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Spectral properties of a three-dimensional optical polaron, bound in an external potential, are
studied. If the associated one-particle Hamiltonian has a bound state, it is proved that the
ground-state energy of the polaron and expectation values of the ground state are analytical
functions of the coupling parameter a and the potential strength 5. Especially in the case of a
Coulomb potential, all changes in the polaron state are continuous, disproving claims of
several variational calculations. If, on the other hand, the one-particle Hamiltonian has no
bound state, the existence of a pinning transition is shown for the polaron. As physically
relevant potentials for the pinning transition, a spherical square well and a screened Coulomb
potential are considered. Their phase diagrams are given in the effective-mass approximation.

I. INTRODUCTION

An electron, bound to a defect in polar semiconductors
(such as an impurity or a vacancy) and interacting with the
longitudinal optical phonons, is called a bound polaron.
Since the earlier papers of Buimistrov and Pekar' and Platz-
man® and Larsen,? this important problem has received con-
siderable attention, as recent publications show (see, e.g.,
Adamowski* and the references therein, as well as Mason
and Das Sarma® and Degani and Hipolito®). The present
paper is concerned with analytical and spectral properties of
a polaron in a generalized external potential V(r).

The bound (three-dimensional) polaron is described by
the well-known Frohlich Hamiltonian,” which reads as fol-
lows:

He(a,B) = Hyy, +0°/2—BV(r) +a'?Hy, (1)
where

H,, =fd3k w(k)a* (k)a(k) (2)
and

Hy = fd3k [g(k)a(k)exp(i kr) + H.c.]. 3)

Here, r and p are the position and momentum operator of the
electron, respectively, and k, o (k), a* (k), and a(k) are the
wave vector, frequency, creation, and annihilation operators
of the phonons, respectively (i.e., a scalar Bose field); g(k)
denotes the electron—phonon coupling, @ being the coupling
parameter. Setting m = 7 = 1, we keep a and £ as the only
parameters (a,5>0).

Henceforth, the following conditions (4)—(6) on @(k)
and g(k) are assumed:

infw(k)=w,>0, 4)
k

(k) being a continuous function of k. Thus (4) implies that
we are dealing with optical phonons. Furthermore we as-
sume

2
d3k 18K |g(k)| 5
J 1+k2 ©)
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and reflection symmetry
o(—k) =w(k), g(—k)=g(k). (6)

For more UV-singular couplings g(k) one has to renormal-
ize by the scheme proposed by Nelson.® For the potential
V(r) we treat the case

VeR + L 2 (R%), (7
where R is the Rollnik class

Ver ¢ [d’xd% %ﬂ . (8)

Statement (7) means that for any positive €, ¥ is represent-
able as V'=/f, + g, where f,eR and |g,| is bounded by e.
Additionally, we assume that the associated one-particle
Hamiltonian

H,(B) = p*/2 — BV(r) 9

is essentially self-adjoint and bounded from below and has at
least one bound state with strictly negative energy Ey(B).
The last assumption is abandoned in Sec. IV.

Physically most relevant cases are o (k) =w,>0 (i.e.,
dispersionless optical phonons) and g(k)~1/k for polar
scattering or g(k) ~0(k, — k), k> 0, for deformation po-
tential scattering. Possible choices for the external potential
V(r) are a Coulomb potential [¥(r) = 1/r], a screened
Coulomb potential {¥(r) =exp( — kor)/r, ky,>0], or a
spherical square well [ V(r) =©(a —r), a>0]. Thecase
of anisotropic bound polarons is included in our general as-
sumptions (4)—(6), too.

The analytical properties of the ground-state energy of
an optical polaron, subject to an external potential ¥(r), are
known only for a small class of potentials: In the case of free
optical polarons (¥'=0) Spohn® recently proved the analy-
ticity of the ground-state energy using the functional analyti-
cal work of Frohlich'® whereas Gerlach and the author!!"!2
showed that the (formal) free energy is analytic in & and in
the temperature T for 0 < T < oc. In Ref. 13, the methods of
Frohlich are generalized to an optical polaron, exposed to a
homogeneous magnetic field or to an external potential ¥(r)
with lim V(r) = o, implying the analyticity of the

r— oo
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ground-state energy in a and 3. Apparently, this is another
class of potentials as the class of impurity potentials, defined
by (7). We remark that a third interesting class of potentials,
which is not treated in this paper, concerns periodic poten-
tials. They are, however, well studied in connection with
quantum Brownian motion (see, e.g., Fisher and Zwerger,'*
and references therein).

The aim of the present paper is twofold.

First, we prove that the ground-state energy as well as
the mean number of virtual phonons and the polaron radius
of a bound polaron are analytical functions of the coupling
parameter and the potential strength. A crucial assumption
for this result is that the associated one-particle Hamiltonian
(9) has a bound state. For long-range potentials (e.g., for a
Coulomb potential ) such a bound ground state exists for any
potential strength.

