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Abstract
The dynamics of the freezing transition of the rotator-phase crystal of ethanol
into its orientational glass phase is monitored by measurements of molecular
rotational components in the quasielastic neutron scattering spectrum. It is
shown that phenomena experimentally observed at pico- and nanosecond scales
can be mapped onto those shown by a model of infinitely thin hard needles
rotating about body-centred cubic lattice positions. The basic signatures that
appear on crossing the orientational glass transition are similar in the needle
model and in the neutron scattering data for ethanol. As the model glass
transition is of purely dynamical origin, our findings support the idea that the
glass transition is purely dynamical and is not associated with an underlying
thermodynamic phase transition.

1. Introduction

The nature of the non-equilibrium state produced by rapid cooling of a liquid, i.e. the canonical
liquid–glass transition, remains an elusive question [1]. The transition may either be viewed
as a purely dynamical phenomenon without any associated changes in static quantities [2] or
as a remnant of an underlying thermodynamic phase change [3, 4] which is partially hidden
for kinetic reasons. Arguments in favour of both points of view are partially supported by
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experimental data. On theoretical grounds, both alternatives have also been argued for, using
either microscopic or thermodynamic approaches. Kinetic theories of the mode-coupling
family [2] have been shown to have predictive capabilities concerning essential features of the
micro- and mesoscopic dynamics of deeply supercooled liquids. In contrast, a variety of work
carried out since the mid-1950s [5] at a phenomenological level has been able to rationalize a
vast amount of experimental data. Most approaches are based upon thermodynamic concepts
such as the ‘configurational entropy’ which should vanish at a temperature below the glass-
transition temperature Tg in order to achieve consistency with the observed divergences of
experimentally measurable quantities such as the dielectric relaxation time associated with the
main peak of the dielectric susceptibility.

The main difficulties in evaluating the merits of both approaches concern the wide range
of complex phenomena involved in the glass-transition of a real material, which can hide some
of the features expected to appear as characteristic signatures of the transition. In fact, most
systems where detailed studies can be carried out within the deeply supercooled liquid do
show a rich variety of phenomena such as molecular rotations, i.e. involving orientational
degrees of freedom (ODOF), and/or low-energy vibrations, which are strongly coupled to the
translational dynamics due to the huge viscosity that is characteristic of temperatures near
the glass-transition point Tg. This means that most experimental probes employed for the
study of the dynamics may be sensitive to motion of the ODOF, while most theories deal with
spherical objects executing translational motion only. While some progress has been made in
understanding the effect of such motion on quantities usually employed to study the dynamic
correlations at temperatures close to Tg [6], the question remains as to whether the structural
liquid–glass transition is better understood as a purely dynamical phenomenon or as the result
of the proximity of a random first-order transition as found in mean-field theories and density
functional approaches [7].

The aim of this work is to test whether the glass transition leading from rotator-phase (RP)
crystals to the orientationally disordered (orientational glass, OG) state can be understood as a
purely dynamical crossover. In order to do so, we compare neutron scattering data for ethanol
across the above-mentioned transition with that resulting from a simple, albeit non-trivial,
model [8] which exhibits a purely dynamical crossover but has no static correlations. We find
very similar signatures of the RP −→ OG transition in both cases; this supports the idea that
the transition is a purely dynamical phenomenon.

Our motivation for studying the RP −→ OG transition on ethanol is threefold: first, while
freezing of RP crystals has been studied in a fair number of systems, many details of the
RP −→ OG transition have been clarified recently for ethanol [9, 10]. Second, the presence
of long-range positional periodicity on both sides of the RP −→ OG transition implies that
the melting process is purely rotational (rotation–translation coupling effects are reasonably
small [11]), and can thus be followed by monitoring the neutron quasielastic scattering across
the transition; this is in contrast with the canonical glass transition where the rotational melting
is partially hidden by the emergence of quasielastic intensities from other sources. Third, ethyl
alcohol has the unique feature that it can be prepared in two different phases showing glassy
behaviour at the same temperature, one of these phases having structural disorder (liquid and
glass) and the other having only orientational disorder (RP and OG). In the disordered crystals
the molecular centres of mass sit at the nodes of a body-centred cubic (bcc) lattice [11, 12],
and melting into the RP is signalled by jumps in specific heat [10] and thermal expansiv-
ity. The close proximity of both transitions was also revealed by dielectric spectroscopy [13]
where bothα- and sub-Tg relaxations appear astoundingly close in frequency- and temperature-
dependence. Hence the canonical glass transition seems to be dominated by the freezing of
the ODOF. If there is evidence that the RP −→ OG transition is purely dynamical, the same
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conclusion should apply for the canonical glass transition. Hence our study even sheds new
light on the nature of the structural liquid–glass transition.

