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Abstract 

Different physical mechanisms leading to phase separation in colloidal fluids are reviewed. 
Phase separation into two fluid phases can be induced by (a) the long-ranged van der Waals 
attraction between the colloidal spheres, (b) counterion overscreening, (c) added polymer (d) 
depletion effects of the solvent, (e) a solvent phase transition. If a strong short-range attraction 
between the colloidal spheres is present, phase separation occurs into two isostructural solid 
colloidal phases. 

PACS: 82.70.Dd 

1. Introduction 

Phase separation from a homogeneous fluid phase into a gas-like and a liquid-like 
homogeneous phase possessing two different densities is most commonly known for 
classical fluids whose pairwise interaction has an attractive part. The most prominent 
example is a three-dimensional Lennard-Jones system. Its phase diagram exhibits a fcc- 
solid, a liquid and gas phase [1], see Fig. 1. Above the critical temperature T~., only 
one fluid phase is stable. If  the system is rapidly cooled down into the coexistence 
region below ~ ,  the system starts to decompose into the two stable gaseous and liquid 

phases until two macroscopic large regions of liquid and gas phases are built up. 
A typical interparticle potential V ( r )  for a stable fluid contains a strong repulsion for 

short distances r whereas for larger distances both attractive and repulsive forces are 
conceivable. There is a widespread belief in the literature that an arbitrary attraction for 
long interparticle distances necessarily leads to liquid-gas phase separation. However, 
one may easily find counterexamples against this hypothesis. What is true is that liquid- 
gas separation occurs provided the range of the attraction is long enough. For different 

concrete interparticle pair potentials, Coussaert and Baus [2] have recently investigated 
the stability of  a liquid using a van der Waals theory. Their study strongly supports 
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Fig. I. Phase diagram in the density-temperature plane for a typical fluid with an attractive interparticle 
potential (e.g. Lennard-Jones interaction)• If the range of the attraction is long enough, three different phases 
(gas, liquid, solid) can be formed and there is a critical temperature T~ and a triple temperature Tr. Rapid 
cooling (arrow) from the one-fluid-phase region into the density gap of the two-phase region induces de- 
composition into the two stable phases. 

the view that liquid-gas phase separation only occurs for long-range attractions. On 
the other hand, the stability of a liquid is quite independent of the amplitude of the 
attraction since this quantity simply scales out with temperature. 

Let us discuss a simple example: If the interparticle potential V(r) consists of a hard- 
sphere repulsion and an attractive part proportional to - l / r " ,  then it is the exponent 
n that decides the possibility of phase separation. Coussaert and Baus [2] found that 
liquid-gas phase separation occurs for n < 7.6. Then there is a certain region in 
the density-temperature plane where a liquid phase is thermodynamically stable, see 
Fig. 2(a). On the other hand, there is no stable liquid phase for n ~> 7.6 and the phase 
diagram looks qualitatively as shown in Fig. 2(b). For n ~ 7.6 there is an interesting 
limiting situation where the critical temperature coincides with the triple temperature• 
This means that, in the density temperature plane, the endline of fluid densities exhibits 
a saddle point for T = T~. _= Tv. 

Colloidal suspensions represent rather complex liquids due to the presence of the 
solvent and of co- and counterions and added polymer in the solution. Most discussions 
of gas-liquid phase separation of the colloidal spheres is done in the context of effective 
pair interactions between the spheres. The advantage with respect to ordinary simple 
liquids is that the interaction can be tailored e.g. by varying the salt concentration 
or the concentration of added polymer. The statement above immediately implies that 
an attraction in the effective interaction is not sufficient to drive a phase separation. 
The more difficult question concerns the range of this attraction. Depending on the 
range a liquid may or may not be stable. As discussed above, these two regimes are 
separated by an interesting situation where the triple point coincides with the critical 
point. 

In this paper, I shall discuss whether and how phase separation is possible in colloidal 
suspensions. Gas-liquid as well as phase separation into two isostructural solid phases 
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Fig. 2. Qualitative shape of the phase diagram: reduced temperature t versus reduced density na3p/6 (from 
Ref. [62]). (a) Situation where a liquid (F2) is stable with respect to the gas (F1) and the solid (S). (b) 
Situation where always only a fluid (F) is stable. 
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is conceivable depending on the effective interaction between the colloidal spheres. 
Different physical mechanisms recently shown to lead to phase separation are reviewed. 