Consequently, for long-range potentials a discontinuous
“phase transition” (i.e., a nonanalyticity of the ground-state
energy) does not exist. From the beginning of the polaron
story up to now, the question of whether or not an optical
polaron, bound in a Coulomb potential, shows up a “phase
transition,” was controversially discussed in the literature. It
was mainly studied with the help of variational calculations
yielding an upper bound on the exact ground-state energy.
The physical background of such a “phase transition” be-
comes clear in the work of Toyozawa.'> He gets a transition
from a shallow state, formed by the external potential, to a
deep self-trapped state, caused by a lattice distortion. This
process is called shallow—deep instability.

On the one hand, Larsen,>'® Tokuda, Shoji, and Yon-
eya,'” and Tokuda'® obtain a variational bound on the
ground-state energy of a bound polaron that exhibits a non-
analyticity, whereas Matsuura'® and Mason and Das
Sarma,’ on the other hand, emphasize that their results are
smooth quantities. In view of our proof, we remark that the
nonanalyticities quoted above are nothing more than arti-
facts of the approximations made, but not intrinsic proper-
ties of the Frohlich Hamiltonian. Takegahara and Kasuya®
describe different states of the bound polaron by different
sections in the a-f plane. However, note that, in view of our
result, the properties of a bound polaron cannot be described
within a phase transition concept.

The situation becomes quite different for an attractive
three-dimensional short-range potential. This is the second
concern of the present paper. In this case, the potential
strength must exceed a critical value, to generate a bound
ground state of the one-particle Hamiltonian (9). This phe-
nomenon is well understood in atomic physics; we refer, for
instance, to Glaser et al.,>' Reed and Simon,?? and Simon.??
As the potential strengh 3 increases, a bound ground state
arises from the continuum edge; the ground state undergoes
a localization transition, the associated ground state energy
being nonanalytic in 5.

It is an interesting task to study the influence of the
phonon interaction on this transition. In the framework of a
discrete model for an exciton, this was examined by Shino-
zuka and Toyozawa.?* In the adiabatic approximation, they
found a localization transition of the ground state, which
they called impurity assisted self-trapping. It is connected
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with a nonanalyticity of the ground-state energy. Shinozuka
and Toyozawa also give the phase diagram in the a-f plane
[see Fig. 2(b) in Ref. 24] Note, however, that they get even
a discontinuous transition for # = 0, which was shown? to
be an artifact of their approximation.

It was Spohn®® who described the polaron approxima-
tively as a single particle with phonon-induced altered mass.
In this so-called effective-mass approximation, it turns out
that the localization transition persists for phonon coupling
a > 0. Its critical line in the a-B8 plane, however, does not
intersect the a axis. Spohn called this transition pinning
transition; we shall use this term, too. In this paper, we prove
that the exact ground state undergoes a pinning transition
for any a>0. Consequently, the effective mass approxima-
tion reflects the right qualitative behavior of the analyticity
of the ground-state energy. Furthermore, we discuss the re-
lationship of the exact critical line to the one obtained in the
effective mass approximation.

The organization of the present paper is as follows: In
Sec. I1, we show that H(a,) is a well-defined self-adjoint
operator. If the one-particle Hamiltonian has a bound state,
we prove that the ground-state energy belongs to the discrete
part of the spectrum of H(a,8) and is nondegenerate. In
doing so, we make use of functional analytical methods of
Fréhlich, '° which clarified spectral properties of the free op-
tical polaron. Moreover, we determine the continuum edge
of H(a,) and show the stability of bound states under the
influence of the phonon interaction. The consequences (like
analyticity properties of the ground state), following from
Sec. II, and extensions of our theory are pointed out in Sec.
IIL. Section IV is devoted to a discussion on the pinning
transition. Applying our methods of Sec. II, we prove the
existence of a pinning transition and discuss further proper-
ties of the pinning transition and the effective-mass approxi-
mation. In particular, a spherical square well and a screened
Coulomb potential are considered. In Sec. V, we conclude
our results.

Il. SPECTRAL PROPERTIES OF A BOUND POLARON

It will be profitable to transform the Frohlich Hamilto-
nian (1) by a Lee-Low-Pines transformation. Defining the
unitary operator

U=exp(—iPr), (10)
where
P=Jd3kka+(k)a(k) (1)

is the phonon momentum, we shall discuss hereafter the uni-
tarily equivalent Hamiltonian

H(aB)=U""He (a,B)U = H,,, + }(p — P)> — BV(r)
+ a''?H,. (12)

In (12), H, is given by
Hy = [0k (gkato + g (00a* (0). (13)

To begin with, we pose the Frohlich Hamiltonian on a
mathematically rigorous level. We first specify the underly-
ing Hilbert space. It is taken to be #° = F® L (R?), where
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F= o (LR (14)
is the usual Fock space for the phonons, (§) denoting the
symmetrical tensor product.

In (13), we replace the coupling g(k) by
g(k)O(p — k), where p < « is a UV cutoff, which makes
g(k) square integrable and which is to be removed later.
Thereby we obtain the Hamiltonian H(a,B,0) [resp.
H, (p)]. Following Nelson,® it is easily proved that H, (p) is
a Kato potential with respect to H,,, with relative bound
zero. Since Hy,, + (p — P)2/2 — BV(r) is essentially self-
adjoint, the Kato—Rellich theorem assures us that H(«, 5,
p) is bounded from below and essentially self-adjoint, too.

