ABSENCE OF PHONON-INDUCED LOCALIZATION IN POLARON SYSTEMS

Bernd Gerlach

Institut für Physik der Universität Dortmund
Otto-Hahn Str., D-4600 Dortmund 50, Germany

Hartmut Löwen

Institut für Theoretische Physik der Universität München Theresienstr. 37, D-8000 München 2, Germany

We prove that the ground-state wave function of an optical polaron is delocalized for any coupling strength. This result holds true for arbitrary spatial dimensions, anisotropic coupling and certain band-structures, deviating from the parabolic case. In addition, an extension to the (Wannier) exciton-phonon problem is possible.

1. INTRODUCTION AND DISCUSSION OF THE PROBLEM

The standard polaron model is defined by a Hamiltonian H, which was firstly proposed by Fröhlich, Pelzer and Zienau [1]. Using $\hbar\omega$ and $\sqrt{\hbar/m\omega}$ as units of energy and length, m and ω being the electron mass and an arbitrary frequency, H reads as follows:

$$(\hbar\omega)^{-1}H := \frac{\vec{p}^2}{2} + \int d^3k \,\omega(\vec{k}) \,a^+(\vec{k}) \,a(\vec{k}) + \sqrt{\alpha} \int d^3k \,g(\vec{k}) \left[\exp(i\vec{k}\vec{r}) \,a(\vec{k}) + h.c.\right] \tag{1}$$

On the right-hand side of (1), all quantities are dimensionless. In detail, \vec{p} and \vec{q} are momentum operator and position of the electron; \vec{k} , $\omega(\vec{k})$, $a^+(\vec{k})$, $a(\vec{k})$ are wave vector, dispersion, creation- and annihilation-operator of a phonon. Finally, $g(\vec{k})$ is the electron-phonon coupling and α the coupling constant. One should notice, that H is defined on a product Hilbert-space \mathcal{H} , namely

$$\mathcal{H} := \mathcal{H}_{Ph} \otimes \mathcal{H}_{E}$$
 (2)

where \mathcal{H}_{Ph} denotes the usual Fock-space for phonons and \mathcal{H}_{Ξ} the one-particle Hilbert-space.

We now turn to the localization problem. To begin with, we fix the precise meaning of the heading "localized". A polaron wave function Ψ is called localized, if Ψ is an element of \mathcal{H} i.e. normalizable with respect to the electron and phonon part. In any other case, Ψ is called delocalized. Let us specifically discuss the question, whether there exists a localized ground-state Ψ_0 of H. H commutes with the operator \overrightarrow{P} of total momentum, that is

$$\vec{P} := \vec{p} + \int d^3k \ a^+(\vec{k}) \ a(\vec{k}) =: \vec{p} + \vec{P}_{Ph}$$
 (3)

Consequently, there exist simultaneous eigenfunctions of \vec{P} and H. Now, the general eigenfunction of \vec{P} with eigenvalue \vec{Q} is given by

$$\chi(\vec{Q}) := \exp(i[\vec{Q} - \vec{P}_{Ph}]\vec{r})\Phi_{Ph} \quad , \qquad \Phi_{Ph} \in \mathcal{H}_{Ph}$$
 (4)

As it is sufficient to solve for $HX(\vec{Q}) = E(\vec{Q})X(\vec{Q})$, we arrive at

$$H(\vec{Q}) \chi(\vec{Q}) = E(\vec{Q}) \chi(\vec{Q})$$
 , (5)

$$H(\vec{Q}) := \frac{1}{2} (\vec{Q} - \vec{P}_{Ph})^2 + \int d^3k \, \omega(\vec{k}) \, a^+(\vec{k}) \, a(\vec{k}) + \sqrt{\alpha} \int d^3k \, g(\vec{k}) \, [a(\vec{k}) + a^+(\vec{k})]$$
 (6)

We add as a remark, that $H(\vec{Q})$ defines the momentum decomposition of the Hamiltonian \widetilde{H} , introduced by Lee, Low, Pines [2]. In fact, replacing \vec{Q} in $H(\vec{Q})$ by the momentum operator \vec{p} , one finds \widetilde{H} .

In view of equ. (4) , it appears not at all clear, whether there exists a single localized eigenfunction of H - for a given value of \vec{Q} , $\chi(\vec{Q})$ is apparently delocalized. We discuss this point a bit more: If α is sufficiently small, we know from perturbation theory, that the ground-state Ψ_0 of H is of type $\chi(\vec{Q}=\vec{0})$. Consequently, the ground-state energy $E_0(\vec{Q})$ fulfills

in a certain surrounding of $\alpha=0$. Let us tentatively assume, that (7) was not true for $\alpha>\alpha_c$. Then one could deduce i): The ground-state is infinitely degenerated, as $E_0(\vec{Q})$ depends only on $|\vec{Q}|$. ii): If the minimum of $E_0(\vec{Q})$ occurs for a subset of \vec{Q} -vectors with different length, a suitable superposition of the corresponding eigenfunctions might yield a localized state.

