‘hich leads to direct experimental observations. Third, colloids can be confined in a
iell-controlled way which gives rise to new fascinating phenomena.

. Jf the colloidal particles are sterically stabilized against coagulation, the “softness”
f_'the interparticle repulsion is governed by the length of the polymer chains grafted
ato the colloidal surface and their surface grafting density. Computer simulations (35)
nd theory (6) have revealed that a fluid freezes into a body-centred-cubic (bec) crystal
soft repulsions and into a face-centred-cubic (fec) crystal for strong repulsions. This
as confirmed in experiments on sterically-stabilized colloidal particles (7). A similar
ehaviour occurs for charge-stabilized suspensions where the “softness” of V(r) is now
ontrolled by the concentration of added salt (8). Less common effects were observed
br-..potentiais involving an attractive part aside from a repulsive core as induced, e.g.,
v added non-adsorbing polymer coils. In reducing the range of the attraction, a van-
shing liquid phase could be observed (9) and an isostructural solid-solid transition was
redicted for an extremely short-ranged attraction (10).

. In the present paper we review recent work concerning unexpected phase behaviour
or peculiar pair potentials which are realized for colloidal suspensions and star poly-
iner solutions. We first discuss sterically-stabilized colloids between two parallel glass
jlates modelled by hard spheres confined between two hard walls. A rich phase dia-
-ram including different layering transitions is obtained. Then we investigate the phase
chaviour of a very soft potential diverging logarithmically with distance r at the ori-
sin. This potential is realized for star polymers in the scaling regime. We then exploit
ihe full tunability of colloidal interactions in order to predict stable one-component gua-
icrystals for interactions which possess both attractive and repulsive parts as realized
¢ index-matched charged suspensions with added non-adsorbing polymers. Finally we
how that the phase diagram of the rod-like tobacco-mosaic-virus exhibits different lig-
tid crystalline phases with a re-entrant nematic transition. The theoretical tools used to
calcnlate the phase behaviour are computer simulations, density functional theory, liquid
ntegral equations and solid cell models.
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Abstract. We review recent work on fluid-solid and solid-sokd phase transitions in soft
nr?atter‘ systems such as colloidal suspensions and star polymer solutions. Starting from a
given interparticle pair potential we predict the comresponding phase diagrams using com-
puter simulations, cell theory, and density functional theory. When possible, the results are
compared with experimental data. In particular, we discuss the following ;spects;' a cas-
cade of freezing transitions for confined colloids, stable one-compaonent quasicrys-ta]s for
charged colloids, reentrant melting and anisotropic solid phases for star polymer solutions
and reenirant nematic ordering for suspensions of the tobacco-mosaic virus,

PACS: 64.70.-p, 82.70.Dd, 61.25.Hq

L INTRODUCTION

One pf the major challenges in statistical physics is to understand and predict the macro-
scopic phase behaviour for different temperatures and densities from a microsconic
many—body theory provided the interaction between the particles is known (1, 2) TyI: <
ically thi‘s interaction is specified in terms of a radially symmetric pair poteritia‘l V(E)
_where r is the particle separation. Important progress was made during the last decadés
in predicting the thermodynamically stable phases for simple inter-molecular pair poten-
t;als, such as Lennard-Jones-systems, plasmas or hard spheres, using computer simuf'a'.v
tions (1) and classical density functional theory of freezing (3). An important realization
of classical many-body systems are suspensions of mesoscopic-sized colloidal particles:
dispetsed in a fluid medium. Colloidal samples have quite a number of advantages over
molecjular ones: First, their effective pair interaction V(r) is eminently tunable through
expenm@tal control of particle and solvent properties (4). This brings about more ex:
treme pair interactions than the molecular ones leading to novel phase transformationé.:
Second, colloidal suspensions can be studied in real space by, e.g., video-microscopy