We now construct a discrete momentum lattice I"; for
the phonon momentum space R® in analogy to Frohlich'®
and Glimm and Jaffe?’:

Fd = {k€R3|k] = nj/Ad, nIEZ, Ad = ZdAo,

AgeR™, j=1,2,3}. (15)
To each keR?® we associate a k| €T ;, namely
K|y = (n,nyn3) /Ay, n;=[KAL] (16)
where
largest integer <a, ifa<0,
lal= . .
smallest integer > a, if a>0.

Furthermore, we define a subspace S, C L >(R*) of step func-
tions:

FeS,; & flk) = flk|y). 17)

For geL ?(R?) let g|, denote the orthogonal projection of g
onto S,. This notation is readily generalized for locally inte-
grable g. Then, let

F,= Sos,,®m (18)
and
FjE( §l(sj@M))@Fd. (19)
Clearly,
F=F,oF). (20)
Now we are able to define a new d cutoff Hamiltonian
Hd (a)ﬁfp) =H0phd + (p _Pld)2/2 —ﬁV(l‘)
+a'?H,, (p), (21)
with
Hopna =fd3k (o(k)l,,a"' (k)a(k), (22)
Pl, = [@%Kl,a* o), (23)
and
Hustp) = [@% [g00)],a00) + g*(0),a" (0]
XO(p — k). (24)

Using the same methods as for H(a,B,0), one easily verifies
that Hy(a,B,p) is self-adjoint and bounded from below, too.
Moreover, we define a new subspace JC S, by
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feJ & F(k) =0, for |k|, >p + 3/A,. (25)
Let
T,={kel,| |ki<p + 3/A,} (26)
and
W= ;J, W, = ;J@m,
m=20 m=0 (27)

Wi=w @®W.

Clearly, F, = Weo W' and H,(a,B,p) as well as Hy,(p)
leave Winvariant.

We remark that there exists a canonical isomorphism
between the Hamiltonian H, (a,B,p) | We L*(R®) ( | de-
notes, as usual, the restriction) and the Hamiltonian
H(a,f,N) of the interaction of an electron with N= |I~“d|

phonon modes, confined to the Hilbert space
F(N) ® L%*(R?), where
FW) = o (€0, (28)
m=0

which was pointed out by Glimm and Jaffe.?’ Clearly, N
depends on d and p. Therefore, for the sake of simplicity, we
consider henceforth the latter Hamiltonian

H(a,B.N) = Hy(N) + a'’H, (N), (29)
with
N
Hy(N) = Zw(kj)a+(kj)a(kj)
/=
- 2
L =PI sy, (30)
N
P(V) = Ska*(k)a(k)), (31)
=1
N
H (N) = Z [g(k,)a(k,) +g*(kj)a+(k,)] (32)

ji=1

The N dependence of H(a,[3,N) should not be confused with
the p dependence of H(a,B,p). The quantities H(a,5,N) and
H(aBp) are different Hamiltonians. In (30)-(32),
{k;| jeNy} = [',. At the end of this section, we remove the
discrete momentum lattice. Then we come back to our origi-
nal Hamiltonians H, (a,B,p) and H(a,f,p).

In the case #=0, the spectral properties are well under-
stood. It has been shown '’ that H(a,0,N) is representable as
a direct integral:

H(a,0N) = f d’Q Hg (a,0,N), (33)

Q being the “C-number” of the conserved total momentum
(see also Ref. 28). In Ref. 28, it is proved that

igf(inf spec Hy (,0,N)) = inf spec Hy_, (2,0,N), (34)
and Frohlich'® has shown that the normalized ground state
| Do) of Hy o (@,0,N), lying in F(N), is nondegenerate up to
an arbitrary phase factor. We are now prepared to prove the
following proposition.

Proposition 1:

(Do|P(V) Do) = 0. (35)
Proof: By Wigner’s theorem, there exists a unitary oper-
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ator U such that

Ua(k))U™'=a(—k;), (36)

Ua* (k) U~'=a*(—k,), (37)
for all kjefd. Then, we find

UHg_o(2,0,N)U =" = Hy_q (2,0,N) (38)
and

UP(N)U ~'= —P(N). (39)
Because of the nondegeneracy of |®,), (38) implies

UjP,) = exp (i1)|D,), AeR. (40)

Therefore, by (39) and (40),

= — (®,|P(N)|®,), which implies (35).
We now determine the essential spectrum of H(«,B,N).
Lemma 2:

O (H(a,B,N)) = 0 (H(a,0,N)). (41)

Proof: By Weyl’s theorem (see, e.g., Ref. 22), we have to
prove that Vis a relative form compact perturbation, i.e.,
that for {¢ spec H(a,B,N)U spec H(a,0,N),

(H(a,BN) — &)™ — (Ho(N) +a'PHy (N) — )™
=B (H(a,BN) — &)V (Hy(N)
+al/2HI (N) _;)—l

(Do|P(N) | Do)
O

(42)

is compact. We use the norm-convergent resolvent expan-
sions

(H(a,BN) — &)~
= f‘, [(Ho(N) — BV — &)Y (— a2 H (N))]"