2. RESULTS AND INDICATION OF THEIR PROOF

Our central statement excludes the above speculations i) and ii). We show: Let $\omega(\vec{k}) \ge \omega_0 > 0$ and $\int d^3k \, |g(\vec{k})|^2 / (1+k^2) < \infty$. Then, inequality (7) holds for $0 \le \alpha < \infty$. Consequently, the ground-state Ψ_0 of H is nondegenerate and delocalized for any coupling strength.

The proof of this statement is based on the following two theorems:

- i) Let H be a Hamiltonian, defined on a Hilbert space $\mathcal H$ and bounded from below, the ground-state energy being E_0 . Choose a fixed representation of $\mathcal H$. If E_0 is an eigenvalue and $\exp(-H)$ is positivity improving in this representation, then E_0 is a simple eigenvalue.
- ii) Let $H=H_0+V$ and choose a fixed representation of \mathcal{H} . Suppose that V is a multiplication operator and that there exists a sequence of bounded multiplication operators V_n such that $H_0+V_n\to H$ and $H-V_n\to H_0$ in a strong resolvent sense. Then $\exp(-H)$ is positivity improving, if this is true for $\exp(-H_0)$. As for proofs, see ref. [3].

We apply these theorems to the Hamiltonian \widetilde{H} of Lee, Low and Pines (see equ. (6) and the remarks thereafter) and start with theorem i). Our assumptions guarantee the boundedness of \widetilde{H} from below. To assure that E_0 is an eigenvalue, we confine the electron to a box of finite volume – as for this technical point we refer to [4]. Finally, we have to establish the positivity-improving property. This will be done by means of theorem ii): If we choose the Fröhlich interaction term to be V, it is well known that V is a multiplication operator in the position-representation of \mathcal{H}_{Ph} ; so we use this representation. Moreover, the existence of operators V_n was proven by J. Fröhlich in [5]. Turning to $\exp(-H_0)$, where $H_0 := \widetilde{H} - V$, we realize that the free phonon part is positivity improving with respect to the phonon and positivity preserving with respect to the electron coordinates. In a final step we use a Gaussian linearization for the remaining term in H_0 , involving $[\overrightarrow{P} - \overrightarrow{P}_{Ph}]^2$:

$$\exp\left(-\frac{1}{2}\left[\vec{p} - \vec{P}_{Ph}\right]^2\right) = (2\pi)^{\frac{3}{2}} \int d^3\lambda \exp(-\lambda^2/2) \exp(i\vec{\lambda}\vec{p}) \exp(-i\vec{\lambda}\vec{P}_{Ph})$$
 (8)

We choose a position representation also for $\mathcal{H}_{\mathbf{E}}$. Then the right-hand side of (8) is positivity improving with respect to the electron- and positivity preserving with respect to the phonon coordinates.

In summary, $\exp(-H)$ is positivity improving. Consequently, the ground-state eigenvalue of H is simple and belongs to $\vec{Q} = \vec{0}$.

3. EXTENSIONS

To begin with, we mention that the above proof is valid for arbitrary spatial dimensions as well as for anisotropic electron-phonon coupling, provided the conditions on $\omega(\vec{k})$ and $g(\vec{k})$ from section two are fulfilled. Moreover, a coupling of the electron to several phonon branches is admissible. A (Wannier) exciton-phonon system can be treated in a similar manner as a free polaron. In this case, we have instead of equ. (2): $\mathcal{H} = \mathcal{H}_{Ph} \otimes \mathcal{H}_{E} \otimes \mathcal{H}_{H}$ where "H" is to indicate the hole. Choosing a position representation for \mathcal{H}_{H} , the proof from section two can be transferred. We stress the particularly interesting result that the center-of-mass part of the wave function is always delocalized; no self-trapping occurs. As for details see [4].

Very interesting problems (far from being solved) are connected with the discussion of a nonparabolic band-structure $\epsilon(\vec{p})$. Mimicking the above proof, equation (8) would contain the Fourier-transform $f(\vec{\lambda})$ of $\exp(-\epsilon(\vec{p}))$ instead of $\exp(-\lambda^2/2)$. If $f(\vec{\lambda})$ was positive, all conclusions would be unchanged. This is true for

$$\varepsilon(\vec{p}) = ap^{\nu}$$
 , $a > 0$, $0 < \nu \le 2$ (9)

(see Montroll, Shlesinger in [6]). The case $\nu > 2$ cannot be included. Unfortunately, the same holds true for the physically appealing example $\epsilon(\vec{p}) = a\,p^2 + b\,p^4$, a > 0, b > 0 (see Simon in [7]) and many other cases $\epsilon = \epsilon(|\vec{p}|)$, which can be found by direct inspection of tables of Fourier sine transforms.

4. REFERENCES

- [1] H. Fröhlich, H. Pelzer and S. Zienau, Phil. Mag. 41, 221 (1950)
- [2] T.D. Lee, F.E. Low and D. Pines, Phys. Rev. <u>90</u>, 297 (1953)
- [3] M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vol. IV, chapter XIII. Academic Press, New York 1978
- [4] B. Gerlach and H. Löwen, Phys. Rev. B 37, 8042 (1988)
- [5] J. Fröhlich, Fortschritte der Physik 22, 159 (1974)
- [6] E.W. Montroll and M.F. Shlesinger, Journ. Stat. Phys. 32, 209 (1983)
- [7] B. Simon, Helv. Phys. Acta 46, 686 (1973)