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Abstract 

In the recent literature it was frequently claimed, that a polaron system, 
described by the parameters a (electron-phonon coupling), B (magnetic field) 
and T (temperature) should undergo a phase transition for certain values of 
(z, B, T ) .  As usual, such a transition would lead to a discontinuity in the free 
energy F = F ( a ,  5, T )  or its derivatives. We prove that no such transition 
exists. F = F(a ,  B, T )  is a real analytical function in z and E for all T 
(including T = 0). The shortcoming of all previous "proofs" is, that they all 
use variational procedures, which may cause artificial discontinuities. In fact, 
some authors have mentioned themselves, that their results are variational, 
so that the discontinuities which they encounter could be artifacts of their 
approximation. Our results can readily be transferred to the case of lower 
spatial dimensions. Further extensions to related systems like quantum well 
structures are possible. 

1. Introduction to the phase transition problem 

The physics of polarons and polaron-like systems in a homo- 
geneous magnetic field has gained considerable interest 
during the last years, both theoretically and experimentally. 
In the theoretical description of continuum (large) polarons, 
the Frohlich Hamiltonian [I] was proven to be fundamental. 
In the effective mass approximation, it reads as follows 

H = ( p  + lelA(r))2/(2m) + jddkhw(k)u+(k)u(k) 

+ ddkr' ' (g(k)u(k)  exp (ikr) + h.c.) (1) 

Here, e, m, r , p  are the charge, mass, the position and momen- 
tum operator of the electron respectively, whereas k,  ~ ( k ) ,  
g (k) ,  U +  (k) ,  a(k) are the wave vector, frequency, coupling, 
creation and annihilation operators of the phonons. M is 
the dimensionless electron-phonon coupling parameter, d 
denotes the spatial dimension; all vectors are d-dimensional. 
The vector potential A describes a homogeneous magnetic 
field B along the z-axis, B = (0, 0, B). Throughout this paper 
we work in the Landau gauge 

(0, Bx, 0) for d = 3 

(0, Bx)  for d = 2 
2 B ' 0 ,  A(r) = 

x being the first component of the vector r = (x, y ,  z ) .  The 
resulting elementary excitation is called magneto-polaron. 

In the literature mainly Frohlich-type models, describing 
the coupling of a conduction electron to one branch of optical 
phonons in polar semiconductors, are considered, i.e., 

w(k)  = 0 0  > 0 (3) 

(4) 

but also the coupling to acoustical phonons may be import- 
ant, see e.g., the recent work of Kato, Tokuda [2]. Therefore, 
we keep w(k)  and g(k )  general, as far as possible. 

For a small magnetic field, the magneto-polaron behaves 
qualitatively like a free polaron, whose physical properties 
are changed by Bin a perturbational sense. However, if B gets 
very large, one expects a significantly anisotropic behaviour: 
Perpendicular to the field, the phonon cloud tends to be 
stripped off, the corresponding mass approaching a bare 
electron mass; parallel to the field, no such stripping occurs. 
This picture is strongly supported by calculations of Devreese 
and Peeters 13, 41. 

Comparing the low-field and high-field case, the key- 
question to be answered is whether or not a discontinuous 
stripping transition at a critical value of B between these two 
extreme situations takes place. Such a formal phase transition 
is understood as a discontinuity in the ground state energy 
E(a, B )  resp. the free energy F(a,  B, T )  of the magneto- 
polaron or their derivatives. We prove that no such tran- 
sitions exists. It is clear that this question can only be decided 
within a careful mathematical analysis without using any a 
priori approximation. 

Up to now this question was merely attacked by vari- 
ational calculations, where in fact a nonanalytical behaviour 
of the physical quantities was found. However, our proof 
shows that the true physical quantities are smooth and that 
the discontinuities, found in several variational calculations, 
are artifacts of the approximation made. Concerning these 
calculations, we mention Peeters and Devreese, who calculate 
the ground state energy, free energy [3, 51, the polaron mass 
[3, 61, the polaron radius [4] as well as the number of 
virtual phonons in the ground state [4] and the magneto- 
absorption spectrum [7] within the anisotropic Feynman 
approximation for a three-dimensional Frohlich magneto- 
polaron. A similar non-analytical behaviour is found for a 
two-dimensional polaron (see the work of Wu Xiaoguang, 
Peeters and Devreese [SI). Peeters and Devreese indicate 
themselves, that this nonanalytical behaviour might be an 
artifact of their approximation. 

Further variational calculations, which exhibit non- 
analyticities, are due to Lepine, Matz [9] and Lepine [IO]. 