X(HO(N) —BV—Q‘)“I,
(Ho(N) + a'°Hy (N) — §)™!
= (Hy(N) _g)_l

x(éo [ —a'H (N)(H(N) — £)7 '] ) (44)

(43)

For Re ¢ sufficiently small and negative, the second factor of
(44) as well as the first factor of (43) define bounded opera-
tors. Therefore, to establish the compactness of (42) it is suffi-
cient to show that

(Ho(N) =BV = &) W (Hy(N) - §)~! (45)
is compact. Now, we observe that the operators a™ (kj) and
a(k;), commute with (45). Hence we can classify the
spectrum of (45) by a set of natural numbers
L=(n,..,ny), n,eN’, where the spectrum of (45) tends
to zero as |L| — oo . Therefore, all that remains to prove is that
(45), restricted to a subspace with L fixed, is compact. Choos-
ing new momentum and position operators

P.=p— z kjnjs (46)
n =T (47)

this problem is clearly the same as studying the one-particle
problem

1508 J. Math. Phys., Vol. 29, No. 6, June 1988

2

Al | -t
(Z(O(kj)nj +7—BV(1'.,)—§) V(l',,)
o

=1

N l)z -1
x(z w(k,)nj+7"—§) . (48)
y=1
The compactness of (48) was shown by Reed and Simon (see
pp. 117-118 in Ref. 22). This implies that (42) is compact,
too, and our proof of Lemma 2 is finished. O
We are now able to prove the existence and stability of
bound states and state the following theorem.
Theorem 3: Let N(H) denote the number of bound states
of the Hamiltonian H, i.e., the number of states lying below
the continuum edge. Then,

N(H(a,B8,N))>N (H,(B)). (49)

Progf: The idea of the proof is to apply a generalization of
the Rayleigh-Ritz principle. Let |, ) be the normalized ei-
genfunctions of the one-particle Hamiltonian (9):

He (B) |¢n> = En |¢n>1
with E, <0, neN°, n<N(H,(B)). (50)

Consider the “trial functions” |@,) ® |®y)eD (H(a,B,N)).
Because of Proposition 1, we obtain
(@n] ® (Po| H(a,B,N) D) © |@,,)

= 5,,", (q)OIHQs() (a)O’N) |q)0>

+A@a Ho (B @) — (@0 D|@ ) (P[P (V) | D)

=4, (inf spec H(a,0,N) + E,). (51)
Hence the Rayleigh—Ritz technique tells us that we have
found upper bounds on the exact bound states, which—be-
cause of Lemma 2—belong to the discrete part of spec
H(a,B,N). Consequently, (49) is established. O

Returning to our original Hamiltonian H(a,8,p), we
state the following lemma.

Lemma 4: Let E(a,B,p) = inf spec H(a,B,p) and let f;
be a positive C = function on R with /5 (0) = land f;(x) =0
for x>4. Then f5(H(a,B.p) — E(a.B,p)) is compact, if

8 < A(p) =min(w,E(a,0,0) — E(a,Bp))>0. (52)

Proof: First, via the isomorphism mentioned above all
our spectral results for H(a,3,N) are directly transferable to
the Hamiltonian H, (a,8,0) | We L*(R?).

Let

E,(aBp) =infspec H,(a,Bp) | F, ® L*(R*).

The same calculations as in Ref. 13 (the second step of the
proof of lemma 2.1 in Ref. 13) yield

inf spec (H, (a,Bp) | W' L*(R*))>w, + E (a,Bp).
(53)

Since F, = Wa W, it follows from Lemma 2 that
fs(Hy(@Bp) —E (a,Bp)) | Fye L*(R?)

is compact, if
8 <A, =min (we,E,(a,0,0) — E,(a,B,p))

From Theorem 3 we know that A, > 0.
We apply this argumentation once more: The same calcu-
lations as in Ref. 10 (Corollary 2.2.iii) can be used to show
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inf spec H, (a,B,p) | Fj ® L*(R?)

>w, + inf spec H, (a,fp) | F& L*(R?).
Since F = F, ® F1, it follows that

inf spec H, (a,B,p) | F® L*(R*) = E,(a,B,p)
and that

Sfs(H (a.Bp) —E (aBp)) | Fe L*(R?)
is compact, if § < A ;. The methods used by Frohlich (Lemma
2.1 in Ref. 10) show that H,(a,B,p) - H(a,B,p) in norm
resolvent  convergence as d- . Consequently,
E,(apBp)—E(afp) as d-w and [f{H(aBp)
— E(a,B,p)) remains compact if § < A(p). The same proof
as in Theorem 3 results in A(p) >0, which completes the
proof of Lemma 4. O

All what remains to do is to remove the UV cutoff p.

