PHYSICAL REVIEW B

VOLUME 37, NUMBER 15

15 MAY 1988-11

Absence of phase transitions in Holstein systems

H. Lowen
Institut fiir Physik der Universitdt Dortmund, D-4600 Dortmund 50, Federal Republic of Germany
(Received 18 August 1987; revised manuscript received 9 December 1987)

We consider a model of a particle, which is positioned at fixed discrete-lattice sites and interacts
with the phonons of the lattice, described by a generalized Holstein Hamiltonian. As physically in-
teresting situations, the molecular polaron, the Frenkel-exciton—phonon system in molecular aggre-
gates, and the small polaron in a crystal are included. We prove that, for optical-phonon disper-
sions, there is no abrupt (nonanalytical) phase transition of the ground state as the phonon coupling
increases. This result holds for both finite-N-site models and infinite-site models. For nonzero tem-
perature, the free energy is smooth for arbitrary phonon dispersions. Furthermore, we show that
the ground-state wave function of a small polaron is delocalized for any coupling strength. As a
consequence, the self-trapping transition is a smooth crossover which is not accompanied by a local-
ization transition or a nonanalytical change of the ground state.

I. INTRODUCTION

The present paper is concerned with the study of the
existence of phase transitions in Holstein systems. The
Holstein Hamiltonian' H describes the interaction of a
particle (like an electron or an exciton), which may stay
at N different sites, with the phonons of a molecule or a
crystal:

H=HO,S+H0,ph +HI y (1)
where
N
Hy;=— 3 Tpu|m){n| )
nom=1
and
Hy =3 o(k)a'(ka (k) . 3)
k
Moreover
N
H;=a'? 3 3 {g(k)a(k)exp[ik-R(n)]
n=1 k
+H.c.}|n)Xn| . ()

In (2), Hy , is the Hamiltonian of a single particle which
may occupy N distinct lattice sites (N < o). The |n)’s
are the site states of the particle (1 <n < N). For the hop-
ping element T,,, we assume

T, >0 for ms#n (5)
and
Tmn =Tpm - (6)

Thirdly, the N X N matrix T=(T,,,) is assumed to be er-
godic. This means that for any m,n €{1,...,N} there
exists a natural number p €N such that

(m | T?|n)=0. M

The conditions (5)—-(7) are, for example, satisfied in the
usual near-neighbor interaction

T >0 if the states n and m are near
neighbors , (8)
0 otherwise .

mn

H, , is the usual free-phonon term. a'(k), a(k), k,
and w(k) are the creation operator, annihilation operator,
wave vector, and frequency of the phonons, respectively.
The k sum extends over an infinite discrete-phonon-
momentum lattice. (We could also take a finite number
of phonon modes or a continuous phonon momentum
space without changing the qualitative results.) Obvious-

ly,
w(k)>0. 9)

Henceforth, we specify the spatial dimension d to d=3,
but all results are readily transferred to arbitrary d.

In (4), a denotes the extracted coupling parameter and
g (k) the coupling function where

S gk <w . (10)
k

R(n) is the mapping from the numeration of the sites by
natural numbers n, 1 <n <N < « to their position in real

space.
The associated Hilbert space #f is the product space
H=CVeF , (1
where
F = 60[12(23)]®m (12)
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is the usual Fock space of the phonons, ® denoting the
symmetrical tensor product. [%Z3) contains all
complex-valued square-summable sequences of the
discrete-phonon-momentum lattice isomorphic to Z>.

Let us now discuss the different physical cases, which
are described by H. The two-level system (N=2), cou-
pled to bosons, has been studied in great detail in the
literature; see Leggett et al.? for a review. For N=3 up
to order of ~ 100, the Hamiltonian H describes the in-
teraction of an electron or exciton with the intramolecu-
lar vibrations of a molecular aggregate; see Craig and
Walmsley, > Davydov,* and Merrifield.> For N very large
or N— «, we arrive at the concept of small polarons in
solids; see, e.g., Holstein, ! Toyozawa,6 and Emin.” Here,
the R(n)’s are the usual periodic positions of the discrete
lattice.