2. Different mechanisms of fluid-fluid phase separation 

2.1. Van der Waals attraction 

If the solvent and the colloidal material have different polarizabilities, the effective in- 
teraction between two colloidal spheres necessarily involves the attractive 
van der Waals forces resulting in the interparticle potential 

VA(r)=--~-  2 ( r2_- -a2)+~r2  + l n  1 - - ~  , (1) 

a denoting the colloidal diameter and H > 0 the Hamaker constant. This attractive 
potential VA(r) is proportional to r -6 for large interparticle distances r and diverges 
as l / (r  - ~) near contact. Since the exponent n = 6 is smaller than 7.6, the long- 
range tail may induce liquid-gas phase separation. The theoretical investigation can be 
done within the framework of simple liquids. Explicit calculations were done by Victor 
and Hansen [3,4]. However, experimentally there have not yet been any unambiguous 
experiments verifying this kind of phase separation, although Victor and Hansen refer 
to a work of Kotera and coworkers [5] interpreted in terms of reversible coagulation 
in the secondary minimum of the DLVO potential. The reason seems to be that, in 
typical samples, one encounters conditions that are supercritical; for a more detailed 
discussion see [6]. 

2.2. Attraction by counterion overscreenin.q 

There is a controversial discussion in the literature on the question of whether equally 
charged spheres can attract themselves in their counterion solution. Based upon linear 
screening theory an attraction was claimed by different authors [7-9]. However, as 
was demonstrated by Overbeek [10] and later on by Rosenfeld [1 1], there is no such 
attraction within a correct treatment of linear screening theory. The resulting force 
is exactly the electrostatic part of the Derjaguin-Landau-Verwey-Overbeek potential 
[12,13] involving a Yukawa or screened Debye-Hiickel interaction: 

Z 2 
Vy(r) -- (1 + t¢o'/2)2~:r exp(-t<(r - 2o')), (2) 

where Z is the macroion charge, ,.' the dielectric constant of the solvent and ~c the 
Debye-Hfickel screening constant. If nonlinear screening effects are included using the 
Poisson-Boltzmann approach [14], again there is no possibility of attraction between 
equally charged plates [15] and between equally charged spheres [16,17]. However, 
in the Poisson-Boltzmann theory, correlations between the counterions are neglected 



H. L6wen/Physica A 235 (1997) 129-141 133 

completely. If they are included (full nonlinear screening) there may be a possibility of 
attraction between equally charged plates due to counterion overscreening; however the 
corresponding conditions are only met in suspensions containing divalent counterions 
of high concentration or highly asymmetric salts. These results are based on computer 
simulations [18-20], liquid integral equations [21] and density functional theory [22]. 
Still a full theory for two spheres (e.g. based on a reliable density functional for the 
inhomogeneous multi-component plasma) is needed to clear up the possibility of their 
attraction theoretically. If their effective attraction is strong enough, it may even drive 
liquid-gas phase separation. 

Recently also a thermodynamic perturbation theory was proposed by Trigger et al. 
[23] which also predicts a possible attraction between charged spheres. The problem 
here is to justify the validity of the cumulant expansion where the macroion-counterion 
coupling is assumed to be small. 

Approaching the problem from the experimental side, the situation is again puzzling. 
Recent claims by Tata et al. [24,25] for a vapor-liquid condensation in charged colloidal 
suspensions were criticized by Palberg and Wiirth [26]. The latter authors pointed out 
that one has to be very careful in checking the absence of any salt gradient in the 
sample. Another direct measurement of the effective interaction between two spheres 
was performed by Crocker and Grier [27]. At least for the parameters they explored 
there was no indication of any attraction. Kepler and Fraden [28], on the other hand, 
claim a possible attraction due to overscreening. One should bear in mind, however, 
that the experimental samples here are confined colloids between glass plates where the 
corresponding image charges can change the nature of screening considerably. Also, 
experimentally, it is difficult to distinguish between an attraction due to the van der 
Waals interaction and an attraction due to overscreening effects. 