II. FREEZING IN CONFINING GEOMETRY

The model we discuss here consists of hard spheres of diameter ¢ confined between
two parallel plates of distance H. The thermostatistical properties in equilibrium depend
solely on two parameters, namely the reduced density py = No® /(AH) (where N is the
mumber of spheres and A the system area) and the reduced plate distance h = H/c — 1.
.C%eaﬂy one can continuously interpolate between two and three spatial dimensions by
tuning the plate distance: For H = g, our model reduces to that of two-dimensional hard
scs while for H — o= the three-dimensional bulk case is recovered.
" The equilibrium phase diagram as obtained by Monte-Carlo computer sitnulation in
the py — h-plane (11, 12) is shown in Fig. 1 for moderate plate distances 4. The phase
ehaviour is very rich and much more complicated than in the bulk. Cascades of different
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soi‘id—solid transitions are found. For low densities the stable phase is an inhomogen,
fluid. All possible stable solid phases are also realized as close-packed confi gra: Ous
F13, 1%) fqr a certain plate distance. Accordingly one finds stable layered sét{;luct:lon%
involving intersecting triangular lattices (1A, 2A) and intersecting square lattices (2[?S
Also a buckled phase (&) and a phase with a thombic elementary cell (thombic ph )
{r)) are stable. All transitions are first-order, cPe
Similar phases were found in experiments of highly salted charged colloids betw. o
glass plates (15-17). Here even higher reduced plate distances were studied Thzml
is comp?:lling evidence that a prism-phase consisting of alternating prisms buiit 1 l;b
spheres is the close-packed configuration in certain domains of (17). Still a full qf;a -

titative mapping of the experimental data onto the theoretical i i
to be erfarmes ical phase digram of Fig. 71 h

ssting to do a density functional calculation e.g. with Rosenfeld’s functional which pos-
sesses the correct geometry excluding configurations of overlapping spheres (18). Sec-
ond, one should investigate different confining shapes. Intriguing examples are circlar
and polyhedral boundaries in two dimensions. Studies have been made for confined hard
discs (19) and for magnetic colloids in several geometries (20). Third, similar layering
transitions occur for charged systems, such as confined electrons (21) or plasma sheets
(22). We also note that one should investigate in more detail the stability of phases with
long-range orientational order decaying algebraically for large distances. Apart from the
well-known hexatic phase also conceivable are “tetratic” or “duatic” phases, where four-
fold and twofold symmetry, respectively, persists over large distances. Finally there is a
mathematical proof for the close packed structure for small b, h < V2 /2 (23) comprising
the 1A, b and 20) phase. A proof for higher 4 is still lacking, however. Related recent
work has focused on a rigorous proof in the three-dimensional butk (24) or for different
confinements {25).

1 . : o ‘ —
] | T NN
/a?%’\“'-‘}-. S \\\ |
0.8y yar e st 1T1. PHASE TRANSITIONS IN STAR POLYMER SOLUTIONS
B HE-- B . .,’4& ‘ A
0.6} H A,A—f"‘/ e : A star polymers consists of f linear polymer chains that are attached to a common
. 3,\3; b i

‘microscopic core (26). The typical extension of such a star in a good solvent is governed

0.4 Ny / , 1 y the so-called corona diameter o, which measures the spatial extension of the monomer
= &\& | forbidden | ‘density around a single star. In a concentrated solution with a finite star number density

i N _ \\ 1 p, the stars are interacting. The interaction is repulsive due to the restriction of allowed
0.2- . \%n}a N ] configurations for the polymer chains from different centers. In a first approximation,
i fluid : the interaction is pairwise. An explicit form for the pair potential V{r} was proposed

0 , RS recently: it consists of an ultrasoft part inside the coronae and falls off cxponentially

0.6 0.8 "p"- 1 ' 1' 5 ‘With core-core distance r outside the coronae of two stars. In detail,
H

TP -0+ rhp|  forr<o

Vir)= e
ks T f32 H\C/ST/Z exp{ ﬂgf 929 forr >0

(1)

FIGURE 1: Phase diagram for hard spheres of reduced density py between parallel plates with effér;'

tive reduced distance h. Syml?ols indicate different system sizes: N = 192(+);N = 384 512(e);N =
576(A); N = 1024, 1156(01). Six phases occur (fluid, 1A, &, 207, r and 2A) . The closed-p;cked de,ns'i'

is marked by a dashed line, Solid lines are guides to the eye. Thin hori i i
coexistonce, Erom Refs, (11, 12) he eye. Thin horizontal lines represent lwo—pl?gs_:

ere kgT is the thermal energy and f is the arm numiber of a single star. As the ef-
: _fcctive interaction is purely entropic, it simply scales with the thermal energy. There
_are many facts confirming that this pair potential [Equation (1)] provides for a reason-
ble description of the effective interaction between the stars: (i) The behaviour for very
mall r (r << ©) is consistent with scaling theory (27,28). (ii) Microscopic Molecular
Dynarnics computer simulations have been performed for several values of f and dif-
erent monomer numbers per chains (29). They reproduce perfectly the overall shape of
the effective interaction. (iii) The scatiering intensity for small-angle neutron scatiering
data could be well-described by this pair potential without any fitting parameter for an
18-arm star (28, 30).