Last but not least, interest in clarifying the role of ODOF in glassy dynamics has very
recently been reinvigorated by the finding of a linear term in the specific heat of ethanol below
≈1 K which is basically the same in both glassy phases [14]. In other words, the existence of
an underlying lattice seems to have no effect on the characteristics of the two-level systems
which drive the glassy dynamics within the fully quantum regime.

2. Experimental details

The measurements reported here are somewhat complementary to those already described
involving macroscopic scales as explored by dielectric relaxation [13] and Brillouin light
scattering [15,16]. They were carried out using instruments with frequency windows around the
meV range (to explore motions of the order of a picosecond) and around theµeV range (motions
within the nanosecond scale). The instrument chosen to explore the former was the QENS
inverted-geometry inelastic scattering spectrometer hosted by the IPNS (intense pulsed neutron
source), while for the measurements carried out at µeV resolution the backscattering machine
IN16 of the Institut Laue Langevin, Grenoble (France) was used. The achieved instrumental
resolution at QENS was of the order of 90 µeV whereas that of IN16 was about 1 and 0.8 µeV
for two different spectrometer settings, having energy transfer ranges up to ±16 and ±6 µeV
respectively. Sample preparation and the general conditions of the experiment have been
described a number of times [9,10,13] and basically involve annealing the deeply supercooled
liquid until the strong (100) Bragg reflections of the bcc structure fully develop and no hint of
the liquid main peak centred at Q ≈ 1.7 Å−1 remains in diffractograms collected at intervals of
a few minutes. Fully deuterated (CD3CD2OD) and partially deuterated (CD3CD2OH) samples
have been employed in the measurements. Although the presence of a sizeable coherent cross
section complicates the analysis in terms of the simplest (incoherent) approximation, the use
of partially deuterated samples is dictated by the need to monitor the state of the sample during
annealing, which is done by direct inspection of the diffraction pattern.

Measurements carried out at QENS (upper frame) and IN16 (lower frame) revealed the
presence of quasielastic broadening of the order of 0.3 meV and 4 µeV respectively as can
be gauged from the spectra shown in figure 1. Spectra at a temperature below (left frame)
and above (right frame) the glass transition for each instrument are shown in figure 1. A
comparison of the spectra in the two columns shows that the increase in temperature leads to
a concomitant increase in both quasielastic intensity and broadening.

Under the assumption that the movements within the two different frequency windows
explored by the experiments correspond to just one kind of motion (which is supported by the
results of computer simulations), the measured spectra were modelled in terms of an elastic
δ-like peak plus a quasielastic component (convolved with the instrument resolution)

S(Q,ω) =
(
Iquasi(Q)

π

�(Q)/2

ω2 + (�(Q)/2)2
+ Iel(Q)δ(ω)

)
⊗ R(Q,ω) (1)

where Iel and Iquasi are the elastic and quasielastic contributions respectively, �/2 is the
quasielastic half-width and R(Q,ω) is the instrumental resolution.

It was found that the sets of data measured at both scales (µeV and meV) are affected
by the finite range of achievable energy transfers, especially at the higher temperatures where
the Lorentzian tails have not fully decayed. This would result in a underestimation of the
linewidth which would become more severe as the temperature is increased. To remedy this,
the experimental lineshapes were fitted introducing a constraint that accounts for the finite
value of the maximum energy transfers. Details of the formal procedure of the fitting analysis
can be found in [17]. The different contributions to the spectra are shown in figure 1.
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Figure 1. Spectra as measured on both QENS and IN16 spectrometers. Model fits are shown by thin
solid curves. Dashed and thick full curves correspond to the elastic and quasielastic components
respectively.

