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Making use of functional-integration techniques, we calculate the formal free energy of a pola-
ron in the subspace of fixed total momentum Q. Utilizing this result, we prove an analytical ex-
pression for the polaron mass. We include numerical results of variational and Monte Carlo types.
As a by-product, we comment on the position of the continuum edge of the polaronic energy spec-

trum for fixed Q.

I. INTRODUCTION
AND STATEMENT OF THE PROBLEM

The standard polaron model is defined by Frohlich’s
Hamiltonian H. Introducing energy and length units #w
and V'#/mw, where o >0 is an arbitrary frequency and
m the electron band mass, H reads as follows:
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1 =~ 1 k-
ol = %——i— %wkaiak-i-v—lf——%(gke'k ay+H.c.) .

(1)

On the right-hand side of Eq. (1), all quantities are di-
mensionless. In particular, p and q are the momentum
and position operators of the electron, whereas k, wy, ay,
and aI are the wave-vector, dispersion, annihilation, and
creation operators of a phonon. Finally, g, is the
electron-phonon coupling and ¥V the quantization
volume. To complete our list of notation, we introduce
the electron-phonon coupling constant a as

g =:Vag, . )

Throughout this paper we assume wy >0 and inversion
symmetry of g, and wy.

The spectral properties of H can conveniently be de-
rived from the diagonal element of the reduced density
matrix p, defined as

p(a,B)::trph<r|e"Bﬁ|r) . (3)

In (3), tr,, indicates the trace operation with respect to
phonons, B is a formal inverse temperature (Bfiw >0),
and | r) an eigenstate of the position operator q with ei-
genvalue r. As H is translationally invariant, p does not
depend on r.

In a first step, we perform a Lee-Low-Pines transfor-
mation' within p. Considering the unitary transforma-
tion

U:=exp iq-zkaiak , (4)
k
one has (because of familiar trace properties)

pla,B)=try(r | Ue PAU " |1) . (5)

On the other hand, it is easily verified that

1 1 t t
_ﬁ;H::E p—%kakak 24 %wkakak

1

It is obvious that H commutes with p; in fact, p is the
unitary transform of the total momentum P, that is,

p=UPU~!. Therefore, we conclude from (5)—(7) that
pla,B) admits a momentum decomposition as follows:
1 —BH
(a,B)= d3Q tr e Q
plasB)=" [ a0 try,
1
=: d3Qpla,3,Q) . (8)
gy [ d°0p(a,B,Q

H differs from H in (7) only insofar as p has to be re-
placed by its possible eigenvalue Q.

The partition function p(a,3,Q) is the central quanti-
ty of this paper. In Sec. II, we shall prove a functional-
integral representation for p(a,B,Q). This will exten-
sively be used in Sec. III, where we discuss the free ener-
gy F(a,,Q), corresponding to p(a,3,Q):

pla,B,Q) =:exp[—BF(a,5,Q)] . ©)

In particular, we derive a new, analytical result for the
polaron mass m,(a), defined by means of the ground-
state energy Eq(a,Q):

m
m,(a)

1
= %AQEQ(a,Q)l():O . (10)

Moreover, we present an intuitive argument for the posi-
tion of the continuum edge of the spectrum of Hqy. We
close Sec. III with numerical results for the polaron
mass. These are of variational and (for the first time)
Monte Carlo type. Finally, Sec. IV contains a compar-
ison with previous work.
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II. FUNCTIONAL-INTEGRAL
REPRESENTATION OF p(a,8,Q)

Starting from Hq in Eq. (8), one may write

1 2
—Hgo=A"+h , (11)
fio 2 +
where
A:=——(Q-— zkakak , (12)
i LI
h = %wkakak+ \/I_/ %(gkak+H.c.) . (13)

Therefore we find from (8):

pla,B,Q f D>x exp [—- foBdTXZ(T)

trpon [e —BhT exp
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ple,B,Q)=try [e P Toexp [~ [Pdr Ak ]|
(14)
In (14), we defined
B := pfiw, A(7):= e Ae~ . (15)

T, is a T-ordering operator. At a first glance, it seems
difficult to evaluate the trace in Eq. (14), as AX(7) is of
fourth order in the phonon operators. The decisive idea
to overcome this problem is to linearize the exponent
A%(7) by means of the so-called Hubbard-Stratonovich
trick (for a review see Miihlschlegel?). Introducing an
auxiliary field x(7), one has

(16)

—2i fOBde(T)-A(T)]

In (16), f D3x indicates functional integration over the auxiliary field (again, see Ref. 2). We mention that such a pro-
cedure was earlier proposed by Kochetov, Kuleshov, and Smondyrev? and Grote.*
The remaining exponents are bilinear in a,a; consequently, the trace operation can be done by standard methods.