2.3. Effective attraction induced by added polymer 

For stable colloidal suspensions whose interaction is governed solely by a repulsive 
potential, there may be phase separation if a nonadsorbing polymer is added to the 
solution. The first possibility of such a phase separation was pointed out 40 years ago 
by Asakura and Oosawa [29]; for a historical review see also [30]. Consider two big 
colloidal spheres near touching, see Fig. 3. Then there is a depletion zone of the added 
free polymer around these colloidal spheres. This implies that the osmotic pressure 
exerted onto the spheres by the excluded polymer is not balanced and gives rise to an 
effective attraction between the spheres [31,32]. This attraction then may cause phase 
separation. Recent extensive computer simulations on a mixture of colloidal particles 
and added polymer chains with steric interactions [33,34] confirm these attractions and 
a possible phase separation. Also the phase diagram of a colloid plus polymer system 
was experimentally completely investigated where a liquid-gas phase separation of 
the colloidal particles induced by the added polymer was found [35]. Both fluid-solid 
and gas-liquid-solid phase transitions have been clearly observed by Pusey and 
coworkers [36]. 
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polymer depletion zone 

Fig. 3. Sketch of the depletion zone of added polymer in between two large colloidal spheres close to 
touching. 

2.4. Effective attraction between big spheres in a solvent of  small spheres 

The same depletion effect occurs if the polymer is modelled as a spherical random 
coil that cannot penetrate into the colloidal particles. Equivalently one can discuss 
a two-component mixture of big colloidal hard spheres and small hard spheres with 
additive diameters. Most of the discussion was based on a study of liquid integral 
equations. The Percus-Yevick closure does not give rise to phase separation. Using 
the more correct Rogers-Young closure scheme, Biben and Hansen [37,38] found that 
the osmotic pressure by the small spheres exerted onto the big spheres yields phase 
separation of the big spheres provided the ratio of diameters is small enough. This 
result is of peculiar importance since it implies that a phase separation can be driven 
purely by entropy. The same result was found [39] in a more extended parameter 
space. The physical "depletion" picture is similar to that for an added polymer, see 
Fig. 4, and was elucidated by Lekkerkerker and Stroobants [40] who used a semi- 
phenomenological approach to model the relevant free energies in order to show that 
the depletion mechanism is really strong enough to drive phase separation. A third 
complementary approach was proposed by Rosenfeld [41,42] who used a renormalized 
density functional approach to get a very good equation of state for the hard-sphere 
mixture also yielding phase separation. 

An important point, however, is that any approach cited above involves some ap- 
proximations. The direct simulation of a strongly asymmetric hard-sphere mixture 
for similar packing fractions of the big and small spheres requires too much CPU 
time on present-day computers due to ergodicity problems. Therefore one may look 
for simpler models which can be solved exactly or by computer simulation. Indeed, 
two-dimensional hard-core lattice models were found whose analytical solution ex- 
hibits a similar kind of demixing [43,44]. Also a mixture of small and large hard 
cubes was investigated by computer simulation [45] which again shows phase 
separation. 



H. LrwenIPhysica A 235 (1997) 129-141 135 

depletion zone resulting into 
an effective attraction 

Fig. 4. Same as Fig. 3, but now for a mixture of large spheres and small spheres where the packing fractions 
of the large and small spheres are comparable. 

Finally the problem was also attacked from the experimental side. The phase sep- 
aration in hard-sphere mixtures was indeed detected in strongly asymmetric bimodal 
suspensions of  sterically stabilized [46,47] or charge-stabilized [48,49] colloidal spheres. 

Hence, from theory, simulation and experiment, there seems to be a strong consensus 
that such a type of phase separation does occur. A final remark concerns the question 
of whether the phase separation is fluid-fluid or fluid-solid: initially Biben and Hansen 
[37,38] proposed a fluid-fluid scenario but recent experiments [47] show that the tran- 

sition is in fact a fluid-solid transition. This was suggested on theoretical grounds in 
Ref. [40] and is also discussed in Ref. [46]. 

2.5. Phase separation induced by a solvent phase transition 

In standard samples of colloidal suspensions the solvent is far away from any phase 
transition. One can think, however, about many ways of reaching a solvent phase 
transition for experimentally accessible conditions. The most prominent examples are 
silica spheres embedded in a mixture of lutidine and water exhibiting a coexistence 

of a lutidine-rich and water-rich phase close to room temperature. This sample was 
extensively studied by Beysens and coworkers [50-52]. Indeed, near the critical point, 
aggregation and partitioning of the colloidal particles was found. 

