre- 
dictions concerning the pinning transition. Consider 
a conduction electron interacting with phonons and 
moving in an attractive short range potential. For 
increasing potential strength, the electron suddenly 
becomes localized at a critical potential strength tic (~)- 
For increasing electron-phonon coupling ~, the criti- 
cal potential strength shifts to smaller values. Near 
the pinning transition point there exist a localized 
ground state and delocalized continuum electronic 
states which are very close in energy. 

There are several possibilities to produce a short 
ranged impurity potential in a crystal. One way to 

do this is to consider isoelectronic impurities. In this 
case, however, the rangeness of the potential frequent- 
ly is comparable to the lattice constant and therefore 
one should describe the electron-phonon interaction 
by a Holstein model. In fact, the analogon to the 
pinning transition in Holstein systems (called extrinsic 
self-trapping) was theoretically examined by Shino- 
zuka and Toyozawa [21] in order to explain experi- 
mental data of Takahei and Kobayashi [22], which 
were performed at T1C1 x _ cBrc systems. 

The Fr6hlich model, on the other hand, which 
we studied in this paper, is an adequate description 
if the rangeness of the potential is large compared 
to the lattice constant. A physical realization of such 
a potential is a dipole potential, for example, by sub- 
stituting a C1- in NaC1 by OH- or a Br- in KBr 
by CN-.  For sufficient large dipole potential strength, 
the existence of a bound electronic state is well known 
experimentally (see e.g. the review article of Narayan- 
amurti and Pohl [23]), whereas for small dipole 
strength there is no such evidence for a bound state. 
The neighbourhood of the pinning transition (/~ ~ tic) 
and its a-dependence, however, has not yet been ex- 
amined systematically. One should examine several 
crystals with different electron-phonon coupling 
and with different dipolar impurities. At a critical (~- 
dependent) potential strength of the dipolar impurity, 
the electron is trapped in the attractive 'club' of the 
dipole potential. This has direct consequences on the 
excitation spectra and the conductivity. In particular, 
the pinning transition is connected with a transition 
from a weakly conducting state (fl < tic) to an isolated 
state. 

However, finite temperature casts serious prob- 
lems on such a simple measurement. On the one hand, 
the temperature has to be low enough so that a one 
particle description of the conduction electron is ade- 
quate (i.e. many body effects should be negligible). 
On the other hand, finite temperature is needed to 
produce conduction electrons in a semiconductor, but 
it destroys the abruptness of the pinning transition. 

Also spectroscopical measurements should be use- 
ful in detecting the pinning transition. Dmochowski 
et al. [24] have measured the vibronic coupling 
strength of a bound polaron ground state in CdF 2 : In 
as a fingerprint of its localization. Their result apply 
to Toyozawa's model of impurity self trapping of a 
small polaron but their experimental techniques 
should also be useful for Fr6hlich polarons. Particu- 
larly, they study the phononic part of the wave func- 
tion which also becomes localized as fl ~ fl~-. 

Another application is the pinning transition for 
excited bound states in a quantum well. A polaron 
in a quantum well is described by adding a triangle 
potential fl.V(z), r=(x ,y , z )  to the free polaron 
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Fr6hlich Hamiltonian, the x and y components of 
the total momentum Q,, Qy are conserved. Restricting 
oneself to fixed total momentum Q:,=Qy=O, the 
number of bound states in the z-direction depends 
on the potential strength and on the electron phonon 
coupling. The ground state, however, is always local- 
ized for ~ > 0 and fl > O, as V(z) is a one dimensional 
potential. Since the explicit form of V(z) can be varied, 
e.g. by varying the thickness of the layers, one can 
be optimistic to verify a pinning effect spectroscopi- 
cally. 

I thank B. Gerlach, H.J. Weber and W. Becker for helpful discus- 
sions. Particularly, I am indebted to D. Richter for his kind help 
concerning computational details. 
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