In any case, mentioned above, the problem of self-
trapping is of fundamental significance. For weak cou-
pling a, one expects that the electron behaves as a free
particle and it should be delocalized over all sites,
whereas for very strong coupling it is conceivable that
the electron is self-trapped by the phonons. A self-
trapping transition is understood as a drastic change in
the mass, in the number of virtual phonons of the ground
state, in the degree of spatial delocalization, or as an
abrupt change in the ground-state energy or the free en-
ergy of the system as a function of a. It is essential to un-
derstand whether it is a continuous or discontinuous
transition. In the latter case the ground-state energy and
the mass, etc., were nonanalytic at a certain critical cou-
pling a,.

For a two-level system coupled to a bath of oscillators
with nonzero frequency (molecular polaron), Manka® and
Moraweck® get discontinuities in mean-field theories.
Prelovsek'® and Beck et al.!' find an abrupt change in
the physical quantities. On the other hand, Rivier and
Coe, '? Shore and Sander,* and Stolze and Brandt'* get
smooth crossovers. The situation is quite similar for the
molecular Frenkel exciton-phonon system and the small
polaron. Toyozawa (see, e.g., Refs. 6, 15-17; see also
Cho and Toyozawa'®) investigated the small polaron
within the adiabatic approximation, where he does find
an abrupt transition and a discontinuous change of the
polaron mass. Furthermore, Emin,’ and Yarkony and
Silbey!® get temperature-dependent sharp transitions, too,
whereas Scherer et al.?’ found a continuous transition;
see also Venzl and Fischer.?! The small-polaron problem
can also be attacked by Monte Carlo calculations. De
Raedt and Lagendijk (see Ref. 22 and references therein)
found drastic changes in the polaron quantities.

The method, used in the publications quoted above, is
either a variational or a Monte Carlo approach. Without
subtracting from the merits of these techniques, it is clear
that they are not able to decide whether or not a transi-
tion is continuous or discontinuous. A variational calcu-
lation yields an upper bound on the energy (but not the
energy as such) and the Monte Carlo method because of
its finite sampling time will always give a continuous
transition. In this paper, we use a functional analytical
approach in order to study the exact nature of the self-
trapping transition. We prove that for optical-phonon

dispersions, the ground state, the ground-state energy,
the number of virtual phonons in the ground state, and
the polaron mass are analytical functions of the coupling
parameter. For nonzero temperature also acoustical
dispersions result in analytical physical quantities.
Therefore, the self-trapping transition is smooth and no
discontinuous phase transition exists. These results apply
to all cases N =2,3,... mentioned above, including
N— .

If the R(n)’s are periodic, the total momentum is a
conserved quantity. We prove that the ground state
respects this translational symmetry belonging to zero to-
tal momentum for any coupling strength. Thus a
phonon-induced localization does not occur.

It should be remarked that there may still be smooth
peak structures in the derivatives of the energy with
respect to the coupling constant. If w is a mean value of
the phonon frequencies and T the electron bandwidth,
then the adiabatic approximation (@ /7T =0) can predict a
true phase transition (see again Toyozawa, Refs. 15-17).
In view of our result, this transition smears out for
o/T>0. However, for w/T << 1, there is still a sharp
peak structure in the corresponding derivative. There-
fore, it should be possible to detect this peak experimen-
tally for small w/T. However, the structure of the peak
is not to be interpreted as an original discontinuous struc-
ture which is smeared out exclusively by other effects like
impurity scattering, lattice defects, potential fluctuations,
etc., but it is really a per se continuous peak. The proper-
ties of a small polaron cannot be classified within a
phase-transition concept.

For a large polaron, the existence of phase transitions
was first critically studied by Peeters and Devreese.? In
fact, utilizing functional analytical methods of J.
Frohlich,?* similar analyticity results were proved in
Refs. 25-28. The two differences to our system are the
continuum character of the model (whereas we take the
discrete nature of the lattice into account) and the infinite
electron bandwidth in contrast to our finite electron
bandwidth. Therefore it is a priori not clear at all wheth-
er or not the results for the large polaron are transferr-
able to the physically different Holstein system (see, e.g.,
De Raedt and Lagendijk?* for a discussion). Using
methods which are based upon previous work,?~2% we
do show that the nature of the self-trapping transition is
the same irrespective of the kind of polaron model.

This paper is organized as follows: Firstly, in Sec. II,
we show that the ground state of the finite-site model is
analytic in all parameters. We transfer this result to the
case N— o in Sec. III. Finite-temperature results are
obtained from the path-integral representation of the free
energy and are listed in Sec. IV. Finally, in Sec. VI, we
mention possible extensions and conclude our results.