Theorem 5: Let E(a,8) = inf spec H(a,f) and f; as in
Lemma 4. Then, f;(H(a,8) — E(a,)) is compact, if § < A
where

A =min(wy,E(a,0) — E(a,8))>0. (55)

Proof: Transforming the Hamiltonian H(a,B,p) with the
canonical transformation e, where

(54)

T=T,, = f d*k(C, (K)a(k) — H.c) (56)

with
Coa (K)=C(k)

= —a'%gk)O(g — k)O(k — A)/(o(k)

+k2/2), 0<A<p, (57)
we obtain
e"H(a,Bple~ T

=H"(a,Bp)=Hy(B) +a'’H,(p) + (Z+Z*)*/2

—(—-PYZ-Z"(p—-P) +3,

(58)
where
Hy(B) = H,,, + (p —P)*/2 — BV (r), (59)
Z=Jd3k kC,, (k)a(k), (60)
and
3= fd3k [w(k)|C(k)|* + a'/?g*(k)C(k)
+ a'?g(k)C*(k)] < co. (61)

Again we can use Frohlich’s methods (see Sec. 2.2 in Ref. 10)
to prove the following facts: For all €> 0 thereexistsa A < oo
such that
|H "(a,Bp) — Hy(B)|<eHy(B) + b(A), (62)
where b(A) is uniform in p< o0 Furthermore
norm-lim (§ — H (a,Bp))" ' =(¢ —H"(a,p))" (63)
p— o

exists, where H”(a,) is a unique self-adjoint operator
bounded from below. Also

s-lim exp(T,,, ) =exp (T4 )

p oo
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exists as a unitary operator. Therefore
H(a,p)=exp(— T, ,)H (a.B)exp(T,,)

is self-adjoint and bounded from below, too. Finally, the
norm-resolvent convergence (63) together with Lemma 4 im-
plies that /5 (H(a,3) — E(a,f3))remains compact for 6 < A. [
We now determine the continuum edge of H(a,3).
Theorem 6: Let E(a,3) = inf spec H(a,f3). The contin-
uum edge begins exactly at the point

Q=min(E(a,B) + w, E(a,0)). (64)

Proof: This () is a lower bound for the continuum edge
because Theorem 5 implies that all eigenvalues smaller than €2
are discrete. Furthermore, without loss of generality we may
assume that the number of eigenvalues being smaller than ) is
finite. Otherwise these infinite eigenvalues have to accumu-
late at ) and (64) is trivially proved.

Suppose first

E(a0)<E(ap) + w,. (65)

Since the absolute continuous spectrum of H, () begins at
zero, we can always find functions |1, YeL 2(R?) (neN) with
(Yu|¥m) = 6, and with (¥, |Hz(B)|¥,,) = 8, E,, Where
E, >0 and E, -0 as n— . Choosing the trial functions
|®y) ® [¢, ), where |®,) denotes the ground state of the free
polaron Hamiltonian subjected to total momentum Q=0, we
calculate, as in the proof of Theorem 3,

(¢n| ® <¢0|®0> ® ld/m) = 5nm
and

<¢n| ® <¢0|H(a’B’) Iq)()) ® Mm) = 5nm(E(a’0) +En)'
(66)

Since E, — 0 as n — «, a modification of the mini-max princi-
ple (see, e.g., Reed and Simon,?? Theorem XIII.1) ensures us
that E(a,0) is the bottom of the essential spectrum of
H(a,B).

In the second case
E(a,B) + w, < E(a)0), (67)

we again use a trial function argument, but now with different
fuctions involving one-phonon states. By (4) we know that
there exists a geR* with (k) — w, as k—q. Without loss of
generality we assume g < oo, the case g = o« can be treated
quite similarly. We choose € > 0 fixed.

First, we need some definitions. Let U(5,q) denote a ball
around q with radius 8. We construct “disks” D(n) as fol-
lows:

D(n) = U2~ "@)\U(e2~""\,q). (68)

Let H(q) be the Hamiltonian that results if one replaces p in
H(a,3,) by p — q, q being a C-number. Obviously, H(q) is
unitarily equivalent to H(a,). The ground state of H(q) is
denoted by ¢¥(q)es”. Furthermore, we define a projection
operator P, (4ACR?) that annihilates all phonon parts with
momentum keA by )

P=3 d3k,---fd3k";(A(kl)---x,,(k,,)

n=1

Xa(k,)---a(k,), (69)

where y, (k) is the characteristic function equal to 1 if ke4
and O otherwise.
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We are now able to give the explicit form of our trial
functions @, , neN,

q)ne = [(PU(e,q) !b((I)) @ ¢ne ]/” (PU(e,q) ¢(Q)) @'pns %
(70)

where @, is a one-phonon state, @, >0, whose momentum
distribution is explicitly given by

|@ne (K)|? d°k = ¥ ey (K)d k. (71

For ¢ sufficiently small, ®,.%#° and ®,,50. Since
U(e,q) 2 D(n) and since the D(n) are pairwise disjunct, one
calculates

<<bne Iq)ms> = 5nm’ (q)ne |H(a,ﬂ) Iq)me> = E,. (6)5,,,,,.

