ABSENCE OF PHONON-INDUCED LOCALIZATION IN POLARON SYSTEMS
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We prove that the ground-state wave function of an optical polaron is de-
localized for any coupling strength. This result holds true for arbitrary spatial
dimensions, anisotropic coupling and certain band-structures, deviating from the
paraboiic case. In addition, an extension to the (Wannier) exciton-phonon

problem is possibie.

1. INTRODUCTION AND DISCUSSION OF THE PROBLEM

The standard polaron model is defined by a Hamiltonian H, which was firstly
proposed by Frohlich, Pelzer and Zienau [1]. Using hw and yH/mw as units
of energy and length, m and w« being the electron mass and an arbitrary

frequency, H reads as follows:
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On the right-hand side of (1), all quantities are dimensioniess. In detail,
and § are momentum operator and position of the electron; kK, i), a*(k),
a(k) are wave vector, dispersion, creation- and annihilation-operator of a phonon.
Finally, g(l_c’) is the electron-phonon coupling and « the coupling constant. One

should notice, that H is defined on a product Hilbert-space <, namely
Hi=H, eH, (2)

where <lp, denotes the usual Fock-space for phonons and g the one-

particle Hilbert-space.



We now turn to the localization problem. To begin with, we fix the precise
meaning of the heading “localized”. A polaron wave function ¥ is calied
localized, if ¥ is an element of <41 ie. normalizable with respect to the
electron and phonon part. In any other case, ¥ is called delocalized. Let us
specifically discuss the question, whether there exists a localized ground-state

¥y of H. H commutes with the operator P of total momentum, that is
P=p+ [ dka’(K) a(k) =5+ Pp, (3)

Consequently, there exist simultansous eigenfunctions of P and H. Now, the

general eigenfunction of B with eigenvalue 3 is given by
Q) =exp(i[B-Fpp 17) Opp, Dp, ¢ Hpp, (4)
As it is sufficient to solve for HX(Q)=E(Q)X(Q), we arrive at
HR U =E@) U (5)
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We add as a remark, that H(Q) defines the momentum decompesition of the
Hamiltonian ﬁ, introduced by Lee, Low, Pines [2]. In fact, replacing 3 in
H(Q) by the momentum operator P, one finds H.

In view of equ. (4) , it appears not at all clear, whether there exists a
single localized eigenfunction of H - for a given value of @, X(Q) is
apparently delocalized. We discuss this point a bit more: If o is sufficiently
small, we know from perturbation theory, that the ground-state ¥, of H is
of type X(Q=0). Consequently, the ground-state energy Eo(a) fulfills

E,(0) <E,(Q#0) (7)

in & certain surrounding of x=0. Let us tentatively assume, that (7) was
not true for «a>«.. Then one could deduce i): The ground-state is infinitely
degenerated, as Eg(a) depends only on 131, i) If the minimum of E(Q)
occurs for a subset of Q-vectors with different length, a suitable super=

position of the corresponding eigenfunctions might yield a localized state.



2. RESULTS AND INDICATION OF THEIR PROOF

Our central statement excludes the above speculations i) and ii). We show:
Let w(k)2wy>0 and [ dkIg(kIP/ (1+k*) <o, Then, inequality (7} holds for
O<a<o., Consequently, the ground-state ¥, of H is nondegenerate and

delocalizad for any coupiing strength.

The proof of this statement is based on the following two theorems:

i} Let H be a Hamiltonian, defined on a Hilbert space 1 and bounded from
below, the ground-state energy being E; . Choose a fixed representation of
H. ¥ E, is an eigenvalue and exp(-H) is positivity improving in this
representation, then E, is a simple eigenvalue.

i) Let H=H,;+V and choose a fixed representation of 4{. Suppose that V is
a muitiplication operator and that there exists a sequence of bounded
multiplication operators V_  such that Hy+V, >H and H-V >H; in a strong
resoivent sense. Then exp{-H) is positivity improving, if this is true for
exp(=H;). As for proofs, see ref. [3].

We apply these theorems to the Hamiltonian H of Lee, Low and Pines (see
equ. (6) and the remarks thereafter) and start with theorem i). Our
assumptions guarantee the boundedness of H from below. To assure that E,
is an eigenvalue, we confine the electron to a box of finite volume =~ as for
this technical point- we refer to [4]. Finally, we have to establish the
positivity-improving proparty. This will be done by means of theorem ii): If we
chovse the Frdhlich interaction term to be V, it is wall knownthat V is a
multiplication operator in the position-representation of 4, ; so we use this
representation. Moreover, the existence of operators V,, was proven by
J. Fréhlich in [5]. Turning to exp(-Hy), where M, :=I?1-V, we realize that the
free phonon part is positivity improving with respect to the phonon and positivity
preserving with respect to the electron coordinates. In a final step we use a

Gaussian linearization for the remaining term in H,, involving [f:'-a thlzz

3
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We choose a position representation also for #{g. Then the right-hand side
of (8) is positivity improving with respect to the electron- and positivity

preserving with respect to the phonon ceordinates.



In summary, exp{-H) is positivity improving. Conseguently, the ground-state
eigenvalue of H is simple and belongs to 6=8

3. EXTENSIONS

To begin with, we mention that the above proof is valid for arbitrary spatial
dimensions as well as for anisotropic electron-phonon coupling, provided the
conditions on w(k) and g(k) from section two are fuifilled. More&ver, 2 coupling
of the electron to several phonon branches is admissible. A (Wannier) exciton-
phonenn system can be treated in a similar manner as a free polaren. In
this case, we have instead of equ. (2): H=Hp, e HgeHy where "H" is
to indicate the hole. Choosing a position representation for <, the proof
from section two can be transferred. We stress the particularly interesting
resuit that the center—of-mass part of the wave function is always delocalized;
ne self-trapping occurs. As for details see [41].

VYery interesting problems (far from being solved) are connected with the
discussion of a nonparabolic band-structure :(p). Mimicking the above proof,
equation (8) would contain the Fourier-transform #(X) of exp(-t(P)) instead
of exp(-2%/2). 1f £#(X) was positive, all conclusions would be unchanged.

This is true for
e(Pl=apy a>0 , O<vs2 (9)

(see Montroll, Shiesinger in [6]1). The case v>2 cannot be included.
Unfortunately, the same holds true for the physicaily appealing example
e(F)=ap’+bp', a>0, b>0 (see Simon in [71)and many other cases ¢=e(Ipl),

which can be found by direct inspection of tables of Fourier sine transforms,
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