II. SPECTRAL PROPERTIES
OF THE FINITE-SITE HOLSTEIN MODEL

In this section, we assume the optical-phonon disper-
sion

o(k)>wy>0 (13)
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and inversion symmetry of (k) and g (k). Furthermore,
the sites {R(n)} should be inversion symmetric with
respect to a fixed point in space. Let E be the ground-
state energy of H. Because of (10) and since the interac-
tion is linear in the phonon operators, we get, according
to a result of Nelson,? that H, is a Kato potential with
respect to H, ;, with relative bound zero. That means
that for any € >0 there exists a constant b such that for
all |¢)ED(H, )

1 Hy || <€l Ho,pndll +o[1¥l - (14)

Since H,, commutes with H, ;, and H, is bounded,
there exists also a constant ¢ such that

1 H |l < €ll(Ho,pn+Ho, ¥l +c ¢l - (15)

Consequently, by the Kato-Rellich theorem,® H is a
well-defined self-adjoint operator which is bounded from
below.

We introduce a uv cutoff 7 < « in the coupling, which
is removed later, and we define H;, by replacing g (k) in
(4) by g,(k)=g(k)O(r —k). Furthermore let H,
=H,,+H,,,+H;, and let E, be the associated
ground-state energy. Now the number of phonons with
momentum k >r is conserved and we may classify the
Hamiltonian after its eigenvalues, i.e.,

H=3 S H(ng,k>r}, (16)
k(>rn, =0
where
H({n,k >r})=H,, +H,, + k(z )w(k)nk a7
S
and
H,,= k(z )w(k)a*(k)a(k)-i-Ho,s . (18)
<r

Now, because of (13), H, , has a purely discrete spectrum
for r <. Since H;, is a Kato potential with relative
bound zero with respect to H, ,, even H({n,,k >r}) has
a purely discrete spectrum. From (16), (17), and (13) it
follows that the spectrum of H, remains discrete in the
energy interval [E,,E, + o[ .

If r — o0, we get [because of (14)] that H, —H in norm
resolvent convergence. Consequently, E,—E as r—
and the spectrum of H remains discrete in the energy in-
terval [E,E +wg[. Thus, we have proven the existence of
a discrete ground state of H.

The uniqueness of the ground state is proven by show-
ing that exp( — H) has a strictly positive integral kernel in
the electron-site representation and in the phonon Q
space; see Reed and Simon.3! Here, the phonon Q space
may be thought of as the Schrodinger (position) represen-
tation of the phonons written as distinct harmonic oscil-
lators. We choose such a representation because H; acts
as multiplication operator in this representation. Then
the Trotter formula ensures us that all we need to prove
is showing that exp(—H, , —H|, ,;,) has a strictly positive
integral kernel in the chosen representation. Now,
exp(—H, ;) clearly has a strictly positive integral kernel
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in the phonon Q space. As for details for the last two
steps, we refer to Gerlach and Lowen,?® who described
this steps more extensively in the case of a large polaron.
It remains to show that exp(—H|, ;)=exp(T) has a strict-
ly positive kernel in the electronic site representation, i.e.,
to show that

(m |exp(T)|n)>0 forany |m),|n) . (19)
This follows from the expansion
(m |exp(T)|n)=3 (n)"m |T"|n) (20)
n=0

and our ergodicity assumption of T (7). Thus the ground
state is unique.

We add a remark: If one classifies the wave function
after a total momentum Q (see, e.g, Scherer et al. 20 and
Sec. III), the ground-state energies of the Hamiltonian to
fixed subspace belonging to Q and —Q are equal, because
of our assumption of inversion symmetry. Since the
ground state of H is unique, it follows that it must belong
to Q=0, i.e., it is translation invariant.

Having shown that the ground state of H is discrete
and nondegenerate for any a, the analytical perturbation
theory of Kato® is applicable. This theory ensures us
that the ground state and the ground-state energy of H
are analytical in a >0 [because of (15)] and in T,,, (be-
cause H,, ; is a bounded operator). The same holds for
the number of virtual phonons in the ground state. Con-
sequently, there exists no discontinuous phase transition.