Of course, the approximations indicate large changes in 
the polaron quantities, which may cause interesting experi- 
mental effects (see Devreese [l 13) but these changes are conti- 
nuous. From a fundamental point of view, however, the 
properties of Frohlich-polarons cannot be classified within a 
phase transition concept. 

Concerning the organization of the present paper, we 
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shall concentrate firstly on the zero-temperature (ground- 
state) case and study spectral properties of the momentum- 
decomposed Hamiltonian in the second chapter. We sketch 
the main steps of the functional analytical proof, which in 
mathematical detail will be published elsewhere [12]. The 
final result is, that the ground state is real analytic in all 
parameters. 

In the third chapter we turn to the finite temperature case. 
This requires a technically different method, namely the path 
integral technique. We summarize results, which are partially 
published [I31 and present a new functional integral expres- 
sion for the momentum-decomposed partition function. 
Finally we consider a quantum-well structure in a magnetic 
field. 

2. Spectral properties of a magneto-polaron (T = 0) 

In this chapter, we assume an optical dispersion relation, 

min w(k)  = uo > 0, ~ ( - k )  = w(k) ( 5 )  
k 

Moreover, the coupling should satisfy 

Sddk lg(k)I2/(1 + k 2 )  < “0, d - k )  = g(k) (6) 

We note that the second and third component of the total 
We firstly treat the case d = 3. 

momentum P,  defined as 

p = p + P p h  ( 7) 

where 

Pph = J ddk hka+(k)a(k) (8) 

The the energy interval [E(@, E(Q) + A(@[ contains 
merely discrete eigenvalues, i.e., the ground state is separated 
by a gap of magnitude of at least A(Q) from the continuous 
spectrum of H(Q). 

For sake of brevity we only sketch the main ideas of the 
proof of this statement. For a complete mathematical proof 
the interested reader is referred to [12] and [15]. We firstly 
introduced a UV cutoff in the coupling g(k )  and put the 
phonon momentum space on a lattice. Consequently, we 
arrive at a system with finite degrees of freedom, which has 
a discrete spectrum. Then we have to remove the lattice cutoff 
and the UV cutoff consecutively. Removing the lattice cutoff, 
the excitations with one real phonon present form a con- 
tinuous spectrum, which is separated by a finite gap from 
the ground state. Taking the conservation of the second and 
third component of the total momentum into account, the 
magnitude of this gap is at least A(Q), where A(Q) is given by 
eq. (11). Hence, all that remains to do is to remove the 
UV-cutoff. It is known from an early paper of Gross [16] that 
this can be achieved without any divergencies by a canonical 
dressing transformation (see also Frohlich [14]). As the UV- 
cutoff is removed, the UV-cutoff Hamiltonian converges to 
H ( Q )  in norm resolvent sense. Consequently, the corre- 
sponding energy interval [E(Q), E ( Q )  + A(Q)] remains dis- 
crete and the proof of our statement above is finished. 

As a next step the uniqueness of the ground state of H ( Q )  
is proven, using a generalization of the Perron-Frobenius 
theorem, i.e. by showing that the resolvent of H ( Q )  has a 
strictly positive numerical kernel in a fixed representation. As 
for details, we again refer to [ 121. Then, to verify (1 l) ,  we need 
more information about E(Q) as a function of Q. In [12], the 
following properties are proved: 

is the phonon momentum, commute with H and are con- 
served. To exploit this fact explicitly, we use the unitary 
Lee-Low-Pines-transformation U = exp (-iPphr) to get 

E ( ~ )  = E ( ( O ,  0, l Q 3 1 ) )  
E(O)  6 E(Q> 6 E(O)  + Q:/(2m) 

Equation (12) tells us that the ground state of H is highly 
degenerate, because is doesn’t depend on the second com- 
ponent of the total momentum. For x = 0 this fact is well- 
known, for x > 0 this was already pointed out by Devreese 

Using eqs. (13) and (9, one deduces immediately that eq. 

U - l H U  = (G - Pph)2/(2m) + d3k ho(k)a+ (k)a(k) 

+ cl’’ [d3k(g(k)a(k) + h.c.), (9) 

where ~171. 

(lo) (1 1) is fulfilled if G = (PI, IelBx + P29P3).  