3. The hard needles model

In the quest for physically simple models which exhibit a purely dynamical glass transition,
dense systems of compact impenetrable (hard) bodies are well known benchmarks where the
rich physics of supercooled liquids can be investigated in great detail by means of computer
simulations. For molecular materials, primitive models for such systems are derived by
deformation of hard spheres towards hard ellipsoids of revolution. They are characterized
by the diameter of the minor axes as well as the aspect ratio �. The dynamics of a rotator
crystal composed of such bodies is now starting to be investigated [18] within the context of
the molecular mode coupling theory (MMCT). In the absence of a more realistic model we
choose to compare our experimental results with those provided by a model of hard infinitely
thin needles on a lattice as developed by Renner et al [8]. The system comprises a set of
hard needles that have their centres of mass located at the sites of a cubic lattice and execute
free rotations between elastic collisions. The only control parameter is the ratio � = L/a of
the needle length L to the lattice constant a [19]. Since the excluded volume of the needles
is zero, all the static properties of the model are trivial (i.e. there are no static correlations).
However, its transport and dynamical properties are highly non-trivial and exhibit a strong
dependence on �.

The dynamics of this a model is investigated by computer simulations. We consider a
system of N = 432 infinitely thin needles with a homogeneous linear mass density m/L,
whose centre of mass coordinates are fixed onto a bcc lattice in a periodically repeated cubic
simulation box (figure 2). We took a bcc crystal in order to incorporate the ethanol lattice
structure in the RP. The original algorithm employed by Renner et al [8] is employed for the
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Figure 2. Unit cell of the system of hard needles sitting on the nodes of a bcc lattice.

calculation of the needle trajectories. It involves the solution of a transcendental equation
at each simulation step, a process which becomes highly involved computationally for large
values of �.

From the calculated trajectories of the needles one calculates the time-autocorrelation
function for the needle orientations defined as

�1(t) =
〈

1

N

N∑
i=1

�ui(0) · �ui(t)

〉
(2)

where the angular brackets denote the canonical average and �ui(t) is the time-dependent
trajectory of the unit vector describing the orientation of the ith needle. We explored the range
1.0 � � � 5.0. The system was left to evolve over a long time corresponding to 106 collisions.

Figure 3 shows the time-autocorrelation function for different ratios of the needle length
to the lattice parameter, � = L/a. As � increases, the relaxation of �1(t) becomes more and
more sluggish, and for � ∼ 3.4 the autocorrelation is almost blocked on the timescale explored
in the simulation. For � = 4.5 the orientational autocorrelation is almost equal to unity which
corresponds to orientations becoming frozen within a very narrow solid angle.

4. Experimental observations

The shape of all measured spectra conforms to that shown in figure 1. Both at meV and µeV
scales it shows a strong elastic (resolution limited) component plus a quasielastic contribution
which can be seen by the naked eye. A sample of the temperature dependence of the quasielastic
linewidths for two representative values of the momentum transfer Q is shown in figure 4. No
significant dependences were found for other explored Q values. Apart from details arising
from the rather different frequency windows and scattering power of the two spectrometers, the
same dependence is observed, showing that broadening of the quasielastic spectrum increases
as the rotational melting transition is crossed.

The assignment of the observed broadenings to aspects of the underlying microscopic
motion requires the use of a model to represent the dynamics. On symmetry grounds, one
expects that its basic features are encompassed within a formalism describing molecular
reorientations about the [100], [110] and [111] axes of a cubic lattice [20]. It predicts a
neutron scattering law given in terms of four classes of molecular rotations with jump rates τ−1

j ,
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Figure 3. Orientational autocorrelation function �1(t) versus reduced time t/τ for different ratios
� = L/a.