III. THE LIMIT OF INFINITE SITES

In view of our results of Sec. II, one expects that a true
nonanalyticity, if at all, should only take place with the
help of some limit, for example the limit of infinite sites
N — 0. In this section, we prove that even for N — o
the physical quantities remain analytical. We consider
the infinite-site Holstein Hamiltonian on a Bravais lattice
generated by the three linearly independent vectors a,, a,,
and a,, i.e., the lattice positions are

R(n)=nlal+n282+n3a3, n"eZ, n=(n1,n2,n3) .

2n
In our Hamiltonian
H=Hy +Hy,+H; (22)
we have now
Hyy=—3 Ty_,|m){n| . (23)
m,n

Here, a summation over a vector n=(n,,n,,n;) means
three summations over n,, n,, and n; independently in
the range from — o« up to . In contrast to the finite
site case we have labeled each site by three natural num-
bers in order to make the connection to a real three-
dimensional lattice clear.

In this section, we modify our standard assumptions
(5)—(7); we assume positivity and translational and inver-
sion invariance
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Ton20, Ton=Tm-n Ta=T_p - (24)

Furthermore, it is assumed that the Fourier transform
(k) of T, exists and is a bounded function of k.

H, ,p, is given by (3), but one may think about the
discrete k summation also as a continuous integration for
example over the first Brillouin zone. All cases are tract-
able in our formalism; however, we always assume optical
dispersions; see (13).

The interaction H; is still given by (4); however, the n
summation now extends over all n and R(n) one has to
insert (21). We assume square summability of the cou-
pling; see (10).

The underlying Hilbert space is now /%(Z3)® F, where F
is given by (12).

It is possible to cancel the electron coordinate by clas-
sifying the eigenstates after the conserved total momen-
tum 3(2;. We first perform a Lee-Low-Pines transforma-
tion:

U= 3 exp[—iP,-R(m)]|n)(n]| , (25)
where
P= 3 ka'(k)a (k) (26)
k

is the phonon momentum. Then the transformed Hamil-
tonian reads as follows:

U'HU=H"=H{ +H, ,+Hy , 27
where

HOT,S:— D Ty_nexp{iPy, [R(m)—R(n)]} |m){n|

(28)

and

H;y=a'?3 [g(k)a(k)+H.c]. (29)
K

Note that H; 5 does not depend on the electron coordi-
nate. All we have to do is to diagonalize H ({ s- This is
done by performing a unitary transformation to the elec-
tron Fourier space introducing the new states

|q)=(Q5) " T exp[—iq-R(n)] [n), qEB .  (30)

Here B denotes the associated first Brillouin zone of the
lattice and Qp= [ ,d’q is the volume of the first Bril-
louin zone.

Note that the representation of the electronic Hilbert
space changes from /%(Z*) to L%(B).

Written in these states, the Hamiltonian is diagonal

H'=[ d’qH(q)|q)al , (31)

where H (q) lives merely on the phonon Fock space and
is given by

H(q)=€(q+Pph)+H0,ph+H1,N . (32)

Here, the band-structure function e(k) is the Fourier
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transform of T

e(k)=— 3 T.exp[ —ik-R(n)] . (33)

The structure of the Hamiltonian H(q) is known from
the theory of large polarons and is qualitatively well un-
derstood. We can therefore shorten our discussion con-
cerning spectral properties. In particular, they can be an-
alyzed in the same manner as Frohlich?* does (see also
Spohn).** Let E(q) denote the ground-state energy of
H(q). Especially it follows that the spectral interval
[E(q),A(q)[ is discrete where

Alq)=inf[a(k)+E(q+k)] . (34)

In the Appendix, we prove that
E(0)<E(q) for any qEB\ {0} . (35)

Let us briefly discuss the physical consequences of (35).
Firstly, it shows that the ground state of H belongs to to-
tal momentum zero and that it is delocalized for any cou-
pling strength a. We refer also to the discussion of Ger-
lach and Lowen? in the case of a large polaron. Second-
ly, we conclude that there is no drastic ‘“‘symmetry break-
ing” of the translational symmetry in the ground state
and that no localization transition occurs. An intuitive
discussion of possibilities and nonpossibilities of symme-
try breaking was given by De Raedt and Lagendijk.**
Furthermore, (34) and (35) imply that the spectral inter-
val [E(0),E(0)+ay[ of H(q) is discrete such that the
ground state of H (0) is discrete.