(14) 
Since eq. (9) does not depend on y and z ,  we may replace p 2  
and p 3 ,  now playing the role of the total momentum, by 
c-numbers Q 2  and Q3.  By this substitution we obtain the This means that there exists a discrete unique ground-state of 
momentum-decomposed Hamiltonian H ( Q ) ,  Q = (0, Q 2 ,  H ( Q ) ,  if eq. (14) is satisfied. 
Q3). It is useful to study the spectral Properties of H ( Q >  In Ref. [I51 another bound for E ( Q )  is derived, namely 
instead of those of H, as the Hamiltonian H ( Q )  can be 

E(Q) 6 min [E(Q - k) + hw(k)] 6 E(O) + ho(Q) (15) 

< 2mhwo 

expected to have a discrete ground state which is energetically k 

separated by a Q-dependent gap from the rest of the spec- 
trum. This is desired to make the technical proof easier. On 
the other hand, we have introduced a new parameter Q and 
the spectrum of H ( Q )  has additionally to be studied as a 
function of Q. 

Let E(Q)  denote the ground state energy of H(Q)  (we 
drop the a- and B-dependence for a while). Using functional 
analytical methods of Frohlich [14] and equations (9, (6) 
from above, we can prove the existence of a ground-state, 
arriving at the following statement: 

By a trial-function argument and an application of the mini- 
max principle it can be proved (see again Ref. [l SI), that the 
continuum edge of H ( Q )  begins exactly at the energy 
E ( Q )  + A(Q). A(Q) is exactly the gap energy which separates 
the ground state from the continuous spectrum. Physically, 
the continuum edge of H(Q) consists of scattering states, 
which are approximately a product of a one-phonon state of 
energy w(k)  and the ground state of H ( Q  - k ) ,  such that the 
total momentum is Q. 

Now the fundamental spectral properties of H ( Q )  are 
well understood and we can turn to analytical properties by Let k = (0, k,, k3) and suppose that 

m,ln[E(Q - k )  + hw(k)] - E ( Q )  = A(Q) > 0 (1 1) applying analytica perturbation theory due to Kato [18]. this 
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theory is a rigorous formulation of the fact that a non- 
analyticity of the ground state in a parameter A can only 
occur, if either two discrete energy bands cross each other as 
a function of A (forming a degenerate point) or if a discrete 
ground state disappears into the continuous spectrum as a 
function of A .  If, on the other hand, we know that the ground 
state of H(Q)  is nondegenerate and discrete for all M 3 0, 
B > 0, Q: < 2mZlw,, analytical perturbation theory tells us 
that then the ground state is analytic in all parameters a, B, 
Q3 for M 3 0, B > 0, Q: < 2mhw,. The perturbation in A ,  
however, must not be too singular; in fact, it has to be form 
bounded with respect to the rest of the Hamiltonian. 

For the a- and e,-dependence this relative boundedness is 
readily shown. The B-dependence is more tricky. In [12] a 
scaling transformation is used to guarantee this relative 
boundedness. Consequently, the final result is that the 
ground state and the associated ground state energy of H(Q)  
are jointly real analytic functions in U ,  B, Q3 for x 3 0, 
Q: < 2mhw,, B > 0. 

We mention several consequences: Firstly, the ground 
state energy E(%,  B) of H is analytic in x and B, for it is 
obtained by taking Q,  = 0 in E(Q). Secondly, ground state 
expectation values are analytical in cx, B, Qj in the quoted 
domain, if the operators of interest are independent of M and 
B. 

We mention some interesting cases, which were discussed 
by Peeters and Devreese [4]: The mean number N of virtual 
phonons in the ground state, defined by 

N = ( d3ka+ (k )a (k ) )  , 

the self induced polaron potential, which is obtained by 
calculating 

Y ( q )  = ( - x ’  * d3k[g(k)a(k) exp (ikq) + h.c.1 , (17) 

the anisotropic polaron radius, whose perpendicular com- 
ponent is given by 

RA = ( ( x * ) ) ’ *  (18) 

Note that in eq. (18) we have taken xZ and not (x2 + y 2 ) / 2  as 
Peeters and Devreese do, since we are working in the Landau 
gauge and not in the symmetrical gauge. Furthermore we 
have used slightly different definitions in order to get a priori 
well defined quantities; we have to take the ground state 
expectation value (. .) in eq. (16)-(18) with respect to H ( 0 )  
i.e., we fixed the conserved components of the total momen- 
tum to be zero. Of course, other definitions are possible. 

Another quantity, which is of interest, is the magnetic 
polaron mass. Peeters and Devreese [3] have defined parallel 
and perpendicular magnetic polaron masses in the aniso- 
tropic Feynman approximation. One way to define a parallel 
magnetic polaron mass m“ is: 

ljm” = d2E(Q)/dQ:ie,o/h2 (19) 

Another possibility to define a cyclotron mass m* (depending 
on a and B) at weak or intermediate magnetic fields is: 

E, (@ - E ( 0 )  = hlejB/(2m*) (20) 

where E,(O)  is the energy of the first excited state i.e., the 
second Landau level. It follows immediately that both masses 
m” and m* are analytical in a and B. 