As for a detailed calculation, see Schultz.’

One arrives at

@,8,Q)= [ D [[(1—e { f dr[xXr)+V2ix(r )-Q]—$[x]], (17)
k
where
Fi[B,x]:= @B —V2ik- fOBde(T), (18)
-~ 1 2 B B ’ ’ ’ —1
o[x]:= —?2 |8y | fo fo drdr'exp( — fy[7,x]+ f[7, xD{O(r—7")+(expf[B,x]—1)""} . (19)
k

It is important that we can establish a link between functional integrals of the type of (16) and (17) and functional in-
tegrals of Wiener-Feynman type. Formally,® this is done by two successive substitutions. Firstly, let

1 . _ .
x(1) =: ‘/Ey(r), y(0)=0, y(B)=R. (20)
Secondly, put
y(r) =:2(r)+ R, 20)=zB)=0. 1)
Then we arrive at
3 cos(Q-R)exp(—R*/2B) 3 ]
a,8,Q= [ d°R T expl — 0B Fk-R)] fszexp f driz(r)—¢[z] (22)
k
where now
1 2 B B ’ ’ . ’
#lz]:= _—I;Ek; lg | fo fo drdr'exp 0p——=— |(r—7")+ik-[z(1)—z(7")]
X {O(r—7')—[exp(w B —ik-R)—1]"1} . (23)

Equations (22) and (23) represent the central result of
this paper. Two things should be realized: in (22), f 8%z
indicates familiar Wiener integration over real, closed
paths with starting and ending point O, and integration
of (22) with respect to Q yields a term 8(R); thereby we
recover Feynman’s’ well-known result for pla,B) that is
the non-momentum-decomposed density matrix.

III. RESULTS
To begin with, we prove the inequalities
F(a,B,Q#0)> F(a,B,0), Ey(a,Q#0)>E,(a,0), (24)

the latter being a consequence of the former. We note
that it would be highly desirable to have
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Ey(a,Q+#£0) > Ey(a,0), thereby excluding the possibility
of symmetry breaking in systems described by a Hamil-
tonian Hq. In fact, for short-range couplings gy, Spohn®
proved this result by showing that

. 1
Jim "5 [ d°0 Q%@ pQ)/pl@B)=0. (5

Using (22) and (23), we can directly recover this equa-
tion.

The proof of (24) is simple. Inspection of (22) shows
that p(a,3,Q) may be written as

pla,8,Q)= [ d°R cos(Q-R)f(a,B,R) , (26)

where f(a,3,R) is strictly positive for every finite value
of R (recall that w, and g, have inversion symmetry).
Consequently, we find

pla,B,Q+#0) <p(a,B,0) , (27)

which proves (24) because of Eq. (9).

We are now going to discuss an interesting property of
the exact eigenvalues of Hq, which shows up in the limit
V— . In view of Eq. (22), let us define

2

p(a,8,Q):= [ d°R cos(Q-R)exp

2B
B .
x [ 8zexp |- fo driz¥r)—¢[z] | .
(28)
Because of oy >0, we derive, from (22),
p(@,8,Q) =p(a,8,Q)+ 3 ¢ "*5(a,8,Q—k)
k
+0(e~%@8) (29)
where @ denotes the minimum of w,.
For a=0, (29) is readily interpreted. Because of
2
p(0,3,Q)=exp _TB (30)

we may state the following: the first term on the right-
hand side of (29) contains the one-particle, zero-phonon
contribution to the partition function, and the second
term contains the one-particle, one-phonon contributions
(notice that the total momentum is fixed as Q). With
respect to the eigenvalues of (ﬁw)”lHQ, this term-by-
term analysis leads us to two (in this case trivial) con-
clusions: (1) for sufficiently small Q the ground-state en-
ergy is Q?/2 and determined by the first term, and (2) if
Q?%/2 is an eigenvalue, the same holds true for
wg+(Q—k)?/2, the latter originating from the second
term.

For a >0, things are far more complicated. To begin
with, we notice that Eq. (27) is also valid for p(a,f3,Q).
In addition, p(a,B,Q) is a continuous function of Q.
Combining these properties and choosing |Q]|
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sufficiently small, we deduce from (29) for the ground-
state energy:

Eola,Q)=— lim %lnﬁ(a,B,Q). 31)

This is the generalization of conclusion (1) above.