Let us comment on further related aspects of the model: First i i per
! : First it would be nice to per

form a full theoretical calculation for the phase diagram of hard spheres between Ife
plates. It was already shown that a solid cell theory combined with a simple fluid state
free energy gives the same topology of the phase behaviour (11, 12). It would be inter



an (34). We finally remark that the interaction depends sensitively on the solvent
sality and on the nature of polymer chains adsorbed onto the core. For a poor solvent
& to the so-called © conditions the potential has a completely different form (35). If a
yelectrolyte such as gelatin is adsorbed instead of a neutral chain, again the effective
raction changes completely (36).

Based on Monte-~Carlo computer simulations for the pair potentjal (1), the phase dj
gram of star polymer solutions was calculated recently (31). In the plane spanned byt
reduced density | = anS/ 8 and the inverse arm number 1/f the results are displayed

Fig. 2.

f f
0.03 34 IV. COLLOIDAL QUASICRYSTALS
40
0.02 48 We now consider a perhaps more “exotic” interaction which is, however, actually re-
szed in colloidal suspensions. Colloidal particles that are charged, sterically stabilized
64 “adsorbed polymer brushes, and mixed in solution with non-adsorbing polymer coils
0.01 + 96 ibit an effective interaction that can be widely varied via the particle charge and the
smotic pressure of the added polymer coils. The total potential V(r) = V1{r) + Va(r} +
0.00 (r) consists of three parts: Vi(r) is a hard-sphere potential which forbids overlaps of

— : ; : : : . ; f di ter 6. The colleidal ch 1ts 1 ffective screened Coulomb
00 02 04 06 08 10 12 14 .._o sp‘hereso lameter e colioidal charge results in an effecti
n pulsion

7% [exp(xc/2)]7 exp(—«r)
Valr) = € [1-}-1{0/2] ¥ @)

ere, e is the elementary charge, Z is the total colloidal charge number, £ is the dielectric
onstant of the solvent, and the inverse Debye-Hiickel screening length x is defined
% = +/4ne’Zp/ekgT (1 —m). Finally the added polymer gives rise to a depletion
ttraction which can be modelled by the Asakura-Oosawa expression (37)

3x 1/ x \°
Valr) = ¢ 1“2(1+€)+5(1+&) 3

ere x = +/0, &= 2R§ /o where R, is the radius of gyration of the polymer coils, and
n/6)I1,6°(1+&)”. The physical meaning of IT, is the osmotic pressure of the
dded polymer which can be controlled and varied by the pelymer concentration. For
sropriate parameters, the total potential V (r) has a repulsive hard core, then becomes
active as r grows, and finally changes to repulsive at longer range. Hence the stability
f solid phases depends sensitively on the range of the attraction. At a given colloidal
umber density p, a soid structure is energetically favourable if the nearest neighbours
Xperience the minimum in the potential,
- A detailed survey of possible solid structures has been performed in Ref. (38). A
nsity-functional-perturbation study has revealed that for an attraction of range roughly
10— 30% of ¢ and depth a few a few kzT units a quasicrystalline structure can be stabi-
ed. This result was obtained by comparing the free energies of a rational approximant
model of an icosahedral quasicrystal to those of the common crystalline structures. A

FIGURE 2: The phase diagram of star polymer solutions for different arm numbers  versus redu

c%ensity N. The squares are the results from computer simiation and mark coexistence conditions.3--'fh
lines are a guide to the eye. S

Remarkably, there is no freezing below a critical arm number fe =34, For f >
there is freezing, with increasing density, into a bec lattice, which then remelts u
further compression. This is in accordance with an earlier qualitative analysis of Wit
et al. (32) For higher arm numbers, freezing into an fec lattice occurs, since the potenti;
is becoming steeper as f is increasing. For higher densities, however, there are ]
common solid structures: an anisotropic body-centered orthogonal phase as well as
diamond lattice become stable. This is the first time that such crystal structures hi
been determined to be stable for radial symmetric pair potentials. Obviously this is
to the ultrasoft core together with the crossover at distances comparable to the coro
diameter of the stars (31). A very peculiar behaviour occurs for intermediate arm numnibe
[ 48: Increasing the density, the system first freezes, then remelts, then refreezes. St
behaviour also has been found experimentally in spherical diblock copolymer mi¢
by Gast and coworkers (33).