In view of this results, no dramatic behaviour is expected 
in the oscillator strength and resonance frequencies in the 
magneto-absorption spectrum of a magneto-polaron. 

Finally, we mention that the two-dimensional case d = 2 
can be treated quite analogously. It is even easier, since the 
Q3 -dependence does not occur. Moreover, several branches 
of optical phonons can easily be included into the analyticity 
proof. 

The treatment of acoustical phonons is much more diffi- 
cult, since it is connected with an infrared problem. Then the 
ground state of H(Q)  lies at the bottom of the continuous 
spectrum. It is no longer separated by a gap and the usual 
analytical perturbation theory breaks down. However, we 
believe, this is a technical problem and no indication that the 
true ground state energy may be nonalytical in the usual 
acoustical polaron models. 

3. Finite temperature results (T > 0) 

To take a finite temperature into account, we consider the 
formal free energy F(x ,  B, T )  instead of the ground state 
energy. We prefer the attribute “formal”, as we are not 
dealing with thermodynamics in a strict sense; we are treating 
a one-particle problem. 

F is derivable from a formal partition function Z by 

F(u,  B, T )  = - l//3 - In (Z(a ,  B, T) ) ,  (21) 
where 
Z ( x ,  B, T )  = Tr exp (-/3H(a, B))/Tr exp (-/3H(O, B)) 

with /3 = l / ( k B T ) ,  k, being the Boltzmann constant. Note 
that we have written H ( z ,  B) H. Z is normalized to the 
x = 0 case in order to get a well defined expression. 

The properties of F(a,  B, T )  and Z(a ,  B,  T )  were exten- 
sively discussed by us in [13]. It turns out, that Z is real 
analytic in all parameters x 3 0, B > 0, 0 < T < CO, if the 
expression (22) is well-defined - obviously a very weak 
assumption. (In particular even acoustical dispersions were 
included in contrast to the T = 0 case). The basic method to 
prove this is to represent Z as a functional integral and then 
to expand Z in a power series of x .  The mathematical theorem 
which quarantees such a development is known as dominated 
convergence theorem. Equation (22) is well defined if and 
only if the power series converges. This was explicitly shown 
in [13]. The coefficients are analytical functions in B and /3 for 
B > 0 and 0 < /3 < m and consequently Z and F are 
real analytic in all parameters a ,  B, T for M 3 0, B > 0, 
O < T < x .  

We add an additional remark, concerning thermodynamic 
(temperature dependent) expectation-values. The ground 
state expectation value has now to be replaced by the thermo- 
dynamic average 

(23) 

(22) 

Tr[A exp ( -  PH)I/Tr exp ( -PHI ,  

A being the variable of interest. As utilized by Peeters 
and Devreese [4], such interesting physical quantities as the 
temperature dependent mean-value of virtual phonons, the 
polaron radius and the self-induced potential are represent- 
able as derivatives of Z with respect to certain auxiliary 
parameters. Since Z is also analytic in these auxiliary par- 
ameters and in x ,  B, T,  the thermodynamic averages are 
analytical in a, B, T,  too. 

P h y m a  Scripla 37 



928 B. Gerlach and H. Lowen 

To show the analyticity of the parallel temperature depen- 
dent mass, one has to consider the partition function of the 
momentum decomposed Hamiltonian H(Q). This was not 
studied in [ 131. Therefore, we give here the explicit expression 
and show, that some qualitative properties known from chap- 
ter 2 are also derivable, using this different technique. 

It is convenient to assume firstly a discrete phonon 
momentum space for this approach and optical phonon 
dispersions. We define 

Z(Q, a, 4 TI = Tr ~ X P  (-BH(Q))ITr ~ X P  (-PH(Q)la-o) 
(24) 

Together with H.  Schliffke we derived a functional integral 
expression for 2 for the B = 0 case [19]. For B > 0, this can 
be done analogously leading to (in natural units as in [19], o 
being an arbitrary frequency) 

I 
Z(Q, SI, B, T )  = exp ( - a & [ & ,  z] + iQ,z) \ 

x fl [ I  - exp ( -Phw(k)  + ik,z)]-I 
k 

(25) 
where the average is understood as 

N is the obvious normalization factor such that (1)  = 1. 
So-~O.o,:j d3 R indicates Wiener integration over all paths R(t ) ,  
0 < t Q phw with starting point R(0) = 0 and ending point 
R(/?ho) = (0, 0, z ) .  The actions are explicitly given by 