Having established the discreteness of the ground state
of H(0), we proceed as in Sec. II to prove its uniqueness.
By assumption the operator e(q+P,) is a bounded
operator and it is defined anywhere on the underlying
Hilbert space. We firstly note that then

expl—e(q+Py)]= 3 ()~ '[—elq+P)]" . (36)

n=0

Inserting (33), we state that exp[ —e(P,)] has a positive
integral kernel in the phonon Q space, since exp(iP,,-A)
has a positive integral kernel in the phonon Q space for
all AER3. Since H 1N acts as a multiplication operator
and exp(—H ;) has a strictly positive integral kernel in
the Q space and since H,,;, commutes with e(q+P),
we finally get that exp[ —H (0)] has a strictly positive in-
tegral kernel in the phonon Q space. Consequently, the
ground state of H (0) is nondegenerate.

Now, as in Sec. II, we turn to analytical perturbation
theory. We obtain that the ground state of H(0) and
consequently also the ground-state energy of H as well as
expectation values of the ground state are analytical in a.

It was proposed (see, e.g., Toyozawa'®) to define a po-
laron mass proportional to [32E (0)/3¢%]~'. Analytical
perturbation theory in q around q=0 ensures us that the
polaron mass is analytic in «, too.

IV. FINITE-TEMPERATURE RESULTS

In this section, we comment briefly on analyticity re-
sults for finite temperatures 1/8> 0. In doing so, we con-
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sider the (formal) free energy F in the path-integral repre-
sentation. For the large polaron the analyticity proof was
already done by Gerlach and Lowen. 2627 In our case one
may proceed along similar lines. We assume (5)-(7), (10),
and

[ d%k |g(k)| /oK) <w , 37)

which we have written in a continuous-phonon-
momentum space. This includes acoustical dispersions
which are not too singular. The free energy
F =—(1/B)In(Z) is derivable from a partition function Z
where

Z =trexp(—BH)/trexp(—BH,_,) - (38)

By the standard Feynman-Kac construction, Z can be
represented by a functional integral
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Z =(explaS;[a])) , (39)
where
(AloD
N N
= 3 [uldo(---n4lo)) 3 [uldot--).
n=1 n=1
(40)

uX(da(---)) is the path-integral measure generated by
the Hamiltonian H, ,, i.e., by the matrix 7. Because of
(7) it is a strictly positive measure. It is concentrated on
piecewise constant paths ¢t €[0,8]—o(¢) taking as values
the natural numbers 1,2, . . ., N with the boundary condi-
tion 0(0)=0(B)=n. As for further details see Spohn and
Diimcke. %
S;[o]is explicitly given by

S,[o]=%foﬁdtfoﬁdsfd3k | g (k) | 2exp{ik-[R(a(1))—R(a(s))]}cosh[w(k)( | t —s | —B/2)]/sinh[Bw(k)/2] .  (41)

The existence of Z is proven by a trivial estimation of S;

requiring (37). By dominated convergence, Z is
representable as a power series
Z=3 a"/(n)(S}lo]), 42)
n=0

which is absolutely convergent for all a. Consequently,
the free energy is analytic in . We remark that the same
can be done for the limit of infinite sites (N — 0 ).

For optical dispersions, this result was expected since
the ground-state energy is analytical and the influence of
a finite temperature is—intuitively—to smoothen the re-
sult. However, the free energy is also analytical for
acoustical dispersions, fulfilling (37), whereas we were not
able to clarify the zero-temperature analytical properties
in this case.

V. GENERALIZATIONS AND CONCLUSIONS

In this section, we extend our method to two interest-
ing cases. Firstly, we consider the influence of an impuri-
ty potential on the phase-transition problem and secondly
we discuss phonon-position-dependent transfer energies.

One may add an impurity potential at site R(n,) like

—Alng){ny|, A>0 43)

to the Hamiltonian (22). In doing this, the problem one
deals with is the bound small polaron. The spectral prop-
erties of this Hamiltonian can be studied by the same
methods as developed by the author in Ref. 28 for the
large bound polaron (see also Ref. 36). To obtain qualita-
tive results, we can admit more general potentials of type

V=—AS U, |n)n|, AU,>0 (44)

with the additional requirement that for all € > O there ex-

ists a decomposition U,=I,+b, such that
Sallil?< e and | b, | <e€for any n.