For finite values of V, the corresponding generaliza-
tion of conclusion (2) cannot hold. Representing ¢[z]
from Eq. (23) as a power series in exp(— Bwy) and insert-
ing this series into Eq. (28), one realizes that p(a,3,Q) is
also a power series in exp(—Bwy). Consequently, the
first term in Eq. (29) generates contributions of order
exp(—Bwy), which add to the second term. One should
notice, however, that all these additional contributions
are of order 1/V as compared to those which are already
present; in the limit ¥ — «, they will vanish. We con-
clude for V' — oo that if E¢(a,Q) is an eigenvalue of Hy,
the same holds true for #ww,+Ey(a,Q—k). This,
indeed, is the generalization of conclusion (2). We add,
as a comment, that our intuitive argument can be
rigorously justified within a totally different variational
approach (see a forthcoming publication of Léwen®).

If one takes this for granted, one may prove an impor-
tant result for the position of the continuum edge
E (a,Q) of the spectrum of Hg As fiww,
+Ey(a,Q—k) is an eigenvalue in the continuous part of
the spectrum (for ¥ — o, k is a continuous variable), we
have

E.(a,Q)< ill:f[ﬁa)a)k—FEo(a,Q—k)] . (32)

On the other hand, Frohlich!® proved that the right-
hand side of (32) is a lower bound for E.(a,Q). Con-
cerning the connection between Frohlich’s functional-
analytical work and polaron problems, we refer to a re-
cent paper of one of us (H.L.),'!! who obtained an analo-
gous result for magnetopolarons.

Combining both inequalities, we find

E.(a,Q)= inf (v, + Eo(@,Q—k)] . (33)

As an application, we consider ‘‘standard” optical pola-
rons with constant dispersion w. Then, because of w, =1
and (24),

E.(a,Q)=fiw+Ey(a,0) . (34)

Notice that E,(a,Q) no longer depends on Q.

We close this section with a compilation of our nu-
merical results. All of those are valid for the quoted
standard case

ox=1, gx=—i2V2ra)'?/k . (35)

In a first part, we turn to variational bounds for
pla,B,Q) and the ground-state energy. An introductory
comment is necessary: Because of the factor cos(Q-R)
appearing in (22), Jensen’s inequality (providing the basis
for variational calculations) cannot be applied for arbi-
trary Q. For Q =0, however, the integrand is strictly
positive and Jensen’s inequality holds. Therefore a
quadratic trial action yields an upper bound on
F(a,B,Q), at least for Q =0. Because of the continuity
of all quantities in Q, this remains an upper bound for
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sufficiently small Q.
We used as a variational trial action a general quadra-
tic, but translationally invariant functional of z, namely

bol2]:= fo” fOBdeT'f(T—T')Z(T)‘Z(T') . (36)
where f(7—7')=f(7'—7) can be assumed and
Jldr fir—m)=0 (37)

must hold to guarantee translational invariance. The ap-
plication of Jensen’s inequality is now straightforward
(though lengthy) and was extensively discussed for
pla,B) by Adamowski, Leschke, and one of the present
authors (B.G.) in Ref. 12. All steps of the calculation
can easily be transferred to the present case; only one
additional integration, originating from the R integra-
tion in Eq. (22), has to be done. One finds

1 3 o F(u) F(u)
— = [“du|m|1 -
75 Eola, Q) < 5— J.7du 1+ e R FG)
_a freg.e’
v2 Jo A7)
-1
Ta w , 1T Q*
+|+53 J, Tom | 2
(38)

where F(u) is the Fourier transform of f () (in the limit
B — ) and

© 1—cos(ur)
AX7):= du——=C5HT (39)
T fo K w+F(u)

Obviously (38) constitutes an upper bound on Ey(a,Q),
which contains an adjustable function F(u). This may
be used to minimize the bound. Having in mind that we
should keep Q small, we can put Q =0 for the minimiza-
tion procedure, thereby admitting an error of order Q*.
In any case we find

m,(a) Ta © e "

A1)

where on the right-hand side the minimizing function
F(u) has to be inserted. This function was calculated in
Ref. 12. Actual results for m,/m can be found in the
table.

We add as a remark that (40) is a generalization of
Feynman’s formula (see Ref. 7). Interestingly enough,
the small-a and large-a behavior of (40) can be discussed
analytically, if one uses the corresponding function F(u)
from Ref. 12. We find

P 6v5 Jo , (40)

m,(a)
lim L | 2221 , 41)
a—0 a m 6
m, (a)
lim 5 (72216 _go001... . w2
a—wo m 8177

The same results can be derived from Feynman’s formu-
la.!* One should notice that the right-hand side of (42)
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is approximately 10% smaller than the exact value (see
Sec. IV).