j = 1 . . . 4. The timescale of two of these rates is set by the spectral linewidths measured with
both instruments. However, their assignment to specific types of motion requires additional
information from some other source. To this effect, we have carried out molecular dynamics
simulations in the NPT ensemble (the cell shape is allowed to fluctuate) using a realistic
model potential for the microscopic interactions [17]. The results of such an endeavour were
gratifying, since (a) the equilibrium lattice structure is reproduced, (b) freezing of rotational
motion occurs below 100 K and (c) the crystal structure becomes unstable above 120 K,
which is quite close to the experimental value. From analysis of the computed trajectories,
it was found that molecules will reorient between some 24 preferred orientations with vastly
different rates. Reorientations leaving the most preferred orientations (C–O bond along the
[001] direction and C–C bond close to [111̄], and those related by symmetry) unaffected were
found to take place within the picosecond scale, whereas far more infrequent jumps occurring
within scales of hundreds of picosecond were also found. The calculated intermediate dynamic
structure factor FMD(Q, t) showed strong deviations from exponential behaviour and, in fact,
four different exponential decays were needed to fully account for its shape. The jump rates
τ−1
j estimated in this way were found to be well separated in time. Two of the decays were

found to be within the frequency windows covered by the experiments and therefore we identify
the observed relaxations with the two classes of motion described above.

Apart from the variation with temperature of the linewidth, the RP−→OG transition is also
indicated by an increase with temperature of the quasielastic intensity and a concomitant de-
crease of the elastic peak, as can be seen in figure 5. In this figure the temperature dependences
of the elastic and quasielastic intensities are shown, and as seen there the transition is nicely
correlated with the transfer of spectral intensity from elastic to quasi- (or inelastic) scattering,
showing very similar characteristics for both frequency windows (meV and µeV scales).

From the data given above it is seen that molecular rotations occur in the RP crystal
on pico- and nanosecond scales at temperatures where the main α-relaxation explored by
dielectric spectroscopy [13] already reaches macroscopic relaxation times. Well below 80 K
rotational freezing seems complete, and all the molecular DOF which are thermally excited
will contribute to the spectrum as inelastic (i.e. finite-frequency) signals [10]. This is in very
good agreement with specific heat data [10] which also show that the extent in temperature of
the transition is quite comparable with that shown by the present data (i.e. about 18 K).
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Figure 4. (a) Temperature dependence of the quasielastic linewidth as measured on the QENS
(filled symbols) and IN16 (open symbols) spectrometers. (b) Variation of the width of �(ω) as
calculated from the results for a system of hard needles. The inset shows data in the µeV range on
a semi-logarithmic plot.

5. Discussion: comparing the dynamics of hard needles with experiment

The first obvious difficulty in relating the results concerning the dynamics of hard needles to
experiment regards the athermal nature of the model. In other words, one needs to establish a
link between the control parameters of the simulation (� = L/a) and those of the experiment,
i.e. the temperature.

5.1. Estimation of the microscopic timescale, τ

Since in the needle model the microscopic timescale is set by the time τ ≡
√
mL2/24kBT ,

the link between the ratio � = L/a and the timescale is established directly. If we identify
the moment of inertia of the needles J = mL2/12 with the principal moment of inertia of an
ethanol molecule (J = 0.741 × 10−45 kg m2), we obtain that the timescale τ is of the order of
1 ps at T = 100 K and this sets the timescale.
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intensities across the RP −→ OG transition measured on the QENS spectrometer. (b) The same
data measured on IN16. (c) Results from the hard needles model: contributions from �(ω) to
the elastic (solid) and quasielastic (open symbols) frequency windows, for the resolution width
�ωR = 90 µeV, plotted against the equivalent temperature T ∗. The inset shows data for the
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5.2. Equivalent temperature of the simulation, T ∗

In order to establish a mapping between � and T , we start by considering the number of
neighbours for one needle for which collisions are in principle possible as a ‘connectivity’

Nc 
∫

dr3ρ  4π

3
L3 2

a3
= 8π

3
�3 (3)
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where the integral is to be taken over a sphere of radius L. One estimates that the inverse
connectivity should be proportional to a Boltzmann factor, and since Nc ∝ �3 this leads us to
define the inverse of the effective ratio 1/� as the Boltzmann factor8

1/� = A exp (−E/kBT ). (4)

Clearly the limit � → ∞ corresponds to zero temperature. The two free constants, namely
the amplitude A and the energy scale E, are determined as follows:

(a) First we recall that if the needle length is smaller than the nearest neighbour distance
√

3a/2
the needles are non-interacting free rotators which corresponds to infinite temperature and
sets the amplitude A = 2/

√
3 = 1/�0.