(72)

Further inspection of E, shows that E, (¢) >, + E(a,5,€)
as n— oo, where wy(€) - w, and E(a,f,€) — E(a,f) as €-0.
Since €3> 0 can be chosen arbitrarily small, again the mini-
max principle tells us that the continuum edge has the upper
bound w, + E(a,5).
Putting all facts together, we finally finish the proof of
Theorem 6. O
The physical interpretation of the two possibilities (64)
for the continuum edge is easily understood. In the case (67)
the continuum involves scattering states with one real phonon
of energy w, present. On the other hand, if (65) holds, the
continuum at E(a,0) consists of delocalized electron states.
Obviously, the Rayleigh-Ritz argument of Theorem 3
can be done for H(a,53), too. If (65) holds, this implies the
existence and stability of the bound states and gives further-
more simple upper bounds on the associated energies.
Corollary 7: Let E(a,0) < E(a,8) + wyand let N(H) be
the number of states of the Hamiltonian H below the contin-
uum edge. Then,

NH(a.B)>NH, (B)), (73)
O
We know from Theorem 5 that E(a,f) is an eigenvalue. Now
we prove the next lemma.
Lemma 8: The ground state of H(a,f3) is nondegenerate.

Proof: We represent the underlying Hilbert space now as

for all a>0.

L*(Qdu) e L*(R%d>x), (74)
where L >(Q,du) is the phonon Q space, which is isomorphic
-to the Fock space F (see Simon?® for a detailed discussion). If
one takes the Schrodinger representation (r representation)
for the electron coordinate, the operator
L= — BV(r) + a'?H, (75)
acts as a multiplication operator. The operator L can be ap-
proximated by bounded multiplication operators L,, such
that H,+ L,—-H(a) and H(a,B) — L,—H, in the
strong resolvent sense as 7 — o0 . This holds for arbitrary cutoff
p< 0. We know from the proof of Theorem 5 that the opera-
tors Hy, + L, and H(a,) — L,, are uniformly bounded from
below. Therefore, Theorem XI11.45 of Reed and Simon®” is
applicable (see also Ref. 28). This implies that, in order to
prove Lemma 8, we have to show that exp(— Hy,,
— (p — P)?/2) is positivity improving in the chosen repre-
sentation. We write exp( — (p — P)?/2) as Fourier transform
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exp(— (p — P)%/2)

= (2m)3/? dsﬂ,exp(—%/iz)e“"e‘i“’. (76)
Now, exp( — H,,, ) is positivity improving and exp( — ilp)
is positivity preserving with respect to the phonon Q space;
exp(iAp) acts as translational operator in the r representation
of the electron coordinate. Since exp( — 44 2) is strictly posi-
tive, we get that exp( — Hyy,, — 4(p — P)?) is positivity im-
proving in the chosen representation. This implies that
exp( — H(a,B)) is positivity improving and consequently
E(a,B) is a simple eigenvalue. 0

Summarizing, we have proved in this section that the
Hamiltonian H(a,8) for a bound optical polaron is a well-
defined self-adjoint operator, bounded from below. If the one-
particle Hamiltonian (9) has a bound ground state, then also
H(a,B) has a discrete bound ground state that is nondegener-
ate. This ground state is separated from the continuous spec-
trum by a gap whose magnitude was exactly determined: It is
the minimum of the phonon dispersion @, or the difference
E(a,0) — E(a,8)>|Ey()], where E,(B) is the ground-state
energy of the one-particle Hamiltonian (9).

. CONSEQUENCES AND GENERALIZATIONS

To begin with, we state that the associated forms of the
resolvent of Eq. (63) (¢ — H "(a,8)) ™" are an analytic family
of type (B) in the sense of Kato® in both parameters & (see
Frohlich'?) and 8 (see Simon®!) for a,8>0. Since Lemma 8
implies that E(a,f3) is an isolated, simple eigenvalue for a>0
[B being such that H,(S) has a negative eigenvaluel, the
standard analytical perturbation theory (see Kato®°) is appli-
cable. It follows from Hartog’s theorem that E(,f) is jointly
real analytic in a and /3 in the specified domain. The same is
true for the discrete excited states, if they are not degenerate.
Moreover, the associated wave functions are analytic in a and
B, too.

Let |¢(a,B8)) be the wave function of the ground state of
H(a,f). Then the mean number of virtual phonons in the
ground state is defined by

N(@B) = (Yo(aB)] f 4%k a* (1)a( [ do@B).  (17)

Furthermore, several possibilities were proposed to define a
polaron radius and a self-induced potential as quantities de-
rived from the ground-state expectation values of H, (see,
e.g., Peeters and Devreese®?). Clearly, N(a,B) as well as the
polaron radius and the self-induced potential are analytic in
and 3 for a>0, B as above.

We conclude that all changes in the bound polaron state
are not accompanied by a nonanalytical behavior, but are
smooth transitions.

We now add some remarks on possible extensions of our
theory. First, one may consider an optical polaron in arbitrary
spatial dimension (see Peeters, Wu Xiaoguang, and Dev-
reese’®). The conditions (4)-(8) are readily generalized to
arbitrary dimensions (see Simon*! for an extension of the
Rollnik condition). Then, the same proof is possible.