(27) 

(28) 

So[R] = jO5(lo dt +I?*(t>, 

&[RI = - i jo”””’ dt lelB * I?,(z)R, ( t ) / (mo) ,  

S, [R ,  z] = - +  jd3klg(k)12 jr dt jr d.s exp (-It  - s/ 

+ ik(R(t) - R(s)))  x ( O ( t  - S) 

+ [exp (Pho(k) - ik,z) - I]-’}. (29) 
Using this expression, qualitative properties can be studied in 
the same way as in [18]. For example, the Q,-degeneracy of 
H(Q) is readily seen, since 2 does not depend on Q2. 

The definition of a temperature dependent parallel polaron 
mass “’(a, B, T )  as a natural generalization of eq. (19) leads 
to the following expression 

”’(SI, B, T )  = fihwm(exp (- as, [R ,  z ] ) ) /  

x ( z 2  exp ( -  as, [R ,  4))  (30) 
which is clearly real analytic in a, B and T for a 3 0, B > 0, 
O < T < o o .  

Moreover, expanding the product in eq. (25),  one may 
discuss the position of the continuum edge as in [19]. This 
yields the same result as in Chapter 2. 

We also notice, that the formula (25)-(29) may be the 
starting point for a Monte-Carlo calculation of the free 
energy and the parallel polaron mass. For the zero field case 
this was already done in [19]. 

In this chapter we mention the interesting example of a 
quantum well. 

Quantum-well structures in a magnetic field have gained 
enormous interest during the last years, both experimentally 
and theoretically. In many cases, the magnetic field is posi- 
tioned perpendicular to the layers. In a first approximation, 
we describe the quantum well structure by adding an external 
static attractive potential A V ( z )  to the three-dimensional 
Hamiltonian H, given by (l), A being the extracted potential 
strength, I. > 0. For the sake of definiteness let V ( z )  < 0, 
V ( z )  f 0 and 

( dz V 2 ( z )  < cc (31) 

Note that the electron interacts only with the bulk phonons 
in this description. Now, only the second component of the 
total momentum is conserved and we restrict ourselves to the 
subspace Q, = 0. Of course the Q,-degeneracy is again 
present. Let us compile some spectral properties of this exten- 
ded Hamiltonian; detailed proofs may be found in Ref. [15]. 
By E(a, B, 2) we denote the ground state energy of this 
Hamiltonian. Then there exists a discrete nondegenerate 
ground state with energy 

E(%, B, 1.) Q E(a,  B, 0) + Eo(]-), (32) 
where Eo(A) < 0 is the negative binding energy of the one- 
particle Hamiltonian p:/(2m) + AU(z). The ground state 
and its energy are real analytical in all parameters SI, B, 
A(a 3 0; B, A > 0). Hence, even in this case no discon- 
tinuous stripping transition or another kind of phase tran- 
sition exists. 

The continuum edge of the quantum well Hamiltonian 
begins exactly at the energy 

E, = min[E(r, B, E.) + ho,,, E(%,  B, O)] (33) 

corresponding to either scattering states with one real 
phonon of energy Ao, present or delocalized electronic states 
in the z direction (wo > 0 is the minimum of the phonon 
dispersion, see eq. (5)). 

In the finite temperature case the formal free energy is 
analytical in SI, B, 3. and T,  too ( a  3 0, B,  i ,  T > 0). We 
omit the proof, but refer again to Ref. [15]. 

One may propose also more extended Hamiltonians to 
describe other situations. For example, Chen, Ding and Lin 
[20] describe an interface electron in a half-infinite crystal in 
a mirror-image potential which interacts both with bulk LO 
phonons and with surface optical phonons. Our qualitative 
methods are readily transferred to this case, too. In par- 
ticular, there exists no phase transition as function of the 
coupling parameter, potential strength, magnetic field 
strength or the temperature. 

In conclusion, we have proven the analyticity of the physi- 
cal quantities of magneto-polaron like systems in parameters 
like magnetic field strength, electron-phonon coupling par- 
ameter, temperature etc. This implies that all changes in the 
polaron state are smooth. Nonanalyticities predicted by 
variational calculations are artifacts of the approximation. 

4. Quantum-well structures in a magnetic field 

Our qualitative methods, described in Chapter 2 and 3 ,  are 
relatively general and apply also to other related Hamiltonians. 
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