We only mention the results without providing a proof
(it can be found in Ref. 36). The continuum edge of the
Hamiltonian H with potential (44) begins exactly at the
energy min[E (A1) 4wy, E(A=0)]. Here we have assumed
a continuous phonon k space, ;>0 is the minimum of
the phonon dispersion, and E (L) denotes the ground-
state energy of the Hamiltonian H + V. If T is ergodic,
the ground state is unique, as far as it exists. For vanish-
ing electron-phonon coupling, the occurrence of bound
states was already extensively studied (see, e.g.,
Economou, Ref. 37). It turns out that for short-range po-
tentials, e.g., for (43), in three-dimensional lattices, A
must exceed a critical value A, in order to form a bound
state. This is connected with a nonanalyticity of the
ground-state energy and a localization transition of the
ground state. This transition does persist for a >0; we
can prove that there exists an a-dependent critical unique
value A (a) with 0<A (a)< « such that the ground-
state energy is nonanalytic in A.

Shinozuka and Toyozawa*® called this phenomenon ex-
trinsic self-trapping. For the case (43), they also give the
phase-diagram in the alA plane. We remark that their
phase diagram intersects the a axis and this is interpreted
as a discontinuous self-trapping transition in a for A=0.
This is not true, for we have shown the analyticity of the
ground-state energy for A=0. For A >0, however, there
exists a nonanalyticity as an intrinsic property of the
Hamiltonian, i.e., a true phase transition induced by the
impurity potential.

Our second concern is to discuss phonon position
transfer energies, i.e., the matrix T is assumed to depend
additionally on the phonon position operator. A
phonon-modified transfer is essential in the Su-Schrieffer-
Heeger-model.>® Then except for some technical as-
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sumptions the same proof is possible, as long as the
transfer energies remain negative. For a Peierls-Hubbard
system, for instance, this was extensively proved in Ref.
40. Consequently, such phonon-position-dependent
transfer energies cannot generate a phase transition of the
ground state.

In conclusion, we have shown that for several situa-
tions the ground-state energy of a Holstein type Hamil-
tonian is analytic in the electron-phonon parameter. This
casts new light on the mathematical nature of the self-
trapping process. In fact, from a fundamental point of
view, the properties of a molecular polaron, a Frenkel
exciton-phonon system and a small polaron cannot be
classified by a phase-transition concept. In practice, e.g.,
for small values of /T (where w is a mean value of the
phonon frequencies and T is the electron-exciton band-
width) there may be large but analytical changes in the
physical quantities such that from this point of view the
self-trapping process has experimental consequences.
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APPENDIX A: ABSENCE
OF PHONON-INDUCED LOCALIZATION
FOR THE SMALL POLARON

In this Appendix, we prove

E(0)<E(q) for qEB\ {0} , (A1)

which was mentioned in Sec. III; see (35). We take the
dimension d as d=1, omitting hereafter the vector nota-
tion; the generalization to arbitrary d is straightforward.
We assume g (k)€ L2(R) and optical dispersions. In ad-
dition to the standard assumptions at the beginning of
Sec. III, we assume, for the matrix T, T, >0. We have
q€[0,2w/a[, a denoting the one-dimensional lattice
constant.

To prove (Al), we use the same trick as utilized by
Gerlach and Lowen in Ref. 25 for a large Frohlich pola-
ron. Let us briefly recall the basic steps of this trick. The
original Hamiltonian, whose ground-state energy E (q) is
under study, is H (q), where g is a ¢ number. But to study
E(q) as a function of ¢ and to prove (A1), it is profitable
to reintroduce formally an operator p, i.e., to reintroduce
an additional auxiliary electronic Hilbert space, on which
the new Hamiltonian H (p) is defined. p is not the usual
momentum operator; this would be unfavorable in the
proof, for then p would not possess any eigenfunctions.
To overcome this difficulty, p is chosen as a momentum
operator on a discrete momentum lattice '={gq,}. Then
the possible ground states of H(p) are really eigenfunc-
tions. Now we choose a fixed representation of the un-
derlying Hilbert space and show that exp[ —H (p)] has a
strictly positive integral kernel in this representation.
This implies that the ground state of H (p) is nondegen-
erate, i.e., the set {E(q,)|g, €T} has a unique smallest
element. By inversion symmetry E(q,)=E(—gq,), and
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hence E (0) < E (q,+0) for all g, €ET". Since the lattice I"
can be chosen arbitrarily, it finally follows that
E(0) < E(q) for all g5~0.