The physical mechanism of driving such a kind of phase separation strongly depends 
on whether the solvent phase transition is first or second order. For a first-order solvent 
phase transition, a general theoretical investigation was done by the author [53,54] 
based on a Ginzburg-Landau description of the solvent phase transition. If, near phase 
coexistence, the metastable phase wets the colloidal surfaces, there are certain regions of 
this metastable phase around each colloidal sphere which are separated by an interface 
from those regions where the stable phase is present, see Fig. 5(a). On the one hand, 
there is a gain in energy since the colloidal surface prefers the metastable phase, but 
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Fig. 5. Results for the interface between the metastable phase and the stable phase from computer simulation 
(from Ref. [53]): the colloid positions (black circles) are projected from a slab to the xy-plane of the 
simulation box. The dark pixels indicate that - on z-average - the metastable phase is present while a white 
region is filled with the stable phase. (a) Clustered situation. (b) Phase-separated situation, Here the colloid 
density is higher in the region filled with the metastable phase. 

there  are also two ene rgy  pena l t ies  to pay  for  such an a r r a n g e m e n t  on  the  o the r  hand.  

First,  there  is a free ene rgy  pena l ty  sca l ing  bo th  wi th  the v o l u m e  o f  the  reg ion  occup ied  

b y  the  me tas tab le  phase  and  wi th  the  r educed  d is tance  f rom coexis tence .  The  second  

free ene rgy  pena l ty  s tems  f rom the surface  free ene rgy  n e e d e d  to create  an  in te r face  

be tween  the s table  and  metas tab le  phase  wh ich  scales  wi th  the  area o f  the in te rsec t ing  

region• Hence  there  is a t e n d e n c y  in f o r m i ng  large c lus ters  o f  the  me tas t ah le  phase  

con ta in ing  m a n y  col lo ida l  p a n i c l e s  s ince  the  surface  free ene rgy  is r educed  at the  

expense  o f  the  h igher  ene rgy  due to the  d i rec t  col loidal  repuls ion.  I f  each  o f  these  

energ ies  is t aken  into accoun t  proper ly ,  an a p p r o x i m a t i v e  ana ly t ica l  t r ea tmen t  as wel l  
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as a computer simulation [53,54] predict phase separation of the colloidal particles. 
In such a phase-separated case, there is a region filled with the metastble phase and 
many colloidal particles and another region with the stable phase containing only few 
colloidal particles, see Fig. 5(b). In fact there are two possibilities to reach this phase 
separation. Either it starts from a situation involving only the stable phase or it starts 
from a clustered situation (Fig. 5(a)). The transition from the clustered to the phase- 
separated situation turns out to be the first order [53,54]. This implies that the mean 
number of colloidal particles per cluster discontinuously jumps from a finite number 
of infinity. This transition can also be viewed as a percolation transition with respect 
to the region filled up with the metastable phase. 

On the other hand, for a second-order solvent phase transition, the critical fluctuations 
of the solvent can induce an effective attraction between two colloidal spheres. This 
has a quantum mechanical analogon in the Casimir effect [55] where the vacuum 
fluctuations of the electromagnetic field result in an effective attraction between two 
neutral parallel metal plates. Recently Burkhardt and Eisenriegler [56] (see also [57]) 
found that the critical fluctuations give rise to an attractive interparticle potential that 
decays proportional to - e x p ( - r / ~ ) / r '  for large interparticle distances r where the 
exponent 7 is slightly larger than 1 and ~ is the correlation length in the near-critical 
solvent. Directly at criticality, we have ( : c~ which implies that phases separation is 
strongly expected near criticality. 

As already mentioned, a series of interesting experiments have been performed by 
Beysens and coworkers on colloidal silica spheres with a solvent mixture consisting of 
water and lutidine [50,51]. In the vicinity of the lower consolute point of the solvent 
mixture the colloidal spheres aggregate since they cover themselves with a lutidine-rich 
layer. Hence it appears that this aggregation might be related to the phase separation 
for a first-order solvent phase transition. More recently, experiments on silica colloids 
in reentrant liquid mixtures of 3-methylpyridine plus water plus heavy water exhibit 
a similar flocculation near the solvent phase transition [58]. In the experiments one 
can also reach criticality probing the influence of critical fluctuations. It is still not 
completely clear whether and how these experimental facts are exactly related to the 
theoretical mechanisms near and far from criticality. 