We mention two physical interesting examples. First,
Sak** (see also Degani and Hipolito®) considers an electron
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that couples to the optical surface phonon modes and is bound
in the perpendicular direction to a Coulomb potential result-
ing from its image charge. The associated Hamiltonian H, can
be cast into the form

H,=(Q,—P)/2+ (@ — B)%/2 +py/2 — BV(r3)

+ wsf d’ka*(k)a(k) +a'/?| d*kk "2

Xexp( — kyr3)[a(k) +a* (k)] (78)
The Hilbert space #°; belonging to H, is
H =FoL*([0,00]). (79)

The parameters @, and @, correspond to the conserved com-
ponents of the momentum. To get inf spec H,, one may set
Q, = @, = 0 (see Ref. 28). For V(r,) we do not take 1/r,, as
Sak does, but for mathematical and physical reasons (see
Cole*®) we have to take a cutoff potential:

1/z, forz>b,
Vz) = [l/b, forz < b,
where the cutoff 4 is a strictly positive constant. Without go-
ing into the mathematical details, we remark that our meth-
ods are applicable to H,. In particular, the ground-state ener-
gy is analytic in a and $. This is in a marked contrast to the
work of Tokuda.'® The above model can be extended to in-
clude bulk phonon effects, which was discussed recently by
Gu and Zheng.>®
A second example concerns a quasi-two-dimensional po-
laron in polar quantum wells, bound to a two-dimensional
Coulomb potential, which was studied by Mason and Das
Sarma.’

(80)

IV. THE PINNING TRANSITION

Up to now, for all potentials considered, the associated
ground-state energies are analytic in « or £. One may ask the
question the other way around: Which potentials lead to a
ground-state energy that is nonanalytic in & or 8? This brings
us back directly to our condition that the one-particle Hamil-
tonian (9) has at least one bound state. In one or two dimen-
sions, it is well known that an attractive potential always leads
to a bound state. No so in three dimensions; the question of
whether or not the one-particle Hamiltonian has a bound
state depends sensitively on the mass of the particle for short-
range potentials. The idea of Spohn®® is to describe the po-
laron problem approximately as a one-particle problem with
an effective mass m(a) and to study then the occurrence of
bound states with increasing a. For a suitable static binding
potential, at a critical coupling a. a pinning transition is ob-
tained, i.e., by the phonon-induced mass enhancement of the
electron, a new bound state suddenly arises from the contin-
uum.

To get a connection with our results, we consider a slight-
ly different situation: Let a be fixed and vary B (SeR). For
the sake of definiteness, let ¥ be an element of the Rollnik
class R [see (8)] and let ¥ be negative (¥<0). The occur-
rence of bound states of H,(8) is well understood (see Refs
21-23). The Birman-Schwinger bound shows that for all
BEeR the number of bound states N (H,(f)) is finite and that
NH,(B))=0 for B<pB. where f,>0. Therefore,
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inf spec H, (f) is nonanalytic for 8 = ,,corresponding to a
localization transition (pinning transition) of the ground
state.

We prove that such a transition is obtained even if the
electron—phonon coupling is nonzero and state the following.

Theorem 4.9; Let the potential ¥ be in the Rollnik class R
for spatial dimension d = 3 and let ¥<0. Let the ground-state
energy of the one-particle Hamiltonian H, (5) be nonanalytic
for 8 = B. > 0. Then the ground-state energy E(a,3) of the
bound polaron is nonanalytic for 8 = B, (a), where 8_(a) is
a unique number with

0<B. . (a)<B.,

and B, (a) is continuous in & for 0<a < .

Proof: Clearly, E(a.,f) is monotone decreasing (and con-
cave) in B. From Theorem 6, it then follows that
E(a,f) = E(a,0), for f<0. On the other hand, we know
from Corollary 7 that E(a,8) < E(a,0) for 8> B, and that
E(a,B) is analytic in 8 for 8> S.. Thus E(a,f) cannot be
analytic in £ in the total interval [0,8, ] because the identity
theorem for holomorphic functions requires that then
E(a,f)=E(a,0). Therefore, there exists a nonanalyticity
B.(a),with0<B (a)<B.. At = B,(a), E(a,) abandons
the continuum edge. Because of the monotonicity of E(a,8)
in B, E(a,B) is separated by a gap from the continuum for all
B> B.(a). Analytical perturbation theory ensures us that
E(a,3) is analyticin 8 for all 8> f.(a). Therefore the non-
analyticity B, (a) is a unique number with 0<8 . (a)<B.. The
continuity of 5. (@) in a follows directly from analytical per-
turbation theory and from the monotonicity of E(a,3) in 8.

a

We remark that the same proof can be done to show that
the energy of the nth discrete excited state is nonanalytic at
the point where it is pushed out of the continuum edge.

Clearly, B.(0)=p_ and we conjecture that B.(a) is
monotone decreasing in  and that 8,(a) -0 as a— «. An
estimation on 3, (), which is better than (81), however, re-
quires a nontrivial extension of our result. We leave this as an
open problem.

We summarize our results in two figures. In Fig. 1 we
sketch E(a,) for three different fixed values of @ and vary 5.