(b) Second, the activation energy E should correspond to the experimental glass-transition
temperature such that E = kBTg.

Taking into account these two conditions, the translation of temperatures in the experiment
into effective ratios � of our model is given by

� = �0 exp(Tg/T
∗) (5)

where �0 = √
3/2. With this relationship, and once the glass-transition temperature is known

(in this case Tg ∼ 100 K), all the simulation results can be shown as a function of the equivalent
temperature T ∗.

More refined mappings can also be justified. In particular, a nearly perfect match of the
glass-transition temperatures of experiment and simulation is achieved if the characteristic
energy is defined as E = kBTg ln[(8/3

√
3)�g] with �g being the aspect ratio at the midpoint of

the freezing transition of the needle motion.

5.3. Comparison of the needle model with quasielastic neutron scattering results

To perform a meaningful comparison of experiment and model results one needs to follow
the same steps. In other words one has to account for the finite instrumental resolution
corresponding to both experiments. This has to be done by separating the spectrum into
different contributions (elastic and quasielastic). This becomes a prerequisite since motions
slower than a characteristic timescale for the lower-resolution instrument, QENS, will appear
as a contribution to the elastic intensity on IN16, whereas fast motions detectable on QENS
will only contribute as a flat background on the higher-resolution instrument, IN16.

5.3.1. Choice of the resolution function Fres(t). As explained above, the experiments on
quasielastic neutron scattering were carried out using two different instruments, QENS and
IN16, having very different instrumental resolutions. This means that the choice of the
resolution function must be made depending on the frequency scale considered. The resolution
functions for both instruments show a lineshape close to a Lorentzian function in frequency
space which gives rise to exponential functions in the temporal representation

Fres(t) = e−t/τ (6)

or

F(Fres(t)) = F̃res(ω) = �ωR

ω2 + �ω2
R

. (7)

With these equations Fres is determined from the half-width of the measured instrumental
response functions (these quantities are available from the instrument characteristics), and the
relevant figures are given below.
8 A more elaborate mapping is known for hard spheres where the effective diameter is also taken as an averaged
Boltzmann factor in order to match the second virial coefficient, see e.g. [21].
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5.3.2. Extrapolation of �1(t) to long times. As shown in figure 3, for values of � = 2.9 and
above the autocorrelation function has not decayed completely in the available time window.
So in order to perform Fourier transforms which avoid high-frequency truncation ripples, the
function �1(t) was extrapolated to long times with the von Schweidler function [2]. Choosing
a different extrapolation scheme such as the Kolrausch law gave rather similar results. Before
separating the different contributions of the spectrum (elastic and quasielastic) it was necessary
to convolve �1(t) with the experimental resolution.

5.3.3. Convolution with the experimental resolution. In order to perform the convolution we
use the following property: if

F̃res =
∫ ∞

0
e−iωtFres(t) dt (8)

and

�̃1(ω) =
∫ ∞

0
e−iωt�1(t) dt (9)

are the Fourier transforms of Fres(t) and �1(t) respectively, then the Fourier transform of
Fres(t)×�1(t) is the convolution of F̃res(ω) and �̃1(ω). Taking into account that the resolution
functions are exponentials with time decays given in table 1 and in order to simplify the analysis,
we introduce the new function �(t)

�(t) = �1(t)e
−t/τ . (10)

An example of the steps followed is provided in figure 6 which shows data for � = 3.2
compared with results measured on QENS.

5.3.4. Separation of the different contributions. The Fourier transform of �(t), denoted
by �(ω), can now be split into elastic and quasielastic contributions depending upon the
experimental resolution �ωR affecting the target experimental data. As pointed out above, the
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Table 1. Values of the experimental resolution.

Instrument �ωR (HWHM) (µeV) τ (ps)

QENS 45 91.9
IN16 0.5 8271.3

elastic contribution was considered as the contribution to �(ω) from frequencies below the
resolution, and the quasielastic one as the contribution from frequencies above (figure 7).