3. Phase separation into two isostruetural solid phases 

If the interparticle potential has a very short-range attraction there is no way for 
liquid-gas phase separation. In this extreme case, however, there is a possibility of a 
phase separation into two isostructural solid phases. A corresponding phase diagram 
in the density-temperature plane is depicted in Fig. 6. Young and Alder [59] were 
the first to discover such a solid-to-solid transition for hard spheres with an attractive 
square-well potential of range 6 equal to one-half of the hard-sphere diameter a. By 
computer simulation they found that it is energetically more favourable for the second 
nearest neighbours to shrink forming a crystal with higher density which can coexist 
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Fig. 6. Same as Fig. 2, but now for an interparticle potential with a short-range attraction. The phase diagram 
exhibits two isostructural solid phases (SI and $2). The coexistence line terminates at a solid-solid critical 
point (from Ref. [62]). 

with a crystal of  a larger lattice constant that possesses a higher entropy. This tran- 

sition, however, is basically triggered by the steepness of  the square-well potential; it 

disappears for softer interactions. 
For an even shorter-ranged interparticle potential, Bolhuis and Frenkel [60,61] have 

recently shown that an isostructural solid-to-solid transition can be induced by a cou- 
pling to the nearest neighbour particles. Solid-solid coexistence is possible if  the range 
6 of  the attractive square-well potential of  the hard spheres is smaller than 0.07. This 
transition is persistent also for smoother potentials such as a double Yukawa potential. 

From the underlying physics, this phase separation is by now well-understood. 
Already a very simple uncorrelated cell-model can qualitatively reproduce the re- 
sults [60,61] and better quantitative agreement was achieved in using a van der Waals 
theory for solids [62], a variational method based on the Gibbs-Bogoliubov inequal- 
ity [63,64] and classical density functional theory of  freezing [65-68]. 

In two spatial dimensions, the freezing process is fundamentally different from that 
in three dimensions since the occurrence of  an intermediate hexatic phase possessing 
long-range bond-orientational order is possible. A peculiar system which was studied 
recently by Bladon and Frenkel [69] consists of  hard disks with a square-well attraction. 
In fact there is again a solid-solid critical point. In the neighbourhood of  the critical 
point a hexatic phase was found. 
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Much less work has been spent on experiments on solid-solid phase separation. One 
may hope that colloidal suspensions can really mimick such a hard-core plus short-range 
attraction, e.g. due to the strong van der Waals attraction near contact. So in principle 
the solid-solid phase separation should be observable. Its experimental verification is 
highly probable but still lying ahead. 

4. Future problems 

This paper of course cannot comprehensively study all mechanisms of demixing. 
Since colloidal suspensions can be studied in many different complex situations, 
it might be expected that there are still further possibilities for phase separation, 
particularly for nonadditive binary and ternary mixtures, rod-like colloids [30], and 
polyelectrolytes [70]. 

Let us finish with a couple of arbitrarily chosen open questions. The first point 
concerns the violation of Gibbs' phase rule. Having the solid-solid phase separation 
in mind, it might be possible that for certain interparticle pair potentials in a one- 
component system a quadruple point  occurs with four coexisting phases: gas, liquid 
and two isostructural solid phases. This would then immediately imply that Gibbs' 
phase rule is violated. In fact the DLVO potential is a possible candidate for such a 
situation. A detailed investigation is in progress. 

Another interesting situation consists of a solvent near a first-order phase transition 
together with colloidal particles that are in a solid phase. One might surmise that the 
solvent-induced attraction again can give rise to a solid-solid demixing. 

A third situation concerns a colloidal suspension confined between two parallel plates. 
The interaction with the plates can also induce phase separation with a rich scenario 
depending on details of the particle/solvent-plate interaction. 

Last, the critical behaviour of the following two situations should be examined in 
more detail. First, the peculiar case where the critical point coincides with the triple 
point, as mentioned in the first section, has never been investigated as far as criti- 
cal exponents and properties are concemed. Second, the exponents corresponding to 
the solid-solid critical point, as mentioned in the last section (see again Fig. 6), are 
not known. Within a density functional theory, it was shown that the exponents are 
classical [65]. This was highly expected since the density functional theory can be 
shown to be equivalent to a mean-field-like theory yielding classical exponents [1]. 
One might conjecture that the exponents are really classical due to the fact that certain 
critical modes are suppressed in the crystalline lattice. This may be quite similar to the 
classical critical point arising in phase diagrams of hydrogen in metals [71]. 
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