Finally, we turn to Monte Carlo results for the pola-
ron mass. Viewed from a more principal standpoint, it
is a challenging task to evaluate Eq. (10) directly, utiliz-

ing Eq. (22). To do so, let us define a generalized
(temperature-dependent) polaron mass by
m 1
= AgF(a,B,Q)
m,(a,B) 3tiw Q=0

=~ L Aginp(a,8,Q) (43)

" 3B

Q=0

First of all, we remark that m,(a,B) is analytic in a and
B. For B— «, this was proven by Spohn.! For
0<B< w, two of us (B.G. and H.L.) have published'* an
estimation procedure for functional integrals, which can
be directly transferred to F(a,3,Q). As a consequence,
F(a,B,Q) and m,(a,B) are analytical functions in all pa-
rameters. Obviously, m,(a) can be found from m,(a,B),
if we let B— . Inserting Eq. (22) on the right-hand
side of (43) and making use of the abbreviations we in-
troduced in Eq. (26), we arrive at

1
5 [ PRRS@BR/[ &R flapR) .

_m _
m,(a,B)

(44)

Remembering that f(a,B,R) is positive, one realizes
that m /m, is represented as an expectation value. In
Ref. 15, Becker and two of the present authors (B.G.
and H.S.) evaluated this type of expression in connection
with Monte Carlo calculations for p(a,B). The present
case differs from the previous one only insofar as one ad-
ditional integration has to be done. Again, we can
profitably make use of previous work and proceed as in
the quoted paper. A collection of results can be found in
Table I: We add as information that the statistical error
of the calculation is rapidly increasing with increasing a.
For a=3, the error is on a 4% scale. At the moment,
reasonable accuracy is only guaranteed for a<3.
Within these limits, we find good agreement with the
variational data.

IV. COMPARISON WITH PREVIOUS WORK

There exists an enormous amount of literature on the
subject of the “polaron mass.” We restrict our compar-
ison to those publications where m, is defined as in Eq.
(10). In doing so, we exclude, e.g., mass definitions via
response to an external field. Even then there is no
chance to be complete. We hope, however, to be
representative.

A large group of publications is concerned with a
direct perturbational or variational treatment of the
Hamiltonian H%. We mentioned Lee, Low, and Pines!
and add Haga,'® Hohler," Gross,!® Krivoglaz and Pe-
kar,'” Roseler,?® and Larsen.?! Larsen’s work is the
most involved; his results for the polaron mass are given
in Table I. We find excellent agreement for small a, but
growing discrepancies for a >2. We recall that the same
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TABLE 1. Comparison of various results for the polaron mass. ‘“Variational” and “Monte Carlo”
correspond to Egs. (40) and (44) in this paper; the data of Larsen, and Schultz and Feynman can be

found in Refs. 21 and 23.

m,/m
a Variational Monte Carlo Larsen Schultz-Feynman
0.1 1.017 1.017 1.017 1.017
0.5 1.090 1.087 1.089 1.090
1.0 1.196 1.187 1.191 1.196
2.0 1.476 1.448 1.434 1.472
3.0 1.900 1.832 1.723 1.889
4.0 2.606 2.038 2.579
5.0 3.940 2.354 3.887

holds true for the variational bounds on the ground-state
energy, which were compared in Ref. 12: In the
intermediate- and  strong-coupling regime, the
functional-integral bounds are systematically lower than
all others, leading to the conclusion that this method is
more adequate.

It is well known that many authors used functional-
integral methods before us in polaron-physics. Besides
Feynman’s’ pioneering work we quote Osaka,?
Schultz,>> Abe and Okamoto,?* Kochetov, Kuleshov,
and Smondyrev,25 Sayakanit,26 and Arisawa and Sai-
toh.”” For comparison, we have added the data of
Schultz in Table I; he uses Feynman’s formula. Of par-
ticular interest are the recent papers of Spohn®?® on the
mass of an optical polaron. They provide an excellent
review of the mathematical background and clarify the
strong-coupling behavior of the mass. Using scaling ar-
guments, he finds that

m,(a)
lim % £

a—w QA

4 2
i [ d’rwn|*, @5

m

where ¥(r) is the minimizing solution of Pekar’s varia-
tional problem (again, see Ref. 8). It is well known that

this problem was extensively studied by Miyake,?® who
found a numerical solution leading to
. 1 | mpla)
lim — | ——— |=0.02270... . (46)
a—ow m

In conclusion, we may confirm Schulman’s®® statement:

“what makes the polaron special from the standpoint of
selling path integrals is that it is one of the few places
where the path integral not only helps you discover an
answer, but also remains the best way to calculate the
answer even after you know it.”
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