We are now going to apply this trick to our Hamiltoni-
an. Let K €]0,7/a[ be fixed and assume

E0)>E(K) . (A2)

Then we deduce a contradiction.
We have to distinguish two cases (i) and (i): (i)
r=aK /(2m) is irrational, and (ii) » =aK /(2) is rational.
In the first case (i) we introduce an infinite electronic
momentum lattice I" with lattice constant K; the associat-
ed Hilbert space /%(Z) is spanned by the | g, )’s:

1X2)=11q,)q,=nK, n€Z]} .

(A3)

On this space, p is defined as multiplication operator such
that p | g,)=gq, | g,). The associated Fourier space of
this lattice space [XZ) is the position space
W =L*[0,2r/K[). The functions of this space are con-
sidered as periodically continued to R. Then exp(iAp),
AER causes a translation about A in W. Now we choose
the phonon Q space and the electronic W space as fixed
representation of the underlying Hilbert space of H(q).
Then exp(—H ,;,) has a strictly positive integral kernel
in the Q space, H; y is a multiplication operator. We
prove that exp[ —&(p +Pp;,)] has a strictly positive in-
tegral kernel in the electronic W space and a positive in-
tegral kernel in the Q space of the phonons. By (33) and
(36) we obtain

expl—e(p +Py,)]
= i;o(m!)‘l 3, T,exp(—inaplexp(—inaP ) |™ .

(A4)

Now, exp(—inaP;) has a positive kernel in the phonon
Q space. Since T, >0 and since 7/K and a are incom-
mensurable (because 7 is irrational), there exists for any
positive functions | f), |g)E W a natural number m
such that the backfolded translation about —ma has a
nonvanishing matrix element, i.e.,

(f | exp(—imap)|g)>0.

Consequently, exp[—e(p +Pp,)] has a strictly positive
integral kernel in the electronic W space and a positive
integral kernel in the phonon Q space. Thus, it follows
that exp[ — H (p)] has a strictly positive integral kernel in
the W representation of the electronic space and in the
phonon Q space. Therefore the ground state is unique.
But since K€]0,7/a[ and E(K)=E(2w/a —K) (be-
cause of inversion symmetry), we get a contradiction to
(A2).

In the second case (ii) we can no longer construct an
infinite lattice, since then equivalent lattice points occur
repeatedly and the ground state is no longer unique.
Here we take a finite lattice with periodic boundary con-
ditions.

Let r =u /v where u,v €N have no common prime fac-
tors. The finite lattice consists of v points and the associ-
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ated electronic Hilbert space C' is spanned by

{19,)|g,=nK withn=0,1,...,v—1}. (AS)

Again we choose p defined on this space such that
P 19,)=4,1q,). Then, on C’ exp(iap) is represented as
a unitary diagonal v Xv matrix with diagonal elements
L,exp(i2mu /v), . .. ,exp[i2mu (v —1)/v]. This matrix is
unitarily equivalent to the unitary v X v matrix U,

0 0 e . . PR “ e 0 1
1 O : 00
0 1 0 00
U=1|: 0 1 0 00y, (A6)
0 0 10

8667
since this matrix has the same -eigenvalues
Lexp(i2mu /v), . . .,exp[i2mu (v —1)/v]. We  now

choose the representation of the electronic Hilbert space
C" such that exp(iap) acts as the matrix U in the repre-
sentation just given in (A6). Clearly, such a representa-
tion exists. As usual, we take for the phonons the Q
space. Utilizing (A4) and (A6) and the fact T >0, we
finally get by similar arguments as in case (i) that
exp[ —H (p)] has a strictly positive integral kernel in the
chosen representation and that E(K)=E(27/a —K)
leads to a contradiction to (A2).

Our final result is E(0)<E(q) for ¢€]0,2m/al,
g#m/a. What about ¢ =7/a? Here, the argument is
slightly different. The analysis of Gross*' shows that
E(0)<E(q), even for ¢ =m/a. From the uniqueness of
the ground state in case (ii), it then follows that
E(0)<E (m/a). Consequently (A1) is proved.
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