The width and the amplitude of the quasielastic part were determined afterwards. The
results for the widths are given in figure 4 and those for the intensity ratios in figure 5. Note
that the simulation data are always expressed in terms of temperature via the translation
given above. One clearly sees a kink in the quasielastic intensity (a change in slope) both
in the experimental data and in the transformed needle model data. This kink is observed at
temperatures of about 97 K for the experimental results (figures 5(a) and (b)) and of about 75 K
for the ones from the model (figure 5(c)). This is a clearcut fingerprint of the orientational glass
transition. As is expected, since the total intensity must be constant (100%), the elastic intensity
exhibits a similar kink. The differences between experiment and model concern the relative
magnitudes of changes in elastic and quasielastic intensities as well as the absolute values
of the linewidths. Whereas the experiment contains a strong elastic scattering component
arising from the presence of a well defined crystal structure having translational DOF, such a
contribution is obviously absent in the model which, by construction, shows no strictly elastic
component. The relative widths of the crossovers are about 30 K in the experiments and
≈70 K for the needle model, a difference expected from the absence in the latter case of a
true interaction potential. The effective widths of the quasielastic spectra of both model and
experiment shown in figure 4 exhibit crossovers at the same temperatures where the kinks in the
intensities appear in figure 5. This provides compelling evidence that the essential signatures
of the orientational glass transition can be understood from a purely dynamical model.
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6. Conclusions

In conclusion, we have shown that the essential features of the neutron scattering data near the
orientational glass transition can be understood in terms of a purely dynamical phenomenon.
The fingerprints of the transition as revealed by a kink in the inelastic scattering are very
similar in the experiment and in the model. The implications of such an analogy in dynamical
behaviour can, in the light of previous data, to a large extent be applied to the canonical
glass/liquid transition, inasmuch as the latter must carry a large rotational component (in fact,
the jump in specific heat at the glass and OG −→ RP transitions corresponds to an activaction
of ≈2.8 DOF in the latter and about 3.7 in the former, the extra degree surely assignable
to translational motions). In consequence, the scenario of a transition of purely dynamical
origin accounts for most of the observed signatures of the glass transition which, put into real
numbers, amounts to a difference of about 20% of the jump in specific heat, an even smaller
difference in the low-frequency spectra and low-temperature properties, and a close proximity
in the case of macroscopic relaxations.

Finally, the results described in this paper are also consistent with the recent simulation
data reported by Affouard and Descamps [22] for a primitive model of chloroadamantane,
another orientationally disordered crystal. Their results indicate behaviour which seems to
conform to predictions made on the basis of the idealized version of the mode-coupling theory.

Acknowledgments

Work supported in part by the US Department of Energy, Basic Energy Sciences–
Materials Sciences, under Contract W-31-109-ENG-38 and DGICYT (Spain) grant
no PB98-0673-c02-01.

References

[1] Gutzow I and Schmelzer J 1995 The Vitreous State (Berlin: Springer) p 287
[2] Götze W 1991 Liquids, Freezing and Glass Transition ed J P Hansen et al (Amsterdam: North-Holland)

Götze W 1999 J. Phys.: Condens. Matter 11 A1
[3] Sethna J P, Shore J D and Huang M 1991 Phys. Rev. B 44 4943
[4] Bletry J 1996 Z. Naturf. A 51 87
[5] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139

Bestul A B and Chang S S 1994 J. Chem. Phys. 40 3731
Xia X and Wolynes P G 2001 Phys. Rev. Lett. 86 5526

[6] Schilling R and Scheidsteger T 1997 Phys. Rev. E 56 2932
Winkler A et al 2000 Phys. Rev. E 62 8004
Theenhaus T et al 2001 Preprint cond-mat/0105393

[7] Mezard M and Parisi G 1999 Phys. Rev. Lett. 82 747
Dasgupta C and Valls O T 1999 Phys. Rev. E 59 3123
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Jiménez-Ruiz M, González M A, Bermejo F J, Miller M A, Birge N O, Cendoya I and Alegrı́a A 1999 Phys.
Rev. B 59 9155



Glassy dynamics of a kinetically constrained model: a direct comparison with experiment 1521

[14] Talón C, Ramos M A, Vieira S, Shmytko I, Afonikova N, Criado A, Madariaga G and Bermejo F J 2001
J. Non-Cryst. Solids 287 226
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