In Fig. 2, we give a qualitative picture of the phase dia-
gram of the pinning transition in the a-8 plane describing the

(81)

RELATIVE BINDING ENERGY

/ CONTINUOUS  SPECTRUM

7

N\

0 fda,) B (e, ) B ]
a,>a, a,>0 a=0
£(0,0)
Ela,,B)-E(q, 0]\ Elq,B)-Ela,0)

FIG. 1. Qualitative picture of the pinning transition: relative binding energy
versus potential strength 8 for different values of the coupling a.
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GROUND STATE”
DELOCALIZED
\

GROUND | STATE

*« + nd

0 n, 8

FIG. 2. Phase diagram of the pinning transition (qualitative picture). The
solid line represents the exact solution, the dashed line the effective-mass ap-
proximation.

pinning transition from a delocalized to a localized state.

Let us now discuss the effective-mass approximation
[i.e., the approximation of the polaron as a single-particle
with mass m (a) ] in some more detail. For a Coulomb poten-
tial, Mason and Das Sarma® compare the ground-state energy
shifts for fixed small @ and varied 3 between the *“exact”
(variational) solution and the effective-mass approximation.
It turns out that the effective-mass approximation yields an
overestimation of the energy shift, being asymptotically cor-
rect for small S but becoming worse for intermediate and
large B. Transferring this result to a short-range potential the
situation is quite the same. One may conjecture that the one-
particle approximation leads to a value of 8. («) that is too
small. This belief is based on the intuitive argument that a
bound electron cannot use all phonons in such a way to raise
its effective mass as a free electron. The one-particle approxi-
mation should only work for small &, 3 being small, too.

By a simple scaling argument, one finds the critical cou-
pling strength in the effective-mass approximation by
Bc (@) egrs

B. (@) =B./m(a), (82)

if m(0) = m = 1. Therefore, critical lines for different poten-
tials, but for the same dispersion and coupling function, are
proportional in the effective-mass approximation, the poten-
tial merely determines the prefactor 3,. We have also indicat-
ed the qualitative behavior of the critical line for the effective-
mass approximation in Fig. 2 (dashed line).

A finite temperature 7> 0 destroys the pinning transi-
tion. This can be seen considering the (formal) free energy
(instead of the ground-state energy) in the path integral rep-
resentation. The free energy is analytic in all parameters a >0,
B3>0, and T> 0, if the potential ¥(r) is short range or if V'(r)
is a long-range Coulomb potential. As for details, we refer to
Ref. 25.

Finally, we give the phase diagram in the effective mass
approximation for an optical Frohlich polaron for two con-
crete examples: First a spherical square well

Vir) =0(1—7r), (83)
and, second, a screened Coulomb potential
V(r) =exp(—r)/r. (84)
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In the case of a spherical square well the eigenvalues and
eigenfunctions are well-known (see, e.g., Messiah®’). In par-
ticular, the critical potential strength turns out to be

B. =B.(0) = 7/8 =1.233 7005... . (85)

For a screened Coulomb potential, 3. is not known ana-
lytically. Kesarwani and Varshni®® determine 3, numerically
as

0.839 9032<8.<0.839 9039. (86)
For the usual Frohlich model
k) =1, g(k)= (87")""*/k, (87)

the polaron mass m(a) was calculated in Ref. 39. Conse-
quently, all variables of (82) are known. The limiting cases
(see, again, Ref. 39) are

ﬁc(a)eﬂ' =Bc.(l _a/6) -+ O(az)’ as (1—'0, (88)
B.(a)ge =44056,a"% as a-w. (89)

The effective-mass approximation of the phase diagrams for
the Frohlich polaron and a spherical square well (resp. a
screened Coulomb potential) are shown in Fig. 3.

A variational calculation of B, («) is in progress and will
be published elsewhere.

Concerning experimental consequences, we finally state
that first experimental evidences of the pinning transition
were observed by Dmochowski er al.*° They found bound
polaron states very close in energy and differing strongly in
localization. Such a situation just occurs in the neighborhood
of the pinning transition.

V. CONCLUSIONS

Summarizing, we have proved the analyticity of polaron
quantities in the coupling parameter and the potential
strength, if the potential is long range (e.g., for a Coulomb
potential) or if the one-particle Hamiltonian has a bound

L
a %
1y
7 [N
\\\'
(SN
6T \\\\.
. \
N '\
5 r AN
\, . SPHERICAL
Nl \. . SQUARE
A} N
\\\ \WELL
3F \\\ ‘\'\'
SCREENED™, ™
2} COULOMBY, '\,
POTENTIAL™,
\\\ \\'\
0 0.5 T 10 T n
0.8399 1.2337

FIG. 3. Critical lines of the pinning transition in the a-f plane in the effective-
mass approximation for a spherical square well and a screened Coulomb po-
tential for a Frohlich polaron.
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state. Consequently, no “phase transitions” occur and the
shallow—deep instability is continuous in this case.

For a short-range attractive potential we have shown the
existence of a pinning transition, which depends on the elec-
tron—phonon coupling. This pinning transition is connected
with a nonanalyticity of the ground-state energy and with a
potential assisted localization transition of the ground state
from a delocalized to a localized state as the potential strength
increases. We have discussed this pinning transition for a
spherical square well and a screened Coulomb potential, giv-
ing the phase diagram in the effective-mass approximation.
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