Apart from the full experimental verification of the phase diagram, there is still'th
theoretical question about the relevance of triplet and other many-body interactions
higher densities. Recent calculations, based on scaling theory and computer simulatis
have shown, however, that the triplet contributions are enly 11% of the pairwise inter

—




phase diagram is shown in Fig. 3, which illustrates that above a threshold polymer pre
sure the liquid-solid transition is characterized by first-order freezing into a quasicry,
tafline structure. It has to be emphasized that this is a one-component guasicrystallig
lattice of colloidal spheres. This has never been seen to be stable in atomic systems b
may be realized for colloidal suspensions. The relevant range of polymer pressures IT
is high but not completely beyond experimental realization. A computer simulation that

would test the prediction of the approximate theory and ultimate experimental verific
tion of this fascinating phase still lie ahead.

jarticles. A suitable description of these interactions which was proved by “ab initio”
"'mputer simulations (39) is 2 Yukawa segment model. In this model one splits the rod
harge into a number of N; point charges along the rod. Each point charge interacts with
ie point charge of another neighbouring rod by a screened Coulomb potential as given
n Equation (2) where now & denotes the cylindrical diameter of the rods and the inverse
ebye-Hiickel screening length is

dme? (Zp + 2ny)
il el 7 4
ekpT ’ “)

hich is somewhat more general including additional screening from added salt ions, #;
enoting the concentration of monovalent added salt.

240 Pl
= 200
S
ba 220
=
200

ng [mmol/1]

FIGURE 4: Phase diagram of the TMV; the coexistence densities in units of E;fw are plotted versus the

oncentration n; of added monovalent salt. The grey area marks the coexistence region. There is a stable

sotropic phase (F), nematic phase (N), smectic A phase (Sm), and two different crystalline structures with
AAA and ABC stacking. From Ref. (43). -

FIGURE 3: Phase diagram of polymer osmotic pressure versus reduced macroion density pa® fo
coltoid-polymer mixture interacting via pair potential V(r) as given in section IV. Horizontal tie B
connect corresponding points on coexistence curves. The parameters are; ¢ = 50 nm, Z = 150, Ry/ e
0.125, T = 297K, £ =78, From Ref. (38).

In order to predict the phase diagram theoretically, one needs the Helmhoitz free
nergy in all possible phases. We anticipate here the occurence of liquid-crystalline
hases, as nematic, smectic and columnar phases. If the cell-model for the solid part is
ombined with scaled particle theory for the fluid part, one is able to construct a sim-
le theory for hard spherocylinders (40,41) which works remarkably well for the phase

agram if compared to computer simulations (42). The further idea is to split the full
Yukawa-segment interaction into a short-ranged part which is mapped onto an effective

V._ TOBACCO MOSAIC VIRUS (TMYV) SUSPENSIONS

The tobacco mosaic virus (TMV) is a rigid rod-like particle with a length !,’TMVI
300mm and a diameter of 18#sm. In aqueous solution, concentrated suspensions of TH
particles interact via a repulsive screened electrostatic interaction since they are charg



hard spherocylinder interaction and treat the rest in mean-field perturbation theory (43):
The resulting phase diagram for TMV solution is shown in Fig. 4. We have taken a bara
rod charge of Z = 390 and a number of N; = 17 segments per rod. The phase diagram is
plotted as a function of rod and added salt concentration. A variety of liquid crystalline
phases is stable including nematic, smectic A and two fully crystalline phases with AA
and ABC stacking sequence. For fixed rod density, a nematic reentrant transition occurs
upon increasing the concentration of added salt. The phase diagram compares quahta-
tively well with experimental data as discussed in detail in Ref. (43). It would be inte
esting to calculate the phase diagram by computer simulation in order to check whether
the nematic reentrant transition is real or an artifact of the approximations.

CONCLUSIONS

In conclusion, colloidal suspensions are ideal model systems to study phase trans-
formations. Since their effective interactions are tunable and their confinement is well=
controlled, a wealth of novel phase transitions can be observed. It is remarkable that
most of the progress in this field has been induced by a fruitful collaboration between
experiment, computer simulations and experiment. Taking this for granted, we hope that
the theoretical phase diagrams discussed in this paper can be verified (or disproved) in
actual samples and that further interesting phases will be found which both enhance our
fundamental understanding of mesoscopic matter and lead to new exciting application
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